
Exploiting Distributed Version Concurrency in a Transactional
Memory Cluster

Kaloian Manassiev
Department of Computer Science,

University of Toronto, Canada
kaloianm@cs.toronto.edu

Madalin Mihailescu
Department of Computer Science,

University of Toronto, Canada
madalin@cs.toronto.edu

Cristiana Amza
Department of Electrical and Computer

Engineering, University of Toronto,
Canada

amza@eecg.toronto.edu

Abstract
We investigate a transactional memory runtime system providing
scaling and strong consistency for generic C++ and SQL appli-
cations on commodity clusters. We introduce a novel page-level
distributed concurrency control algorithm, called Distributed Mul-
tiversioning (DMV). DMV automatically detects and resolves con-
flicts caused by data races for distributed transactions accessing
shared in-memory data structures. DMV’s key novelty is in exploit-
ing the distributed data versions that naturally occur in a replicated
cluster in order to avoid read-write conflicts. Specifically, DMV
runs conflicting transactions in parallel on different replicas, in-
stead of using different physical data copies within a single node
as in classic multiversioning.

In its most general update-anywhere configuration, DMV can
be used to implement a software transactional memory abstrac-
tion for classic distributed shared memory applications. DMV sup-
ports scaling for highly multithreaded database applications as well
by centralizing updates on a master replica and creating the re-
quired page versions for read-only transactions on a set of slaves. In
this DMV configuration, a version-aware scheduling technique dis-
tributes the read-only transactions across the slaves in such a way
to minimize version conflicts.

In our evaluation, we use DMV as a lightweight approach to
scaling a hash table microbenchmark workload and the industry-
standard e-commerce workload of the TPC-W benchmark on
a commodity cluster. Our measurements show scaling for both
benchmarks. In particular, we show near-linear scaling up to 8
transactional nodes for the most common e-commerce workload,
the TPC-W shopping mix. We further show that our scaling for the
TPC-W e-commerce benchmark compares favorably with that of
an existing coarse-grained asynchronous replication technique.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—Distributed program-
ming

General Terms Measurement, performance, experimentation

Keywords Transactions, in-memory, scalability, concurrency con-
trol, replicated databases

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’06 March 29–31, 2006, New York, New York, USA.
Copyright c© 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

1. Introduction
In this paper we introduce and evaluate a novel page-level dis-
tributed concurrency control algorithm, called Distributed Mul-
tiversioning (DMV). DMV allows transactions on different ma-
chines to manipulate shared in-memory data structures in an atomic
and serializable manner. DMV forms the basis of a software trans-
actional memory system for scaling both C++ and SQL applica-
tions on a commodity cluster.

Software transactional memory (STM) [14, 16, 17, 18] has re-
cently emerged as a novel parallel programming paradigm for fa-
cilitating efficient, programmer-friendly use of the plentiful paral-
lelism available in hardware. Instead of synchronization, the user
inserts delimiters for transactions to be executed in parallel by the
STM run-time system. The STM automatically detects and resolves
conflicts caused by data races. Typically, software transactional
memory is implemented as a multiversioned in-memory object
store inside a single multiprocessor node. Each new transaction cre-
ates a new copy of each object, either upon first access [18], or upon
the first update to that object. Similar copy-on-write techniques
have also been traditionally used in multiversioned databases (e.g.,
PostgreSQL). Such systems pay the price of maintaining multiple
physical data item copies and of garbage collecting old copies.

We observe that, in a distributed system, maintaining several
distributed versions of the same data item, one at each distributed
node, comes almost for free. In the common case, an update can
upgrade an item replica at a particular node to a new version, while
a read proceeds concurrently on the old version of the same data
item at another node. Since conflicts occur for a limited duration,
a replicated cluster system may thus provide a sufficient number
of readily available data item versions in order to avoid most con-
flict waits. Based on this observation, Distributed Multiversioning
(DMV) combines fine-grained (per-page) concurrency control with
asynchronous data replication on a cluster in order to improve read-
write concurrency. DMV provides scaling and strong consistency
(i.e., 1-copy serializability [9]) for the overall cluster system, while
maintaining a single copy of the application data at each node.

In DMV, each update transaction executing at a node creates a
new version of the shared memory. The update transaction broad-
casts per-page version-tagged modifications to all other replicas as
a pre-commit action. Each replica receiving an update broadcast
delays applying the modifications locally and replies immediately,
thus not delaying the committing update transaction. If the modifi-
cation broadcast is received during an update transaction and a con-
flict is detected, the local transaction is rolled-back and restarted.

The key optimization in DMV is to isolate the execution of a
read-only transaction from any remote conflicting updates. A read-
only transaction creates its own consistent “snapshot” [9] on the

local replica by selectively applying outstanding modifications on
the shared pages it touches. Creating per-page versions lazily al-
lows different read-only transactions with disjoint read sets to run
concurrently at the same replica even if they require different ver-
sions for their items. Conversely, if two read-only transactions need
two different versions of the same item, they can only execute in
parallel if sent to different replicas. We leverage the presence of a
scheduler that distributes transactions on a cluster in many applica-
tion configurations in order to avoid version conflicts. Specifically,
a version-aware scheduler sends transactions requiring conflicting
versions to different cluster nodes. In the case of imperfect schedul-
ing (e.g., due to insufficient replicas), a read-only transaction may
need to wait for other co-located transactions using a previous ver-
sion of an item to finish in order to create its own. Moreover, the
price we pay for not keeping older versions around is that a read-
only transaction may be aborted if the version it needs for a par-
ticular page has been already overwritten by another transaction
carrying a higher version number. Fortunately, this case is rare in
practice.

In this paper we focus on two DMV cluster configurations:
update-anywhere with no scheduler support and master-update
with scheduler support. The update-anywhere DMV configura-
tion supports scaling through STM techniques for classic C++
distributed shared memory applications [4]. In the master-update
DMV configuration, a scheduler minimizes conflicts by sending all
update transactions on a master replica and distributing read-only
transactions across a set of slave replicas in a version-aware man-
ner. The master-update DMV configuration provides scaling for
highly multithreaded applications, such as, database applications.
For these applications, the probability of read-write conflicts oc-
curing within a node is high in the update-anywhere configuration.

In order to aid our implementation efforts, our replicated trans-
actional memory system borrows heavily from an existing dis-
tributed shared memory library: the TreadMarks [4] library, which
provides automatic detection and encapsulation of per-page modi-
fications. In addition to TreadMarks, in order to support SQL-based
transactional applications, we also build on the MySQL “heap-
table” code [1]. This version of MySQL provides a very simple and
efficient in-memory SQL database engine without transactional
properties using red-black trees [12] as index data-structure.

In our evaluation, we use the three workload mixes of the in-
dustry standard TPC-W e-commerce benchmark [3] as our SQL-
based benchmark and a distributed hash table microbenchmark as
an example of support for scaling generic C++ applications. For
the distributed hash table microbenchmark, we explore a range of
workload mixes by varying the size and frequency of the hash ta-
ble insert/delete transactions versus hash table lookup transactions.
For TPC-W, we use the three standard workload mixes of TPC-W,
which similarly allow us to vary the fraction of write-type transac-
tions from 5% to 50%: browsing (5%), shopping (20%) and order-
ing (50%). We have implemented the TPC-W web site using popu-
lar open source software packages: the Apache Web server [8], the
PHP Web-scripting/application development language [23], and the
MySQL heap-table database server. We have modified the MySQL
heap-table code to include transactional calls to our runtime sys-
tem, thus obtaining a lightweight in-memory tier. We use this tier
in place of the database back-end for the TPC-W e-commerce site.

We further compare the throughput scaling obtained through
Distributed Multiversioning on an e-commerce database cluster of
one master and eight slave replicas with the throughput and scal-
ability of a state-of-the-art replication technique for e-commerce
applications, Conflict-Aware scheduling [5]. This technique is rep-
resentative of recently proposed asynchronous database replication
schemes offering strong consistency guarantees [19, 11]. Similar
to DMV, this scheme distributes read-only requests on a cluster

of database replicas and replicates writes lazily for scaling. On
the other hand, the conflict resolution employed by this previous
scheme is coarser grained, per-table instead of per-page as in DMV.

Our results are as follows:

1. Distributed Multiversioning provides close to linear scaling for
the browsing and shopping TPC-W workloads and limited scal-
ing for the write-heavy ordering mix of TPC-W.

2. The scaling of DMV compares favorably with the throughput
scaling of the asynchronous replication technique with coarse-
grained conflict resolution.

3. Our in-memory transactional system also provides support for
scaling the hash table microbenchmark in the classic distributed
shared memory configuration.

The rest of this paper is organized as follows. Section 2 introduces
the necessary background in consistency maintenance techniques
used in software distributed shared memory. Section 3 introduces
our Distributed Multiversioning scaling solution. Section 4 gives
details on our prototype implementation. Sections 5 and 6 describe
our experimental environment and results. Section 7 discusses re-
lated work. Section 8 provides our conclusions.

2. Background
In this section we provide the necessary background in software
distributed shared memory (SDSM). Specifically, we describe the
basics of a state-of-the-art SDSM, TreadMarks [4]. TreadMarks is
a user-level SDSM system that runs on commodity clusters. Tread-
Marks provides parallel programming primitives similar to those
used in hardware shared memory machines, namely, process cre-
ation, shared memory allocation, and lock and barrier synchroniza-
tion.

TreadMarks relies on user-level memory management tech-
niques provided by the operating system to detect accesses to
shared memory at the granularity of a page. A multiple-writer
protocol is employed to reduce the amount of communication in-
volved in implementing the shared memory abstraction. Two or
more nodes can simultaneously modify their own copy of a shared
page. The modification merge is accomplished through the use of
diffs. A diff is a runlength encoding of the modifications made to a
page, generated by comparing the page to a copy, called twin saved
prior to the modifications. Even though DMV uses a different pro-
tocol for consistency maintenance and introduces alternative access
trapping mechanisms compared to TreadMarks, we reuse the ba-
sic mechanisms for process creation, shared memory allocation,
encapsulating and merging modifications by twinning and diffing.

3. Distributed Multiversioning
In this section, we introduce our Distributed Multiversioning
(DMV) protocol that allows application threads to manipulate
shared in-memory data structures in a distributed manner through
a transactional API. The goal of DMV is to scale the application
on a cluster through a novel distributed concurrency control mech-
anism that integrates fine-grained concurrency control and strongly
consistent lazy replication.

3.1 Application Programming Interface

This section describes the transaction API and the related program-
ming paradigms that our runtime system offers. All applications
access shared memory through transactions. There is no attempt
to support non-transactional execution. Furthermore, each applica-
tion transaction executes only at a single machine. Multi-machine
transactions and distributed commit are not supported.

In case an on-disk database is used by the transactional applica-
tion, the application running at each node maps the database into its
virtual address space. This part of the application’s address space is
shared with other applications that also have the database mapped.
If two applications execute on different machines, then that sharing
is brought about by DMV.

There is no need for the application to do explicit locking. Ap-
propriate concurrency control to guarantee serializable execution is
done by DMV on behalf of the application. DMV may also abort a
transaction in order to maintain serializability.

Our system offers the following set of primitives as its basic
API.

init_transactions()
begin_transaction()
commit_transaction()
abort_transaction()
allocate_dtmemory()

Begin transaction, commit transaction, and abort
transaction implement the customary transaction seman-
tics [15]. The init transactions operation performs sys-
tem initializations and should be called before the start of the first
transaction in the application code. The allocate dtmemory
operation allocates shared memory space of a required size in the
transactional memory. The memory allocation scheme is similar
to the one in TreadMarks [4]. In addition, as in TreadMarks [4],
primitives for remote process creation are also supported.

More importantly, because an application may access both local
and shared data, the application needs to explicitly declare variables
that are part of the shared transactional memory.

3.2 Overview of DMV

Each node in our in-memory transactional cluster maintains a sin-
gle physical copy of the application data at any given time. Instead
of local physical copies, DMV takes advantage of the distributed
updates that occur anyway in a cluster system for consistency main-
tenance, hence of the availability of distributed data item replicas.
If a single application thread executes at each cluster node, then
an update and a read-only transaction always occur on different
replicas, hence they do not interfere with each other. Our key idea
for supporting multithreaded execution within each node is to allow
each read-only transaction to create the consistent “snapshot” that it
needs, dynamically, on-demand, at a particular replica for the pages
in its read set. In this way, several concurrent read-only transactions
that require different snapshots, but have disjoint read-sets can each
create their respective snapshots with the required versions on the
same physical copy of the transactional memory.

In the following, we present two DMV configurations. The first
assumes a typical STM application environment where, instead
of synchronization, the user inserts delimiters for transactions to
be executed speculatively in parallel on a cluster by the run-time
system. Next, we present a special case that is important in practice
where transactions are presented to the system through a scheduler
which distributes them on a cluster of in-memory replicas. The
scheduler is leveraged to distribute transactions across the cluster
in such a way that conflict waits and aborts are optimized. In
particular, the scheduler-based approach is useful for applications
where several threads are expected to run at each node. In this
case, in the absence of multiversioning within the node, read-only
transactions would normally block conflicting update transactions
resulting in potentially long conflict waits. The scheduler avoids
these conflict waits by scheduling all update transactions on a
master node and read-only transactions on a set of slave replicas.
Furthermore, the scheduler distributes the read-only requests across
the cluster through a version-aware scheme in order to avoid the

case where two read-only transactions need two different versions
of the same data item. In the following we first present the update-
anywhere DMV protocol and then the scheduler-based master-
update DMV protocol.

3.3 Update-Anywhere DMV Protocol

In this section, we describe the DMV protocol in the fully decen-
tralized cluster configuration. DMV uses an update-anywhere repli-
cation protocol that automatically detects and resolves distributed
conflicts caused by data races.

3.3.1 Consistency Maintenance in Update-Anywhere DMV

During the execution of a transaction, DMV traps each read and
write access. As in Treadmarks, modifications to shared memory
cause twins to be created for the particular pages. Updates are only
visible to other transactions upon commit. At commit, the update
transaction i) creates a new (cluster-wide) version for the transac-
tional memory, ii) broadcasts the modifications (diffs) performed
during the transaction to all other nodes as a pre-commit action and
iii) waits for their acknowledgments before committing the trans-
action locally. In order to enforce a consistent serialization order
of update transactions, each update transaction obtains a unique
system-wide token during commit. Only a single updater can thus
perform a modification broadcast (diff flush) at any given time.
The diff flush is tagged with the unique version number of the dis-
tributed transactional memory created by the committing node. All
nodes receiving a diff flush store the diffs locally, but delay apply-
ing them to the corresponding pages. Instead, they update their lo-
cally maintained version number of the transactional memory and
reply immediately in order to minimize the delay for the commit-
ting update transaction. The application of modifications occurs
lazily only when a local transaction needs those modifications at
that node. Each transaction applies the modifications stored locally
to each page, on-demand, upon each page access. A page is rec-
ognized to be stale if its version number is lower than the locally
maintained version number of the last commit seen by the node.

3.3.2 Conflict Resolution in Update-Anywhere DMV

The protocol differentiates between actions taken by update and
read-only transactions in order to avoid aborts of read-only trans-
actions in the case of a concurrent remote writer. For an update
transaction if, upon a page access trap, the page is determined to
be stale, all diffs stored locally for that page are applied to it in
increasing order of version number. Conflicts between two remote
update transactions are detected when an incoming diff flush for a
page accessed locally is received while an update transaction is ex-
ecuting at the local node. In this case, if any of the pages included
in the diff flush were either written or read by the local node, then
the local update transaction is aborted and restarted.

On the other hand, for read-only transactions, the transaction
creates a “snapshot” of the data that it touches consistent with the
transactional memory version at the beginning of the respective
transaction. The snapshot is created lazily. Upon each (read) ac-
cess trap on a page, the transaction applies only the locally stored
diffs with version numbers up to and including the version of the
transactional store at begin transaction. A read-only trans-
action is not affected by incoming diff flushes during its execution,
hence is ordered before any concurrent update transactions in the
global serialization order.

Our protocol does not require that transactions are manually
tagged with their type. All transactions are initially classified op-
timistically as read-only by the run-time system. A transaction is
reclassified as update upon trapping the first write access on a page.
Reclassification implies a validation phase that determines whether
the transaction can safely continue. If the current transaction has al-

��� � � � � � � � 	
� � � � �
 ��� ��	�� ���
� � �

������� ��� ��� ��� � ��� � ��� �!� � ������ ��� �

"$#
%
&�')()* &)+

Figure 1. System design for Master-update configuration.

ready ignored a diff flush when reading a page by not applying all
diffs, the transaction is rolled-back and restarted as an update trans-
action. Otherwise, the transaction can safely continue as an update
transaction.

3.4 Scheduler-based Master-Update DMV Protocol

In this section, we describe an important special case of the DMV
protocol that supports conflict wait avoidance for highly multi-
threaded applications, such as traditional database applications. We
take advantage of the presence of a scheduler that distributes trans-
actions on a cluster in many such application configurations. In this
scheme, the scheduler is aware of the type of transactions and the
versions that they are supposed to read. The scheduler uses this
knowledge to schedule the execution of update transactions on a
designated master replica, while distributing conflicting read-only
transactions across a set of slave replicas (see Figure 1).

In this scheduler-based scheme, we currently tag each transac-
tion with its type, in order for the scheduler to recognize opportu-
nities for scheduling read-only transactions separately from update
transactions. However, this is a choice we made in order to simplify
implementation and is not mandatory. Indeed, a transaction that is
optimistically assumed to be read-only can be either migrated to or
restarted on the master node once we detect a first update for that
transaction.

3.4.1 Consistency Maintenance in Master-Update DMV

For each update transaction, the master broadcasts modifications
to the set of slaves as a pre-commit action. Obtaining a cluster-
wide token is no longer necessary prior to sending the diff-flush;
The master’s internal concurrency control decides the global se-
rialization order of updates. As before, each slave replica delays
the application of modifications, thus not delaying the committing
master database in order to provide scaling. In this way, updates on
the master are not delayed by conflicting reads that may be occur-
ring on the slaves. Each update on the master node creates a version
number communicated to the scheduler that distributes requests on
the in-memory cluster. The scheduler tags each read-only transac-
tion with the newest version received from the master and sends
it to one of the slaves. As before, the appropriate version for each
individual data item is then created dynamically and lazily at that
slave replica, when needed by an in-progress read-only transaction.

3.4.2 Conflict Resolution in Master-Update DMV

Since all updates occur on the master, there are no conflicts between
distributed update transactions. The system automatically detects
data races created by co-located read-only transactions attempting
to read conflicting versions of the same item. Version conflicts are
detected and enforced at the page level. A read-only transaction
may need to wait for a previously scheduled transaction to release a
lower version of a page in order to create its own. It is also possible,
although less probable, that a read-only transaction T1 needs to be
aborted if another read-only transaction T2 upgrades a shared item
to a version higher than that already read by T1.

In the next section we introduce version-aware scheduling tech-
niques designed to minimize the probability of conflict waits and
aborts for read-only transactions.

3.4.3 Version-Aware Scheduling for Read-Only Transactions

The scheduler keeps track of the data versions that exist or are about
to be created at each replica and sends a read-only transaction to ex-
ecute on a replica where the chance of version conflicts is the small-
est. Our current heuristic selects a replica where read-only transac-
tions with the same version number as the one to be scheduled are
currently executing, if such replicas exist. If not, the scheduler at-
tempts to progressively relax the requirement. It proceeds to search
for a replica where the number of conflicting versions for concur-
rently created snapshots would be 2, then 3. Otherwise it selects
any replica by plain load balancing. The scheduler load balances
across the candidate replicas thus selected using a shortest execu-
tion length estimate, as in the SELF algorithm we introduced in our
previous work [7].

In the common case, the scheduler sends any two read-only
transactions requiring different versions of the same memory page
on different replicas, where each creates the page versions it needs
and the two transactions execute in parallel. Since we do not as-
sume that the scheduler has any knowledge about a transaction’s
working set and the replica set is finite, the occasional read-only
transaction may still need to wait or can be aborted due to other
read-only transactions using a previous or higher version of an item,
respectively. However, we expect these situations to be rare and de-
crease with the number of replicas in the system.

4. Prototype Implementation Details
This section presents the implementation of access trapping and
data structures in our distributed transactional runtime system.

4.1 Access Trapping and Consistency Granularity

In order to manage data races transparently to the application, we
trap both read and write accesses to shared transactional memory.
Access trapping for write accesses is performed through memory
protection violations, as in TreadMarks. However, our system al-
lows read accesses on pages with outstanding modifications (in
read-only transactions), hence the distinction between a valid and
invalid page state is not as clear-cut as in original TreadMarks. This
problem is exacerbated by DMV support for multithreading within
a node.

We introduce an additional access trapping mechanism based
on the operator overloading mechanism in C++ that helps us trap
all read accesses at lower overhead. For example, we use operator
overloading for all pointer indirections on a tree node pointer type.
For this purpose, the tree node data type needs to be declared as a
new data type with overloaded operators. A similar operator over-
loading technique can be used to trap write accesses as well. In this
case, assignment overloading of all assignment operators e.g., =,
+=, -=, etc and increment/decrement overloading (i.e., for ++, –)
is used. While fully analyzing the trade-offs between the two trap-
ping methods is beyond the scope of this paper, we mention the
following advantages and disadvantages of the operator overload-
ing technique. Compared to memory protection violations, opera-
tor overloading is more lightweight and allows us to trap accesses
at the level of a word. However, in this paper we choose a page-
level consistency unit for all access trapping because it allows for
some degree of aggregation when performing twinning and diffing
and reduces metadata space overhead. More importantly, memory
violation trapping is fully transparent. In contrast, in order to allow
for operator overloading, the application writer needs to redefine
all data types for transactional memory variables, including basic
types, e.g., for integer variable declarations.

���������
	��������� �
�������	������

���������! �!" #%$'&'(

)
)
)

*�+�,.-0/ 1�2

1�3 1 /

*�+�,.- 3 1�2

1�3 1 /1�4

*�+�,.-05 1�4

1'6 1�71�8

Figure 2. Per-page versioning.

4.1.1 Metadata Organization and Usage

Meta-data maintained by our run-time system for each shared
memory page includes the fields depicted in Figure 2: a per-page
VersionID illustrated in the top right corner of each page en-
try metadata and an outstanding DiffQueue shown as a list of
diffs, each tagged with its corresponding version number. The
VersionID designates the cluster-wide system version that the
page currently corresponds to. The DiffQueue is a linked list
with physical modifications to the page data (diffs), which corre-
spond to the evolution of the page, but have not yet been applied.
The DiffQueue is maintained in sorted version order and is later
applied on-demand in increasing order of version numbers. Upon
the reception of a diff-flush, a replica pre-processes the message,
classifies the in-coming diffs by page ID and stores the diffs locally
in the DiffQueues for the corresponding pages. No modifica-
tions are applied to the pages at this point. The replica node then
immediately reports to the sending node that it has successfully
received and stored the diffs.

Other data structures are directly inherited from the original
SDSM system, Treadmarks. Specifically, the set of twins created
during the transaction execution forms an undo log that is used
to roll-back a transaction. Diffs are created at commit and are
aggregated in the update modification broadcast, i.e., the diff-flush
message.

4.1.2 Metadata Space Management

As new versions for pages are dynamically created, older versions
are overwritten and diffs are discarded at each replica when neces-
sary for the purposes of an on-going transaction. Any update trans-
action discards all diffs it has itself created upon commit. Twins are
also discarded after every commit. To handle the unlikely case of a
data item being continuously written by one node, but never read at
a particular replica, we use a periodic examiner thread. Upon acti-
vation, the thread inspects the list of active transactions at the local
replica and finds the one requiring the lowest version vmin. Then,
it visits all shared memory pages at that replica and, for each page
with version less than vmin , it applies all modifications up to and
including vmin.

4.1.3 Support for Multithreaded Execution

If multiple threads execute at a node, each node resolves local con-
flicts by using a variant of a reader-writer two-phase-locking [9]
protocol. Locks are implemented as condition variables in such a
way to block threads that are waiting for a lock held in conflicting
mode and to notify waiting threads when the lock is free. Further-
more, since read-only transactions create their required versions on
demand, hence imply updates to pages, we modify the readers lock

to allow multiple read-only transactional threads to access a shared
page only if their required version is the same.

Specifically, when a read-only transaction needs to access a
page, it first checks whether the version of the page corresponds
to the version that the transaction expects. If that is the case, a ref-
erence count field of the page data structure is incremented. Other-
wise, the transaction applies the corresponding diffs to upgrade the
page to the required version first. When the transaction commits, it
releases all held locks by decrementing the reference count of all
pages that it accessed. If for any of these pages the reference count
reaches zero, the corresponding waiting transactions are notified to
proceed and retry.

In addition to lock waits, as mentioned before, a read-only trans-
action can be aborted due to reading a page with an inconsistent
(higher) version than that of its snapshot. This case may occur due
to interference with either another read-only transaction or an up-
date transaction executing at the same node. Next, we illustrate our
protocol for various cases using example scenarios.

4.1.4 Examples

Figure 3 illustrates the creation of two different simultaneous
”snapshots” of the transactional memory for two different con-
currently executing read-only transactions (T1 and T2) without
keeping multiple physical copies of each data page. We assume a
master-update configuration where multiple threads execute at each
node. Transaction T1 was tagged with version v1 by the scheduler,
while T2 was assigned version v3. Transaction T1 reads pages P1

and P2 and upgrades them to version v1, while transaction T2 up-
grades page PN to its required version v3 in parallel.

Figures 4 and 5 show scenarios where the two transactions
have overlapping read-sets and different assigned versions. Since
the order in which T1 and T2 arrive at the scheduler is likely to
be the order of their assigned versions, normally T1 creates and
locks version v1 on P1 and P2 as it touches the respective pages
before T2 even starts to execute. Subsequently, T2 may need to
wait until T1 commits and releases its lock on page P2 in order to
be able to create its required version v3 on P2. This wait is due to
a read-write conflict on page P2 upon creating version v3. Note,
however, that this conflict’s duration would normally be longer
if the full corresponding transactions producing v1 and v3 at the
master would have executed on the respective slave replica. Instead,
our selective per-page modification application process minimizes
the conflict wait.

Finally, it is possible that T2 accesses P2 ahead of T1 even
if arriving later at the respective replica as in Figure 5. Once T2

commits, version v1 of page P2 that T1 needs is lost. If T1’s
subsequent access on P2 is its first page access, we upgrade T1’s
required version to v3. Otherwise, as in the case shown, if T1’s
access to P2 occurs after T1 already created and read an older
version (v1) of another page (P1), T1 needs to be rolled-back and
restarted because of version inconsistency.

4.2 Discussion

In summary, DMV is a novel distributed multiversioning concur-
rency control algorithm that keeps only one physical copy of the
application data at each node. It has the following features:

1. Update transactions are guaranteed to execute in parallel with
any conflicting read-only transactions in two cases: i) master-
only update transaction execution for multiple threads per node
and ii) update-anywhere fully decentralized transaction execu-
tion with a single-thread per node.

2. DMV avoids aborts of read-only transactions in the common
case by ordering the read-only transaction before a concurrent
update transaction in the serialization order.

���������
	 �
� ������

�
�
�

��������� � �

���

������� � � �

���� �

!#"�$ %�& ' () * +�,�" -/.
0�& 1 2 $ 3�" -
4 4 40�& 1 2 $ 3#5 -
4 4 46

! 57$ %�& ' () * +�,�8 -/.
0�& 1 2 $ 3�9�-
4 4 46

��������: ���
��; � <��=

>@?�A�B/C�DFEGC�EIH�B J
EKC�L�AMD�A�L#A

Figure 3. Concurrent “snapshot” creation of disjoint read-set
transactions.

N�O�P�Q7RTS P
U V�W�X�Y

Z
Z
Z

[�\�]�^�_ ` _

`�a

[�\�]�^ a ` _

` a`�b

c�dfe g�h i j k l m�n�d o#p
q�h r s e t�d o
u u uq�h r s e t#v o
u u uw

c/v7e g#h i j k l m�n�x o/p
q�h r s e t/v o
u u uw

[�\�]�^�y ` b
`�z `|{`�}

c#v�~ r jT� l
� r k �

�@��� � �|�F�G� �K��� �
�I�����M�������

Figure 4. Overlapping read-sets with lock wait.

�������7�
� �
� �������

�
�
�

�M���M��� � �

� �

�M����� � �

¡�¢�£ ¤�¥ ¦ § ¨ ©/ª�«7¢ ¬
®�¥ ¯ ° £ ±�¢ ¬
² ² ²®�¥ ¯ ° £ ±/³ ¬
² ² ²´

¡/³7£ ¤�¥ ¦ § ¨ ©/ªf«7µ ¬/
®�¥ ¯ °/£ ±/³ ¬
² ² ²´

�M�����·¶ �
� ¸ ��¹� º

¤T¢�¨ §
» © § ¼

½¿¾�À�Á#Â�ÃFÄIÂ�ÄIÅÆÁ/Ç
ÄÈÂ�É#À|Ã ÀMÉ/À

Figure 5. Overlapping read-sets with transaction rollback.

3. Read-only transactions with disjoint read sets always execute
in parallel. Read-only transactions with overlapping read-sets
can execute in parallel at the same replica if they require the
same transactional system version or at different replicas if they
require different versions.

4. For configurations that allow the use of a scheduler, version
waits and aborts of read-only transactions due to version in-
consistency are minimized through a version-aware scheduling
technique.

One of the limitations of our systems is that it does not currently
support the notion of predefined transaction order e.g., program
order or application phases, such as for classic barriers. Since our

system is version aware, these mechanisms could be easily added
on top of DMV by enforcing an application-defined version order
through version tags provided at begin transaction.

Finally, since updates are fully replicated and minimal state is
maintained outside of the transactional tier even in scheduler-based
configurations, our transactional system provides the pre-requisites
for easy failure reconfiguration. However, failure handling is be-
yond the scope of this paper.

5. Experimental Environment
In this section we introduce our benchmarks and we present
the state-of-the-art asynchronous replication technique, Conflict-
Aware replication, that we compare our solution against.

5.1 Distributed Hash Table Microbenchmark

We implement a classic hash table with resolving collisions through
chaining. Each node declares the hash table in transactional shared
memory space and issues local transactions with a specified prob-
ability of the transaction being a read-only (lookup) or read-write
(insert, delete) transaction on random hash table items. We use a
128K hash table size and we vary the fraction of writes in the work-
load mix between 1% and 20%. The ratio between the complexities
of read-only and update transactions is roughly 10 to 1.

5.2 TPC-W Benchmark

The TPC-W benchmark from the Transaction Processing Council
(TPC) [30] is a transactional web benchmark for e-commerce sys-
tems. An e-commerce system consists of a front-end web server,
an application server and a back-end database (see Figure 6). The
(dynamic) content of the site is stored in the database. The client
sends an HTTP request to the web server containing the URL of
the script and some parameters. The web/application server exe-
cutes the script, which issues SQL queries, one at a time, to the
database and formats the results as an HTML page. This page is
then returned to the client as an HTTP response.

Web server
Database

server

Client

Internet HTTPHTTP

Application
Server

SQL

 Figure 6. Common Architecture for Dynamic Content Sites.

The TPC-W benchmark simulates a bookstore. The database
contains eight tables: customer, address, orders, order line, credit info,
item, author, and country. The most frequently used are order line,
orders and credit info, which contain information about the orders
placed, and item and author, which contain information about the
books. The database size is determined by the number of items
in the inventory and the size of the customer population. We use
the standard size with 288000 customers and 100000 books. The
inventory images, totaling 180 MB reside on the web server.

We implemented the fourteen different interactions specified in
the TPC-W benchmark document. Six of the interactions are read-
only, while eight cause the database to be updated. The read-only
interactions include access to the home page, listing of new prod-
ucts and best-sellers, requests for product detail, and two interac-
tions involving searches. Update transactions include user registra-
tion, updates of the shopping cart, two order-placement transac-
tions, and two for administrative tasks. The frequency of execution
of each interaction is specified by the TPC-W benchmark. The most
complex read-only interactions are BestSellers, NewProducts and
Search by Subject which contain multiple-table joins.

The benchmark has three workload mixes characterized by dif-
ferent ratios of reads to writes. The browsing mix has 95% read-

only queries and 5% updates. The shopping workload, which is
the one that most closely resembles a real-world scenario, consists
of 80% read-only queries and 20% updates. The most update in-
tensive workload is the ordering mix, which has 50% updates and
50% read-only queries.

5.3 Conflict-Aware Replication

In this section, we introduce a state-of-the-art asynchronous repli-
cation technique, Conflict-Aware replication [6, 7], for comparison
with DMV. This technique has previously been proposed in the con-
text of scaling database workloads, and in particular the workload
of the TPC-W database back-end, on a cluster.

Conflict-Aware relies on a scheduler tier that distributes trans-
actions on a database cluster to direct transactions in such a way
to avoid conflicts. Conflicts are conservatively perceived at large
granularities, such as, database tables. Each transaction explicitly
pre-declares the tables it is going to access and their access type.
The scheduler assigns the global serialization order of all trans-
actions through per-transaction sequence [7] or version [6] num-
bers based on perceived conflicts between transaction table set
pre-declarations. The total order thus assigned is enforced at all
databases for all queries. The scheduler tags queries with the ap-
propriate version number(s) for the tables they need to read. Each
database replica keeps track of the completion of update transac-
tions for each table. Queries whose per-table versions have not
been produced yet are withheld in queues interposed in front of
the database engine. The scheduler itself keeps track of versions
of tables as they become available at each database replica and
sends read-only queries to the database that has already produced
the required versions. Conflict-Aware is thus a per-table distributed
versioning technique where both write-write and read-write con-
flict resolution is per-table. In contrast, in DMV, conflict resolu-
tion is fine-grained (per-page). On the other hand, the perceived
conflicts in Conflict-Aware are accurate, allowing the scheduler to
avoid conflicts when scheduling reads. DMV in the master-update
configuration may need to schedule read-only queries on replicas
with conflicting versions due to lack of alternatives and may even
abort read-only transactions in rare cases.

5.4 Experimental Setup

We run our experiments on a cluster of dual AMD Athlons with
512MB of RAM and 1.5GHz CPU, running the RedHat Fedora
Linux operating system. The consistency unit we use is the memory
page in all experiments. Our experiments focus on demonstrating
the system scalability for the two benchmarks in the following
respective configurations. We run the hash table microbenchmark
in the update-anywhere cluster configuration. The application code
is simple, hence easy to fully annotate for the purpose of operator
overloading. Thus, access trapping in DMV is performed through
operator overloading for both read and write accesses.

We run the e-commerce benchmark using the modified MySQL
heap-tables issuing calls to the DMV transactional API in the
master-update configuration. Access trapping in DMV is per-
formed through a combination of memory protection violations
and operator overloading. We compare DMV’s scaling against the
scaling of the state-of-the-art Conflict-Aware algorithm presented
in section 5.3. Conflict-Aware runs on a platform with MySQL
heap-tables enhanced with transactional semantics only, without
DMV.

To demonstrate scaling for TPC-W, we run nine MySQL in-
memory replicas on separate machines. We use 10 machines to
operate the Apache 1.3.31 web-server, which runs a PHP imple-
mentation of the business logic of the TPC-W benchmark and use
a client emulator, which emulates client interactions as specified in
the TPC-W document. We use two configurations of MySQL in our

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

number of machines

T
h

ro
u

g
h

p
u

t
(

x
10

00
)

1% 5% 10% 15% 20%

Figure 7. Throughput scalability with increasing fraction of up-
date transactions.

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

number of machines

T
h

ro
u

g
h

p
u

t
(

x
10

00
)

R/O Opt Base

Figure 8. Increased scaling with read-only optimization versus
without - for the case of 15% update transactions.

of machines 1 2 4 6 8 10
% of aborts 0.00 0.57 1.69 2.94 4.05 5.08

Table 1. Percentage of aborts for the hash table microbenchmark
with various cluster sizes.

in-memory tier (with and without indexes) to study the trade-off be-
tween individual node speed versus scalability over several replicas
and the probability of aborts with different access patterns. To de-
termine the peak throughput for each cluster configuration we run
a step-function workload, whereby we gradually increase the num-
ber of clients from 0 to 1000. We then report the peak throughput
in web interactions per second (WIPS), the standard TPC-W met-
ric, for each configuration. At the beginning of each experiment,
the master and the slave nodes memory-map an on-disk TPC-W
database. We run each experiment for a sufficient time such that the
data becomes memory resident and we exclude the cache warm-up
time from the measurements.

6. Experimental Results
6.1 Distributed Hash Table Results

The graph in Figure 7 presents the throughput obtained for different
percentages of update transactions (1%, 5%, 10%, 15%, 20%). The
throughput represents the number of operations per second that the
whole system achieves.

In Figure 8, we show the improvement due to optimizing aborts
for read-only transactions for an intermediate case with 15% write
transactions. The top curve shows scaling when we avoid aborts to
read-only transactions by ordering them before a concurrent remote

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ord
Idx(0.35)

Shp
Idx(0.1)

Brw
Idx(0.03)

Ord,No
Idx(0.26)

Shp,No
Idx(0.07)

Brw,No
Idx(0.02)

Writes
Reads

Figure 9. Relative query weights for MySQL heap tables in the
two configurations (with and without indexes).

update transaction in the serialization order. The execution reflected
in the bottom curve does not include this optimization and aborts
a local read-only transaction whenever a conflicting diff flush is
received at the node. We can clearly see that this optimization
improves scaling. In Table 1 we plot the measured percentage of
transaction aborts (transaction restarts) out of the total number of
transactions executed for the same configuration with 15% write
transactions, using the read-only optimization in DMV. As we can
see from the graph, the fraction of aborts increases with the cluster
size, but is overall low (5%). This is a result of the increase in the
number of diff flushes received by each node with the increase in
cluster size in our replicated system.

6.2 TPC-W Benchmark Results

6.2.1 Preliminary Experiments

The goal of this experiment is to compare the complexity of write
versus read-only queries in each of the ordering, shopping and
browsing TPC-W mixes. Since the read to write ratio affects scaling
in replicated databases, we report results for two different database
index configurations of our in-memory database system. The first
configuration uses the same index set as in the on-disk InnoDB
database we used in our prior work [7]. The second configuration
uses no indexes, except for the primary keys. This configuration
still conforms to TPC-W, since no particular index configurations
are required or recommended by the specification.

For the purposes of this experiment, we run a workload session
with only one emulated client, which submits 50000 TPC-W re-
quests to a single database instance. Figure 9 depicts our findings,
normalized to the total cost of the ordering mix in both the config-
uration with indexes (left) and without indexes (right). The white
and black parts of each bar corresponds to the average cost in terms
of average execution time at the database of write and read-only
queries, respectively. The Ord, Shp and Brw abbreviations in the
bar captions specify which workload mix the respective bar corre-
sponds to. The numbers in the brackets denote the ratio of write
versus read query cost for the particular configuration.

These experiments indicate that, with our in-memory database
system, the cost of write transactions is significant. This problem is
clearly shown in the ordering mix, where the cost of updates is the
highest across all three mixes. The high cost of updates is caused
by the cost of index update operations in our base system. Since
our system builds upon the original MySQL heap table engine,
we reused its red-black tree (RB-Tree) [12] index structure. The
RB-Tree is a balanced binary search tree, which supports lookup
operations with a constant O(logN) cost. Insert and delete opera-
tions on the RB-Tree typically cause height imbalances, which then
trigger tree rotations. The RB-Tree performs 2 rotations per write
query on average and the cost of these rotations is significant in the
in-memory database system.

0

50

100

150

200

250

300

350

0 2 4 6 8 10

of Slave Replicas

T
h

ro
u

g
h

p
u

t
(W

IP
S

)

Ordering
Shopping
Browsing

Figure 10. Throughput scaling in the database configuration with
indexes for the browsing, shopping and ordering TPC-W mixes.

of Slaves Ordering Shopping Browsing
1 1.15% 1.44% 0.63%
2 0.35% 2.27% 1.34%
4 0.07% 1.70% 2.37%
6 0.02% 0.41% 2.07%
8 0.00% 0.22% 1.59%

Table 2. Level of aborts due to version inconsistency (indexed
configuration).

In the configuration without indexes, (see Figure 9) the cost of
read queries is relatively higher, hence we expect better scaling for
our system in this configuration.

6.2.2 Scalability for the Configuration with Indexes

Figure 10 shows the throughput scaling obtained as we increase the
number of slave replicas. We perform measurements with 1, 2, 4, 6
and 8 slave replicas, respectively.

The system exhibits close to linear scaling for the browsing and
shopping mixes. The poor scaling of the ordering mix is caused by
the fast saturation of the master replica with updates. The number of
writes that the master executes increases with larger database clus-
ters to sustain their higher overall throughput. Hence, workloads
with a large fraction of writes, such as the ordering mix, saturate
much sooner than read-mostly workloads due to the high average
cost of writes in our system.

Table 2 shows the average number of read-only queries that
needed to be restarted during the experiment due to version incon-
sistency. The numbers are presented as a percentage of the total
number of queries that executed during the experiment. We see that
the level of aborts is very low overall. Having more replicas gen-
erally helps version-aware scheduling by potentially increasing the
number of version choices available. On the other hand, the fraction
of updates executing at each slave, hence the frequency of version
changes increases with the replicated cluster size. The abort rate is
influenced by each of these factors in opposite directions but the
positive effect of version-aware scheduling dictates a generally de-
creasing trend from 4 to 8 replicas.

To study this effect in more detail, Figure 11 shows the effect of
our version-aware scheduling technique on abort rates for the 2, 4,
6 and 8 slave configurations, respectively, for the TPC-W browsing
mix. The left bar in each configuration group represents the abort
rate with plain load balancing and the right bar depicts the abort rate
with version-aware scheduling. We can see that the effectiveness of

of Slaves Ordering Shopping Browsing
1 4.75% 2.05% 0.87%
2 3.83% 2.23% 1.50%
4 3.46% 3.90% 2.28%
6 2.88% 3.59% 1.74%
8 2.47% 3.48% 1.53%

Table 3. Level of aborts due to version inconsistency (non-indexed
configuration).

version-aware scheduling generally increases with the number of
data version choices at configurations larger than 4 replicas.

1.34%

2.34%2.37%

2.68%

2.07%

2.83%

1.59%
1.34%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

M +
 2S

M +
 2S

, C
onfl.

 R
ed

uce

M +
 4S

M +
 4S

, C
onfl.

 R
ed

uce

M +
 6S

M +
 6S

, C
onfl.

 R
ed

uce

M +
 8S

M +
 8S

, C
onfl.

 R
ed

uce

F
ra

ct
io

n
 o

f
A

b
o

rt
s

Figure 11. Abort rates for load balancing versus version-aware
scheduling with increasing number of replicas.

6.2.3 Scalability for the Configuration without Indexes

In order to validate the scalability of the dynamic versioning algo-
rithm with a different read to write cost distribution and different
application access patterns, we ran the same experiments using the
database without indexes. Figure 12 shows the throughput in this
configuration.

These results show almost linear scalability for all the workload
mixes. However, the throughput at the largest configuration is still
lower than in the index configuration for all mixes. Table 3 lists the
abort rates for the TPC-W database configuration without indexes.

For the ordering mix, the abort rate decreases steadily with
an increase in the number of replicas while for the shopping and
browsing mixes, the abort rate increases up to the 4-slave clus-
ter configuration after which it gradually declines. The abort rates
are slightly higher than in the indexed configuration for the order-
ing and shopping mixes, and comparable for the browsing mix. By
performing full table scans, all read-only transactions, and in par-
ticular, complex queries such as BestSellers and NewProducts have
similar read sets and access the maximum number of pages, hence
the chance of version conflicts between read-only transactions is
high. On the other hand, update transactions which are causing
new versions to be produced are now much shorter and occur less
frequently per unit of time in comparison, hence the non-uniform
trend across mixes. Overall, the abort rates are acceptable in both
configurations.

6.2.4 Comparison Against Conflict-Aware Asynchronous
Replication

In the following experiment, we compare our Distributed Multi-
versioning system against the state-of-the-art Conflict-Aware asyn-
chronous replication scheme described in Section 5.3.

In Figure 13 we compare throughput scaling with the number of
slave databases for our technique (DMV), and Conflict-Aware per-
table versioning scheme depicted as Conflict-Aware, for the brows-
ing, shopping and ordering TPC-W workload mixes. It can be seen

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

of Slave Replicas

T
h

ro
u

g
h

p
u

t
(W

IP
S

)

Ordering
Shopping
Browsing

Figure 12. Throughput scaling in the database configuration with
no indexes for the browsing, shopping and ordering TPC-W mixes.

that the DMV scheme has better performance scaling due to its
finer-grained concurrency control scheme. In contrast, in Conflict-
Aware, conflict resolution is per-table. Although read-only trans-
actions execute in parallel with update transactions on a different
replica, update transactions execute as a sequence of SQL queries
at all replicas in the order pre-defined by the scheduler for any par-
ticular table. Hence, Conflict-Aware trades-off write-write concur-
rency and increased write execution duration (by executing SQL
queries for writes sequentially per-table at all replicas) for improv-
ing read-write concurrency. This trade-off depends on the relative
query weights of reads versus writes for the database system. The
high cost of executing updates on our particular system disadvan-
tages the Conflict-Aware approach.

However, DMV’s main advantage is still its per-page conflict
resolution for both types of conflicts, hence its good scaling. Fur-
thermore, the advantage of DMV increases with a higher fraction
of writes and the resulting increase in conflicts in the mix from
browsing to ordering.

7. Related Work
DMV draws on related work in a variety of domains such as: per-
sistent object stores, software distributed shared memory, transac-
tional memory as a parallel programming paradigm and replicated
databases. In the following, we can compare our system with only
the few most relevant related works in each of these prolific systems
areas.

DMV shares some of the goals of distributed persistent stores [22,
31, 10]. Some of these systems [31] focus on client-server paradigms,
not on in-memory systems supporting transparent shared access.
Argus [22] is one of the oldest systems to manipulate user-defined
data dispersed across multiple, autonomous object stores called
guardians. Their focus is, however, mostly on providing function-
ality for distributed collaborative data access and persistence rather
than scaling applications on a cluster.

Our work is also related to recent research efforts on transac-
tional memory [18, 17, 14, 16] and thread-level-speculation [27] in
multiprocessor systems. To our knowledge this is the first technique
that exploits the concurrency offered by distributed data versions in
a transactional memory system.

Most SDSM libraries [20, 26, 28, 34], just like TreadMarks,
have been used almost exclusively to support scientific parallel
computation on networks of workstations. One of the few notable
exceptions is recent work [29] leveraging the InterWeave SDSM
system to provide a persistent store for distributed applications.
Clients access the persistent store through a transactional RPC in-
terface. The main difference is that their system supports several

0

50

100

150

200

250

300

350

0 2 4 6 8 10

Number of Replicas

T
h

ro
u

g
h

p
u

t
(W

IP
S

)

Conflict-Aware DMV

(a) Browsing

0

50

100

150

200

250

300

350

0 2 4 6 8 10

Number of Replicas

T
h

ro
u

g
h

p
u

t
(W

IP
S

)

Conflict-Aware DMV

(b) Shopping

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

Number of Replicas

T
h

ro
u

g
h

p
u

t
(W

IP
S

)

Conflict-Aware DMV

(c) Ordering

Figure 13. Throughput scaling comparison against the conflict-
aware scheduling technique.

weak consistency models instead of 1-copy serializability. A re-

lated trend is to support levels of consistency that are generally con-
sidered acceptable for transactional applications, such as snapshot-
isolation [32, 21] and session consistency [13], or a continuum of
consistency models with tunable parameters [33, 25]. On the other
hand, for some applications, adjusting the application to a weaker
consistency model may require non-trivial programmer effort or
may cause user confusion.

A number of solutions exist for replication of relational databases
that aim to provide both scaling and strong consistency. They range
from industry-established ones, such as the Oracle RAC [2], to re-
search and open-source prototypes, such as Distributed Version-
ing [6], C-JDBC [11], Postgres-R [19] and Ganymed [24]. The in-
dustry solutions provide both high availability and good scalability,
but they are costly and require specialized hardware such as Shared
Network Disk [2]. Some of the research prototypes use commodity
software and hardware, but they either use coarse-grained concur-
rency control implemented in the scheduler [7, 6, 11] or rely on
support for snapshot isolation inside the database [24, 32]. Recent
replicated database systems explore providing snapshot isolation
semantics on a database cluster [32, 21, 24]. None of these systems
investigates general purpose transactional memory layers. Further-
more, these systems rely on the presence of unbounded numbers of
physical copies at each distributed database node in order to pro-
vide scaling. Our system needs only one copy of data at each node,
hence simplifies physical copy management. A direct performance
comparison would be, however, instructive and is the objective of
future work.

8. Conclusions and Future Work
In this paper we introduce a novel distributed concurrency con-
trol algorithm, Distributed Multiversioning, which preserves strong
consistency and at the same time offers scaling. DMV exploits the
naturally arising versions across transactional memory replicas in
order to increase concurrency. In its most general form, DMV is an
enhancement of a distributed shared memory protocol with transac-
tional support in order to automatically detect and resolve conflicts
caused by data races. DMV improves scaling by running conflict-
ing read-only and update transactions on different nodes in order to
avoid conflict waits and transaction roll-backs in the common case.
Wherever possible, a version-aware scheduling algorithm strives to
distribute read-only transactions requesting different version num-
bers for their items across different replicas. Our techniques allows
us to avoid overheads associated with maintaining multiple copies
in systems that use multiversioning techniques inside a single node.
We have shown that our distributed concurrency control algorithm
provides scaling for both i) a generic C++ application accessing
shared memory data structures in a fully distributed manner and
ii) a recognized transactional application which can benefit from
version-aware scheduling.

In our future work, we will extend our scheme to hybrids be-
tween limited local multiversioning and distributed multiversioning
and compare our system with traditional multiversion concurrency.

Acknowledgments
We thank the anonymous reviewers and the systems and compiler
groups at University of Toronto for their detailed comments and
suggestions for improvement on the earlier versions of this pa-
per. We further acknowledge the generous support of the Natural
Sciences and Engineering Research Council of Canada (NSERC),
IBM Centers of Advanced Study (IBM CAS), Ontario Centers of
Excellence (OCE) and Canadian Foundation for Innovation (CFI).

References
[1] Mysql Database Server. http://www.mysql.com/.

[2] Oracle Real Application Clusters 10g. http://www.oracle.
com/technology/products/database/clustering/.

[3] Transactional web e-commerce benchmark. http://www.tpc.
org/tpcw/.

[4] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel. TreadMarks: Shared memory computing
on networks of workstations. IEEE Computer, 29(2):18–28, February
1996.

[5] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-aware scheduling for
dynamic content applications. In Proceedings of the Fifth USENIX
Symposium on Internet Technologies and Systems, March 2003.

[6] C. Amza, A. Cox, and W. Zwaenepoel. Distributed versioning:
Consistent replication for scaling back-end databases of dynamic
content web sites. In ACM/IFIP/Usenix International Middleware
Conference, June 2003.

[7] C. Amza, A. Cox, and W. Zwaenepoel. A comparative evaluation
of transparent scaling techniques for dynamic content servers.
In Proceedings of The 21st International Conference on Data
Engineering (ICDE 2005), April 2005.

[8] The Apache Software Foundation. http://www.apache.org/.

[9] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, Reading,
Massachusetts, 1987.

[10] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy
modular upgrades in persistent object stores. In OOPSLA, 2003.

[11] E. Cecchet, J. Marguerite, and W. Zwaenepoel. RAIDb: Redundant
array of inexpensive databases. In IEEE/ACM International
Symposium on Parallel and Distributed Applications (ISPA’04),
December 2004.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press, 2001.

[13] K. Daudjee and K. Salem. Lazy database replication with ordering
guarantees. In 20th International Conference on Data Engineering,
Boston, Massachusetts, April 2004.

[14] K. Fraser. Practical lock-freedom. In Ph.D. Thesis, King’s College,
University of Cambridge, 2003.

[15] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1992.

[16] T. Harris and K. Fraser. Language support for lightweight transac-
tions. In Proceedings of OOPSLA, 2003.

[17] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. In Proceedings of Principles and Practice of
Parallel Programming (PPoPP), 2005.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data structures.
In International Conference on Principles of Distributed Computing
(PODC), 2003.

[19] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R,
a new way to implement database replication. In The VLDB Journal,
pages 134–143, 2000.

[20] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems, 7(4):321–359,
November 1989.

[21] Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jimenez-Peris.
Middleware based data replication providing snapshot isolation. In
Proceedings of SIGMOD, 2005.

[22] B. H. Liskov and R. W. Scheifler. Guardians and actions: linguistic
support for robust, distributed programs. In ACM Transactions on
Programming Languages and Systems, 5:381-404, 1983.

[23] PHP Hypertext Preprocessor. http://www.php.net.

[24] C. Plattner and G. Alonso. Ganymed: Scalable Replication
for Transactional Web Applications. In Proceedings of the 5th
ACM/IFIP/Usenix International Middleware Conference, October

2004.

[25] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. FAS - a freshness-
sensitive coordination middleware for a cluster of OLAP components.
In VLBD, 2002.

[26] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A low overhead
software-only approach for supporting fine-grain shared memory. In
Proceedings of the 7th Symposium on Architectural Support for
Programming Languages and Operating Systems, October 1996.

[27] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable
approach to thread-level speculation. In Proceedings of the 27th
International Symposium on Computer Architecture, 2000.

[28] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasarathy, and M. Scott. Cashmere-2L: Software coherent
shared memory on a clustered remote write network. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles, pages
170–183, October 1997.

[29] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Integrating remote
invocation and distributed shared state. In 18th International Parallel
and Distributed Processing Symposium (IPDPS), 2004.

[30] Transaction Processing Council. http://www.tpc.org/.

[31] S. J. White and D. J. DeWitt. Quickstore: A high performance mapped
object store. In SIGMOD, 1994.

[32] S. Wu and B. Kemme. Postgres-r(si): Combining replica control with
concurrency control based on snapshot isolation. In Proceedings of
the 21st International Conference on Data Engineering, April 2005.

[33] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. In Proceedings of the
Fourth Symposium on Operating Systems Design and Implementation
(OSDI), pages 305–318, October 2000.

[34] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two
home-based lazy release consistency protocols for shared virtual
memory systems. In Proceedings of the Second USENIX Symposium
on Operating System Design and Implementation, pages 75–88,
November 1996.

