CORRELATING DATABASE /O ACCESSES AT THE STORAGE SERVER

Madalin Mihailescu

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright (© 2007 by Madalin Mihailescu

i~l

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-27293-0
Our file Notre référence
ISBN: 978-0-494-27293-0

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont eté enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Correlating Database 1/O Accesses at the Storage Server

Madalin Mihailescu
Master of Science
Graduate Department of Computer Science

University of Toronto

2007

In this dissertation we investigate the usage of a known data mining technique, fre-
quent sequence mining, for correlating database accesses in storage systems. We look
at 1/0O prefetching as an application of disk block correlations. We design, implement
and compare dynamic and static block correlation mining techniques. For the static
techniques, we study schemes with and without correlation rule retraining.

In our experimental evaluation, we use the MySQL database engine and two appli-
cations: DBT-2, a TPC-C-like benchmark and the RUBIS auctions benchmark. We
perform the mining at the storage level and measure the respective application hit rates
in the storage cache. Our results show that, by using block correlations, we can improve
the storage cache hit rate by 3-21% for DBT-2 and 5-47% for RUBIS, compared to the
baseline. Furthermore, we show that dynamic mining outperforms static mining in terms

of higher hit rates and more accurate block correlation rules.

ii

Acknowledgements

First and foremost, I would like to thank my supervisor Cristiana Amza. Thank you
for bearing with my unsteadiness and for your constant support and guidance during the
past two years.

Second, I would like to thank Angela Demke Brown for taking the time to read my
thesis and providing useful comments and suggestions.

I also want to thank my labmates, especially Gokul, for his ideas and graphics skills,
and Livio, for always sharing his great knowledge in systems.

Last but not least there is Iubi, for her courage and strength and for always believing

in me.

iii

Contents

1 Introduction

2 Background

2.1 Block correlationso
2.2 Frequent sequence mining oo

2.2.1 Staticmining Lo o

2.2.2 Dynamic mining

3 Design

3.1 Context Definition e
3.2 OVeIVIEW . . v o o v s e e e
3.3 DBMS Instrumentationo
34 Rule Generation i i e
3.5 Block Prefetching oo
3.6 Advantages of Contexts
3.7 Tradeoffs e
3.8 DataEvolution e

3.8.1 Staticmining e

3.8.2 Dynamic mining o 00000

4 Evaluation

iv

© 0o N o O

11
11
12
12
13
14
14
16
17
17
18

20

4.1 Benchmarks 0 e e e e e 20

411 DBT-2 o 20

4.1.2 RUBIS Auction Benchmark 21

4.2 Evaluation Methodology o o 21
4,21 Trace Collection 22

422 CacheSim e e 22

4.2.3 Performance Metrics o o 23

5 Results 25
5.1 OVErvIEW v e e 25
5.2 Static Mining e 26
52.1 HitRate e 27

5.2.2 Rule Parameters 0 30

5.3 Dynamic Mining e 31
5.3.1 Dynamic vs. Static 0 0 oo 31

5.3.2 Varying the Window Size 34

6 Related Work 39
6.1 Inferring Block Correlations without Breaking the Interfaces 39

6.2 Changing the Interfaces to Bridge the Semantic Gap between Storage

Clients and Servers v o i i e e e e 40

6.3 High Level Prefetching for Databases 41
6.4 Storage Cache Optimization Techniques 42
6.5 Adaptive Cache Management 43

7 Conclusions 44
Bibliography 46

List of Tables

5.1
5.2
5.3
5.4
5.5

Static Mining Rule Generation 29
Static Mining Rule Accuracyo o 30
Dynamic vs. Static Mining Rule Accuracy 36
Rule Generation when Varying the Window Size 37
Rule Accuracy when Varying the Window Size 38

vi

List of Figures

1.1

2.1

3.1
3.2

5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8

Dynamic Content Web Servers using NAS 3
Sliding Window Example 10
I/O Access Pattern 15
Data Evolution Over Time. 17
RUBIS Static Mining Hit Rate 27
DBT-2 Static Mining Hit Rate 28
RUBIS Dynamic vs. Static Mining Hit Rate 32
DBT-2 Dynamic vs. Static Mining Hit Rate 33
RUBIS Dynamic vs. Static Mining Rule Evolution 34
DBT-2 Dynamic vs. Static Mining Rule Evolution 35
Hit Rate when Varying the Window Size 37
Rule Evolution when Varying the Window Size 38

vii

Chapter 1

Introduction

In this dissertation, we investigate techniques for correlating disk block accesses at the
storage server [18, 19, 31, 30, 29]. Disk block correlations are sequences of I/O accesses
determined to occur with high probability. Disk block correlations can be very useful
for a number of storage optimization policies, such as storage cache replacement, disk
layout, block prediction or disk scheduling. Furthermore, predictable block correlations
are inherent to access patterns of many storage clients, such as database systems or file
systems. In this work we apply a known data mining technique, frequent sequence min-
ing [32], for generating block correlations from streams of disk accesses. As an application
of block correlations, we investigate block prefetching for database systems. The increas-
ing lag between the memory access time and the disk access time motivates aggressive
block prefetching, now more than ever, as a means of hiding the significant on-disk data
access latency. Furthermore, our work is motivated by the recent trends towards in-
creasingly intelligent storage systems, with large storage cache sizes and high processing
capabilities. For example, current IBM Network Attached Storage (NAS) Systems can
have up to 8 2.6 GHz processors and up to 64GB of memory as storage cache [1]. The
processing power of the storage controller and large storage caches in such systems can

be leveraged for various optimizations, including block prefetching.

CHAPTER 1. INTRODUCTION 2

For block prefetching to be effective, the storage server needs to predict future block
accesses and issue prefetch requests for those blocks in advance. This is challenging
because the storage server sees interleavings of page misses from application threads of
several concurrent applications. For example, Network Attached Servers are nowadays
commonly used as one of the many components of the complex software stack supporting
several Internet services, from the traditional e-commerce such as Amazon.com, to online
publishing such as Drupal content management systems [16, 15]. Figure 1.1 shows the
architecture of Internet servers. Apart from the Network Attached Storage (NAS) server,
which stores and provides access to data, Internet server architectures commonly consist
of several other tiers : (1) the web server tier which serves the web pages to the clients, (2)
the application server tier which implements the application logic, and (3) the database
system tier which queries the dynamic content stored in the NAS. Such configurations are
typical in large data centers where operators reduce costs by multiplexing several concur-
rent applications on the same server farm or even on the same physical server. Previous
techniques for determining block correlations at the storage server are not applicable in
these complex scenarios. ”Black-box” approaches such as [19] are ineffective because
of the concurrency degree inherent in data centers that causes lots of false correlations
(see Section 5.2). ”Gray-box” techniques require either thorough knowledge about each
database server running on top of it, such as the structure of data and metadata on
disk [30], or heavy changes to the storage interface [29].

The contribution of our work is an investigation of generic, DBMS-independent tech-
niques for determining block access correlations and exploiting them for block prefetching

in these environments. Our contributions are two-fold:

1. We implement and evaluate a static frequent sequence mining algorithm for block
prefetching at the storage server. We augment the basic scheme to perform efficient

block correlation retraining.

2. We implement and evaluate a dynamic frequent sequence mining algorithm to gen-

CHAPTER 1. INTRODUCTION 3

Database Tier |

| Database Server Database Server |

Storage Tier |
i — — - = @ —— |
)) L

J
Figure 1.1: Dynamic Content Web Servers using NAS

erate block correlations on the fly.

For the static block correlation algorithm, we use as a baseline a recently proposed
algorithm [19], called C-Miner*, for frequent sequence mining on streams of disk block
accesses. The authors correlate blocks fully transparently inside the storage server with-
out any changes to the storage clients running on top. This is a ”"black-box” approach,
making the technique very appealing since it is general and targets any storage client.
In our scheme, we automatically capture and leverage application contexts for 1/O block
correlation at the storage server. We simply tag each database I/O block request with a
context identifier corresponding to the higher level application web interaction, database
transaction or database query where the I/O request to the storage manager occurred.
This allows the storage server to correlate the block accesses that it sees according to

their higher level context. These contexts are exposed to the storage layer by grouping

CHAPTER 1. INTRODUCTION 4

based on context identifiers. The storage manager then performs data mining and on-line
block predictions per-context, rather than globally. More importantly, in the C-Miner*
algorithm with or without contexts, block correlations may become inaccurate due to
inserts in the database from write-intensive applications. We extend the context-guided
C-Miner* algorithm with efficient re-training decisions. In our approach, we monitor rule
efficiency to recognize applications where the prediction rules have become ineffective due
to an access pattern change. This helps us to perform selective rule retraining adaptively

for the applications affected by the change.

Furthermore, we investigate dynamic incremental mining by using a frequent sequence
mining over a sliding window technique to generate block correlations on the fly. The
algorithm outputs correlations that are frequent over the most recent N context instances,
where N is the window size. The benefit of this approach is that no re-training decisions
have to be made since the algorithm automatically re-trains by discarding correlations
that become obsolete due to data evolution and by generating new ones. Finally, we show
that the dynamic approach can be effective even in the presence of memory constraints,

by varying the window size and keeping a lower number of block correlations in memory.

We perform experiments with the MySQL database engine and two applications:
DBT-2 (a TPC-C-like benchmark) and RUBIS, an on-line bidding benchmark modeled
after eBay.com. The applications have different I/O needs. DBT-2 is I/O intensive, and
hence has a very large block footprint in the storage cache, while RUBIS needs an order
of magnitude less storage cache. We use a storage cache simulator to measure the block

hit rate and prefetch rule accuracy. In our experiments, we vary the storage cache size.

For the static mining approach, our results show increased overall hit rates in the
storage cache, up to 45% for RUBIS and 17% for DBT-2 compared to the baseline cache
implementing the LRU replacement policy with no prefetching scheme. Furthermore, by
using the contexts, we generate fewer and more accurate block correlation rules compared

to the context-oblivious approach. Rule accuracy i.e., the ratio of useful versus useless

CHAPTER 1. INTRODUCTION)

block prefetches, is important in multi-application scenarios since useless block prefetches
may interfere with the cache effectiveness of concurrent applications in addition to con-
suming the disk bandwidth.

When using dynamic mining we obtain up to 2% for RUBIS and 4% for DBT-2
increase in hit rate relative to the static mining scheme with re-training. Compared to
the baseline the hit rate increase is up to 47% in the case of RUBIS and 21% in the case of
DBT-2. Moreover, dynamic mining also improves the rule accuracy for both workloads.

The outline of the rest of this thesis document is organized as follows. Chapter 2
provides the necessary background on block correlations and the frequent sequence min-
ing algorithms on which we build. Chapter 3 introduces the design of our prefetching
solution. Chapters 4 and 5 describe our experimental platform, storage cache simulation
methodology and results. Chapter 6 discusses related work and Chapter 7 concludes the

thesis.

Chapter 2

Background

In this chapter we define what block correlations are, briefly introduce the frequent

sequence mining algorithms that we use and give some examples.

2.1 Block correlations

Two blocks {a} and {b} are correlated if, whenever {a} is accessed, there is a high
probability that {b} will be accessed as well. Correlations are useful for prefetching, disk
layout or cache replacement policies. Block correlations in storage servers are a logical
consequence of the structures existing in the storage clients. Database systems, for
instance, access data through indexes usually represented as B*-Trees. These structures
result in a set of known access patterns. For example, point queries traverse down the B-
Tree to find the data page. This access pattern typically shows a dual block correlation
between a parent and child node. Similarly, scanning the leaves in a clustered index
results in sequential block correlations. Three blocks a, b, ¢ are correlated if whenever a
and b are accessed close to each other, ¢ will be accessed as well. We use the following
notations to describe correlations: {a->b} for dual-block correlations and {a&b->c} for
three-block correlations.

Correlations among multiple e.g., three, blocks are typically more precise than dual

CHAPTER 2. BACKGROUND 7

block correlations. We illustrate this with an example. Let us consider a merge join
between two relations, R1 and R2, where the outer relation has a clustered index and
the inner one has a non-clustered index on the join field. The access pattern to the
blocks belonging to the two relations might have the following order: {R1:1, R2:5,
R2:7, R2:9, R2:4, R1:2, R2:11, R2:8, R2:3, R2:6}, where we denote by {R1:1},
an access to block 1 belonging to relation R1. A dual block correlation in this case is
{2->11} and a multiblock one is {4&2->11}. Now, let us suppose that we also have a
merge join on R1 and R3 on the same join field as before. In this case the block access
pattern might look like this: {R1:1, R3:12, R3:17, R3:13, R3:21, R1:2, R3:19,
R3:23, R3:18, R3:14}. We obtain {2->19} and {21&2->19} as correlations. If we
based our knowledge on dual block correlations only, on a subsequent encounter of block
2 in the access stream we would not know with 100% accuracy what the next block would
be, since we have two conflicting dual block correlations {2->11} and {2->19}, derived
for the two joins, respectively. However, if the block before 2 in the access stream is 21,
we would determine that the next block is 19, according to the three block correlation
{21&2->19}.

Generating block correlations from streams of I/O accesses can be translated into
a frequent sequence mining problem. Frequent sequence mining algorithms aim at effi-

ciently discovering frequent subsequences in a database of sequences [32].

2.2 Frequent sequence mining

We start this section with some preliminary concepts and then clarify the concepts
through an example. Let I = {i;, is, ..., i,} be a set of all items. An item in
this context is a general concept and in our case is translated into a block number. A
sequence of items S = {j1, j2, ..., ji} where jp € I for k = 1...1l1isan ordered

list of items, where the order is given by a specific criterion. For streams of block ac-

CHAPTER 2. BACKGROUND 8

cesses the order is given by the timestamps of the disk requests. The first n-1 items in a
sequence represent the prefiz of that sequence. Similar to the item - block equivalence,
a sequence is represented by a context (e.g., database transaction or database query) in
our system. Let A = {a;, @, ..., a,} andB = {by, by, ..., b,} be two sequences
of items. We say that A is a subsequence of B if and only if (3) o1, o2, ..., op, such
that 1 < 07 <02 < ... <op <randa; = by, a = by, ..., 8 = b,,.

A sequence database D = {S;, Sz, ..., Sp} is a set of sequences of items. The
support of a sequence R in the database D is the number of sequences for which R is a
subsequence. We say that a subsequence is frequent if it has a support greater than a
predefined min-support threshold.

As an example, let us consider the following database of sequences: D={ S1, S2, S3}
where S1 = (apples, pears, cheese),S2 = (milk, apples, bread, pears, cheese),
and S3 = (cheese, milk, butter, bread).

The subsequences (apples, pears, cheese) and (milk, bread) are the most fre-
quent, each of them occurring two times. Following the above definitions, this number
of occurrences is the support of the subsequence. Notice that the items do not have to
be consecutive. If they occur within a small distance, we consider them to be part of a
subsequence. Items in frequent subsequences are correlated. This small distance is called
a gap or lookahead distance. The bigger the lookahead distance, the more aggressive the

algorithm is in determining correlations.

2.2.1 Static mining

C-Miner* {18, 19] is a recently proposed algorithm for discovering frequent subsequences
from a sequence of accesses at the storage server level. Items in the previous exam-
ple are now represented by disk blocks and instead of a database of sequences, mining
is done on a long sequence of I/O block accesses. The basic idea behind C-Miner*

is to scan the lookahead distance of each prefix in the sequence. Let us assume that

CHAPTER 2. BACKGROUND 9

{q,w,r,p,t,q,w,p,s,q,r,t,p} is a sequence of block accesses observed at the storage
server. In this example, block {q} appears 3 times. If the lookahead distance is 3 then
we generate the following correlations for {q}: {q->w} (support 2), {q->r} (support 2),
{q->p} (support 3), {q&r->p} (support 2) and so on. C-Miner* falls in the category
of frequent sequence mining on a static database. These algorithms work in a one-time
fashion by mining the entire sequence database and generating the results. However,
many applications are write intensive, thus leading to data evolution. Let us consider
for example an on-line bookstore, where new books are inserted daily. As a consequence,
customer preferences might get updated as well based on the content of the new books.
Thus, previous correlations may now become worthless. Static algorithms are inefficient
in this scenario, since they would have to mine the updated sequence database from

scratch.

2.2.2 Dynamic mining

Incremental frequent sequence mining over a sliding window is a popular technique for
dynamic frequent sequence mining [11, 20]. The basic idea behind this technique is to
efficiently mine frequent subsequences in the most recent n sequences of items in the data
stream.

The initial part of the algorithm consists of generating the frequent subsequences from
the first n sequences, and putting them in a data structure, e.g a tree. Each new sequence
in the data stream will replace the oldest sequence in the window. More specifically, the
support of the frequent subsequences of the oldest sequence is decreased by one, while
the support of the subsequences from the new sequence will be incremented by one.

Let us consider the example in Figure 2.1. For a window size of four, there are
three windows during the time line of this run. Let us suppose that the min-support
is two, meaning that we are interested only in subsequences with support higher than

or equal to two. The first step of the sliding window algorithm generates the following

CHAPTER 2. BACKGROUND 10

sequence id items
1 ace T
2 ba,c —<| T
g
() 3 c, d % (; T
S 3
= 3
4 c,e,b | ‘;
3
c
5 a, C, d v §
6 b, ¢ ,
v

Figure 2.1: Sliding Window Example

frequent subsequences: {a->c} (support 2) and {c->e} (support 2). These correlations
correspond to the first window in the data stream composed of sequences 1, 2, 3, 4. As a
new sequence arrives in the data stream (sequence 5), the oldest sequence (sequence 1)
is removed. Thus, the new frequent subsequences for window number two are: {a->c}
(support 2) and {c->d} (support 2). The interesting observation here is that {c->e} has
become infrequent (support 1), while {c->d} is now frequent. Similar for window 5, the
only subsequence that is frequent is {c->d} (support 2), because, by removing sequence

2, {a->c} is not frequent in the current window.

Chapter 3

Design

In this Chapter we describe our approach for discovering block correlations and using
them for prefetching. First, we define contexts and we introduce our technique for lever-
aging them. Then, we explain the tradeoffs associated with different context granularities.
Next we discuss the mining algorithms and the rule management in the presence of data

evolution.

3.1 Context Definition

In this work, we use application-level contexts in order to increase accuracy of block
miss predictions and thus guide I/O block prefetching. Specifically, we group together
low-level events, i.e., /O block accesses corresponding to page misses in the buffer pool
of the database system, which occur on behalf of the same higher level logical unit of
work, called a contert. A context is the logical grouping of events according to a specific
level in the application’s structural hierarchy i.e., the same thread, the same transaction
or the same query. Contexts are delineated with begin and end delimiters and can be
nested. For instance, a database query context for a particular application is nested
within a database transaction, which in its turn is nested within a web interaction for

that application.

11

CHAPTER 3. DESIGN 12
3.2 Overview

Having defined contexts in the previous section, in this section, we focus on our technique
for leveraging contexts for I/O block prefetching.

We use grouping by context in order to determine accurate block correlations. We
instrument the DBMS to tag each I/O request with its specific context identifier. The
storage server can then generate block correlation rules for each context. At the storage
layer we maintain the collection of block correlations sorted in decreasing order of support
numbers, since higher support means higher frequency. For each I/O block access we
look at the sequence of I/O blocks that was already accessed in this context instance
and the set of block correlations with the highest support. Next, we determine the set
of 1/O blocks that are most likely to be accessed next and we issue prefetches for these
blocks. Changing the DBMS to incorporate the context into an I/O request is trivial
since contexts already exist in the database system and they are easily obtained for
cach 1/0 operation. Furthermore, the contexts that we use are not DBMS-specific; they
are present in any database. For the purpose of our study we use the popular MySQL
database system with the InnoDB storage engine.

In the following we detail our techniques for instrumenting the DBMS, generating

block correlations and issuing prefetch requests at run-time.

3.3 DBMS Instrumentation

We instrument the database system to enable tracking of contexts of various granulari-
ties, corresponding to application structure and to tag each I/O request with a context
identifier.

We currently track information about three types of contexts: web interactions,
database transactions and database queries. We re-use pre-existing begin and end mark-

ers, such as, connection establishment/connection tear-down with the database sys-

CHAPTER 3. DESIGN 13

tem from the upper tier (for the web interaction context type), begin_transaction and
end_transaction queries specified by the application writer (for the database transaction

context type), and command processing (for the query context type).

The context identifiers allow the storage system to differentiate block accesses oc-
curring within each context and to group them accordingly. This allows removing false
correlations due the inherent interleavings of several threads or several applications. For
web interaction contexts, we tag block accesses with the thread id of the database sys-
tem thread running the interaction. We differentiate transaction contexts by tagging
all block accesses between the BEGIN and COMMIT with the transaction identifier (tid).
A query context simply associates each block access with the query identifier. MySQL
maintains global counters for the transaction and query identifiers. Even if this was not

the case, incorporating these identifiers would be trivial in any DBMS.

3.4 Rule Generation

We train our prediction algorithms at the storage level on perceived block accesses oc-
curring within each context instance and derive a set of block correlation rules for each
context instance. Training of rules for a new application and its various contexts can be
done while the system performs its regular activities, including running other applica-

tions.

Frequent sequence mining algorithms produce sequences in the form of {a;a,...a;}
that correspond to block correlation rules. However, at the storage server it is easier to
work with rules represented as {a;&as->az}. In the mining algorithms that we imple-
mented we generate only rules in the latter form by imposing a limit on the size of the
frequent sequence. For example, two frequent sequences {acde} (support 2) and {bade}
(support 3) now translate into the following 3-block correlation rules: {a&c->d} (sup-

port 2), {akc->e} (support 2), {a&d->e} (support 5), {c&d->e} (support 2), {b&a->d}

CHAPTER 3. DESIGN 14

(support 2), {bka->e} (support 2), {b&d->e} (support 2).

3.5 Block Prefetching

The storage server uses the block correlation rules on the fly to predict the set of blocks
to be accessed next based on the most recent sequence of blocks seen, as follows. The
storage manager tracks the sequence of blocks accessed by each context instance. On a
cache miss at the storage cache, we determine the context instance it belongs to. Based
on the sequence of I/O blocks that was already accessed and the matching set of block
correlations with the highest support, we issue prefetches for the set of I/O blocks that
are most likely to be accessed next. We prefetch only on storage cache misses since we
do not want to interfere with the behaviour of the application. For fast access to the
block correlation rules we keep them in a hashtable, with the rule prefix as key and a list

of blocks to prefetch as value.

3.6 Advantages of Contexts

Compared to context-oblivious prefetching, contexts improve the efficiency of prefetch
rule generation and use. As we will show in Section 4, these translate into higher cache
hit rates using a lower number of rules.

The success of the context-unaware approach depends on the assumption that cor-
related blocks occur within a predefined distance (gap) of each other and that they are
frequent enough to eliminate false correlations. However, the value of the gap is by ne-
cessity fixed during prefetch rule training. In contrast, the gap between correlated blocks
can be arbitrarily large during an actual run, due to dynamic and nondeterministic ap-
plication scheduling and context switches. As we will see in Section 4, the hit rate when
not considering contexts can be lower than that of a simple cache with no prefetching

policies implemented.

CHAPTER 3. DESIGN 15

Context-guided rule training is more efficient because we can avoid generating false
block correlation rules for the blocks at the context switch boundary. Thus, the rules
generated during training have a high likelihood of triggering useful prefetches on-line.
Furthermore, another benefit is the increased time and space efficiency, due to the lower

number of rules.

DATABASE TIER DATABASE TIER
' n | x| [v] |z 1] 2] (3l/7]18]]9
Thread 1 Thread 2 Thread 1 Thread 2
0§ 0s
3R & BE z 1] [7] 28] [3]]9

17xznyszs9

STORAGE SYSTEM
(NAS)

Figure 3.1: I/O Access Pattern

As an example, consider two DBMS engines running two different applications on
a cluster with consolidated NAS storage server, as shown in Figure 3.1. Each DBMS
is running two different queries concurrently for the same application. For example,
for the DBMS on the right, one query is performing a table scan and the other an
index scan through a non-clustered index. Given that the operating system may context
switch among these threads, the sequence of page references that each operating system
sees is intertwined between the two threads. Moreover, the sequence of block accesses
at the storage server is a mixture of page misses for all 4 threads, making it difficult
to decipher the original reference streams. Hence, with a sufficiently high concurrency
degree, storage-level block prefetching techniques would become ineffective, unless the

storage manager can track the different contexts and infer the higher-level context of

CHAPTER 3. DESIGN 16

each block access.
In the following we discuss the effects of using different context granularities on

prefetching effectiveness.

3.7 Tradeoffs

While defining meaningful contexts is intuitive, defining the right context granularity for
optimizing the prefetching algorithm is not a trivial problem. There is a tradeoff between
using coarse-grained contexts and fine-grained contexts. Fine-grained contexts provide
greater prediction accuracy while coarse-grained contexts provide more prefetching op-
portunities.

For example, consider using query templates, a fine grained context. For point queries,
the access pattern is to simply traverse down the B-Tree to reach the data page. In many
cases, the index pages are cached in the buffer pool and the only miss seen at the storage
manager is a request to read the data block. If there is only one miss, then no prefetch
rule will ever be generated or triggered for that context. This limits our prefetching
aggressiveness because we may not be able to fetch several blocks at the same time.

In contrast, coarse-grained contexts, such as, a database transaction or a web interac-
tion are well suited for aggressive prefetching. Since web interactions for an application
include more than one transaction, and each database transaction includes several read
or write queries, we can derive correlations across several queries or several transactions.
On the down side, having a coarser-grained context does not necessarily translate into
higher prefetching accuracy if the access pattern within this context shows a lot of vari-
ability. Variability may occur due to control flow in the application code of complex
database transactions or web interactions. Since a fine grain context typically has less
variability, the accuracy of block correlations is correspondingly higher for fine grained

versus coarse grained contexts.

CHAPTER 3. DESIGN 17

3.8 Data Evolution

Training Rang
Testing Range——»

Figure 3.2: Data Evolution Over Time.

Prediction algorithms based on past access patterns are inherently limited when access
pattern changes occur. Thus, in order to maintain performance, we have to adapt the
rules over time. For example, consider a BestSeller query that reports the “hot” books
at any given time. This query depends on the most recent orders placed at an online
store to determine which books were bought recently. The access pattern of this query
is to simply descend down the B-Tree and then look at the set of the most recent orders.
Clearly, the access pattern of this query changes over time as more orders are placed at
the online store. As more orders are inserted into the relation, the B-Tree grows towards
the right (see Figure 3.2). Thus, over time, the block correlations from the left of the

B-Tree become obsolete.

3.8.1 Static mining

The static mining algorithm is applied on a database of sequences and requires the
entire database to be accessible at mining time. In our scheme a context instance is the

equivalent of a sequence. The I/O access stream of each context instance is recorded

CHAPTER 3. DESIGN 18

and added to the database. When mining is to be performed (e.g., due to re-training
decisions), this database sequence is used. Static mining algorithms can be improved
by discarding the old context instances from the database. This approach is similar
to the sliding window approach used in the dynamic mining algorithms. However, the
drawback of the static algorithm comes from the fact that, unlike the dynamic one, it
cannot efficiently add new correlations on the fly while the application is running. It
has to be run on the entire database of context instances that we want to mine, usually
because these algorithms have been designed to perform more than one pass over the
sequence database.

In order to deal with data evolution, the static mining approach requires efficient
re-training decisions. By monitoring rule efficiency (e.g, the increase of useful prefetches
triggered) we are able to identify the moment when re-training is needed. We assume
that after a mining step is performed, the rules are the most accurate. Hence, we split
the running time into intervals of block accesses. For the first running interval following
a mining step, we compute the rule efficiency parameter. Furthermore, we compute this
parameter for the following intervals and we compare it against the first one. So long as
the ratio between the two is above a predefined threshold, we consider the current rules
to be effective. As soon as the ratio goes below the threshold, we decide that re-training

is needed and we start the mining algorithm on the current database of context instances.

3.8.2 Dynamic mining

For the dynamic mining implementation we maintain a window of context instances and
we slide it as a new context instance ends. The algorithm that we implemented is similar
to the one described in [11]. The rules are updated on the fly based on the access stream
in the last context instance seen. So long as the window size is below a predefined
threshold, no rules are removed. When the window size becomes equal to the threshold,

both the rules belonging to the oldest context instance as well as the ones belonging

CHAPTER 3. DESIGN 19

to the newest context instance arc updated. More specifically, the support of the rules
generated from the oldest context instance is decreased by one, while the support of the
rules from the new context instance is incremented by one. Basically, each new context
instance in the data stream replaces the oldest context instance in the window. The
benefit of the dynamic algorithm compared to the static one is that it quickly adapts to
any change in the I/O access pattern. No re-training decisions have to be made in this
case, since the algorithm automatically re-trains by discarding correlations that become

obsolete due to data evolution and by generating new ones.

Chapter 4

Evaluation

This section describes the set of benchmarks we use and our evaluation methodology,

based on trace-driven simulation.

4.1 Benchmarks

We use two benchmarks to evaluate our work: the DBT-2 OLTP benchmark (a TPC-C
like benchmark), and the RUBIS online bidding benchmark.

4.1.1 DBT-2

DBT-2 is an OLTP workload derived from TPC-C benchmark (24, 33]. It simulates a
wholesale parts supplier that operates using a number of warehouse and sales districts.
Each warehouse has 10 sales districts and each district serves 3000 customers. The
workload involves transactions from a number of terminal operators centered around an
order entry environment. There are 5 main transactions for: (1) entering orders, (2)
delivering orders, (3) recording payments, (4) checking the status of the orders, and
(5) monitoring the level of st ock at the warehouses. We scale DBT-2 by using 128

warehouses and the footprint of the database is 30GB.

20

CHAPTER 4. EVALUATION 21

4.1.2 RUBIS Auction Benchmark

We use the RUBIS Auction Benchmark to simulate a bidding workload similar to e-Bay.
The benchmark implements the core functionality of an auction site: selling, browsing,
and bidding. We do not implement complementary services like instant messaging, or
newsgroups. We distinguish between three kinds of user sessions: visitor, buyer, and
seller. For a visitor session, users need not register but are only allowed to browse. Buyer
and seller sessions require registration. In addition to the functionality provided during
the visitor sessions, during a buyer session, users can bid on items and consult a summary
of their current bid, rating, and comments left by other users. We are using the default
RUBIS bidding workload containing 15% writes, considered the most representative of

an auction site workload according to an earlier study of e-Bay workloads [28].

4.2 Evaluation Methodology

We use trace-driven rule-training and trace-driven simulation of the block accesses in
order to evaluate our context-aware prefetching algorithm. We run our web based appli-
cations on a dynamic content infrastructure consisting of the Apache web server, the PHP
application server and the MySQL InnoDB (ver. 5.0.24) database storage engine. For
DBT-2, we use the test harness provided by the benchmark while hosting the database
on MySQL. We perform lightweight logging of page misses in the buffer pool of MySQL,

which result in disk block accesses when running our benchmarks.

We collect the traces on a Dell PowerEdge with 8 Intel Xeon processors running at
2.8 GHz. The operating system on this machine is Ubuntu 6.06, Linux kernel 2.6.27-smp.

Then we use the trace obtained to drive our storage cache simulator (CacheSim).

In the following, we describe our methodology for collecting traces and our simulation

methodology for the storage cache.

CHAPTER 4. EVALUATION 22
4.2.1 Trace Collection

To obtain the traces of disk accesses, we instrumented the InnoDB storage engine inside
MySQL. We implemented a lightweight instrumentation library that allows us to record
I/O requests with negligible overhead. First, to avoid locking overhead, we create a
private logging buffer per thread. In addition, we only log on buffer pool misses. Finally,
we flush the logs to disk only when the buffer is full or if the thread performing the
accesses is being shutdown. We log page identifiers in MySQL. The page identifiers
are equivalent to disk block numbers for the purposes of our simulation since MySQL
maintains database data contiguous on disk. We disabled the file system cache by opening
the InnoDB data file with the 0_DIRECT flag. Thus, the misses that we observe are not
affected by any file system caching effects below the DBMS. While collecting the traces,

there was no noticeable decrease in the throughput of the applications.

We generate traces by running each benchmark or set of benchmarks for 1 hour and
remove a portion of the run to separate the cold storage cache effects. We split the
remaining trace into 2 parts: the training trace and the testing trace. For the static
mining approach, we train the block correlation rules on the training trace and drive
our cache simulator with the testing trace, while for the dynamic mining one we run the

whole trace but record the results only for the testing part.

4.2.2 CacheSim

We simulate the storage cache using CacheSim, a cache simulator we implemented in Java
that allows us to evaluate different prefetching policies. CacheSim runs in two modes:
with prefetching enabled or prefetching disabled. The size of the cache is defined by a

parameter totalCacheSize.

When prefetching is enabled, the total cache size is divided among the PrefetchCache

and the MainCache. In this design, a block may either be in the MainCache or the

CHAPTER 4. EVALUATION 23

PrefetchCache but not both. Thus, there are 3 possibilities on storage cache access: (1)
the block is found in the MainCache, (2) the block is found in the PrefetchCache, (3) the
block is not found (cache miss). If the block is found in the MainCache, a reference bit
for the block is set and the block is returned to the caller. If the block access misses in the
MainCache, then the PrefetchCache is checked. If the block is found in the PrefetchCache
then, the block is promoted to the MainCache. On a cache miss, in addition to fetching
the block, we issue prefetch requests to the underlying storage. Both the PrefetchCache
and the MainCache caches implement the Clock replacement policy [14].

We issue prefetch requests based on the rules generated from our mining algorithm as
described in Section 3. We store the rules in a hashtable with the rule prefix as the search
key. For example, if the mining algorithm generates rules [{1&2->3,3},{1&2->100,1},
{1&2->4,2}] then we use 1&2 as the hashtable key. We chain the collisions in a sorted
linked list in decreasing order of support. Therefore, the above rules would be kept as
[{1&2->3,3}, {1&2->4,2}, {1&2->100,1} 1. To effectively utilize the disk bandwidth,
we allow the number of prefetch requests to be issued by the parameter maxPrefetchRequests.
For example, if this parameter was set to 2, we would only issue
[{1&2->3,3}, {1&2->4,2}]. In some cases, the block to be prefetched may already be
present in the MainCache or the PrefetchCache. 1f the block is in the MainCache, we
take no action. However, if the block is found in the PrefetchCache, we simply set the
reference bit to 1. The intent is to keep the block in the cache longer since multiple rules

ask for the same block.

4,2.3 Performance Metrics

During testing, we run the testing trace through CacheSim and measure several perfor-
mance metrics including cache hit rate, rule efficiency, and rule accuracy. The hit rate is
the number of blocks found in the storage cache divided by the number of accesses. Rule

accuracy measures the benefit of the block correlation rules that we generate through

CHAPTER 4. EVALUATION 24

mining. It is defined by the fraction of prefetch requests that generated hits in the
prefetch cache out of the number of total prefetch requests issued. For example, if, for
a specific trace, we issue 100 prefetch requests but only 50 of these are used, the rule
accuracy is 50%. We define rule efficiency to be the increase in number of rules used
during testing over a period of time. This parameter reflects the usefulness of the rules
mined and is only valid for the static mining approach. It is used to trigger re-training
when rules become obsolete, as described in Section 3.8.1. For example, suppose that
during a time interval 71 we have 100 misses in the Main Cache. 50 out of these 100

misses were found in the Prefetch Cache. The rule efficiency for interval 77 is 50%.

Chapter 5

Results

5.1 Overview

We use trace based simulation to evaluate the benefit of our prefetching scheme. We ex-
periment with four schemes. Our baseline approach is No Prefetching where prefetch-
ing is disabled. In the No Context scheme, we issue prefetch requests using the rules
obtained from the context-oblivious mining algorithm. There is no notion of context in
this case, thus, the accesses are not separated when mining is performed. For the Web
Interaction context, we group block accesses using the connection setup and teardown
delimiters. The Transaction context is defined by the transaction delimiters, begin and
commit. Finally, for the Query context, we associate block accesses with the query in-
stance. For RUBIS we noticed that transactions are usually composed of a single query,
so we do not use the Transaction context for this benchmark. Similarly, since DBT-2

is not a web based application, we do not use the Web Interaction context.

For the No Context approach we use a lookahead distance of 10 when generating
the block correlations with the mining algorithm. This large value is chosen for filtering
out as much noise as possible, in the interest of fairness to the No Context scheme. For

context-based mining, we use a smaller lookahead distance (of 5), since most of the block

25

CHAPTER 5. RESULTS 26

correlations that we generate are true correlations.

We experiment with various cache sizes from 10% to 90% of the memory footprint
of the application. We measure the performance metrics with rules generated using
the static mining algorithm with and without retraining, and using the dynamic mining
algorithm. When using the static algorithm with retraining, we set the retraining rule
efficiency threshold to 50%. This means that, when the rule efficiency for an interval
decreases to less than 50% of the rule efficiency of the first interval after mining, we

decide that the rules have become obsolete and retraining is performed.

In all configurations, when prefetching is enabled, we use a prefetch cache that is 6%
of the total cache size and on each miss we prefetch up to 16 blocks, using the block
correlation rules. We also ran experiments with various prefetch cache sizes and various

limits for the maximum number of block to prefetch at once, and the results were similar.

5.2 Static Mining

In Figures 5.1 and 5.2, we show the benefit of prefetching for the two benchmarks when
using the static mining approach with and without retraining. We plot the hit rate on
the y-axis and the x-axis shows the different cache sizes for the methods we use in our

comparison.

In Figure 5.1, we plot our experimental results for the RUBiS workload for storage
caches from 16MB to 128MB, while Figure 5.2 shows the hit rates for DBT-2 for storage
caches from 256MB to 4GB. The two applications have different working set sizes, thus
we use different storage cache sizes in our evaluation. RUBIS, for instance, has a hit rate
in the baseline case of 74% with a cache size of 128MB. On the other hand, DBT-2’s

baseline hit rate in the storage cache is only 14% for a cache size of 1GB.

CHAPTER 5. RESULTS 27

100%
90%
80%
70%]
60%
50% -
40%
30%
20%
10%

OO/O

Hit Rate

16 32 64 128
Cache Size (MB)

B Baseline O No Context w/o Retraining O No Context w Retraining
OQuery w/o Retraining B Query w Retraining O Web w/o Retraining
B Web w Retraining

Figure 5.1: RUBIS Static Mining Hit Rate

5.2.1 Hit Rate

The results for RUBIS show that, when the cache size is small (16MB and 32MB), the
baseline hit rate is less than 1%. When performing mining without the knowledge of
context the hit rate is improved to about 4%. Using the query context, the hit rate
improves significantly to about 45%. This improvement is achieved because the context-
guided prefetching is able to accurately pinpoint the blocks that will be accessed in the
near future. Using the web interaction as the context provides similar improvements
as the query context. After analyzing the traces we noticed that in a web interaction
composed of a number of queries, most of the time only one query has a high number of
disk accesses. Thus, the rules derived through mining and the performance achieved in

the two cases are similar.

CHAPTER 5. RESULTS 28

100%
90%
80%
70%
60%
50%
40%
30%
20%
1 0 O/O

0%

Hit Rate

256 512 1024 2048 4096
Cache Size (MB)

B Baseline 00 No Context w/o Retraining
ONo Context w Retraining O Query w/o Retraining

B Query w Retraining O Transaction w/o Retraining
B Transaction w Retraining

Figure 5.2: DBT-2 Static Mining Hit Rate

As the size of the storage cache increases, the baseline hit rate naturally improves
and the benefit of prefetching decreases, mainly because in our scheme we prefetch only
on misses. With a 64MB cache, we get a 30% increase in hit rate when using contexts.
Even with a 128MB cache, context-guided prefetching provides a 5% improvement over
the baseline case when prefetching is disabled. In the context-oblivious approach, the hit
rate decreases and the performance is lower than the baseline. This is because the space
occupied by the prefetch cache is not efficiently utilized.

The results with and without retraining are similar. As we can see in Figure 5.5 the
rule efficiency for RUBIS is stable throughout the testing period and retraining is not
actually triggered. This is explained by the fact that RUBIS is not a write intensive
workload.

Figure 5.2 shows the results for the DBT-2 workload. Since DBT-2 has a larger 1/0

CHAPTER 5. RESULTS 29

RUBiS
Scheme Number of Rules
No Context (before pruning) 8,027,238
No Context (after pruning) 1,756,222
Query Context 862,287
Web Interaction Context 882,390
DBT-2
Scheme Number of Rules
No Context (before pruning) 36,415,456
No Context (after pruning) 3,019,310
Query Context 2,842,490
Transaction Context 4,600,251

Table 5.1: Static Mining Rule Generation

footprint, we use larger cache sizes for these experiments. Similar to the RUBIS results,
the smaller the cache sizes the higher the prefetching benefit. When using contexts we get
a much higher hit rate than when performing mining without context knowledge. This
is because of more accurate predictions of future block accesses. The most interesting
insight obtained from these results is that the choice of context granularity affects the
prefetching benefit. As Figure 5.2 shows, prefetching using the query context performs
poorly compared to the transaction context. This is due to the nature of DBT-2, where
many queries are point queries which only result in 1 block access per query template.
By using the transaction context, we prefetch across query boundaries and thus provide a
significant benefit. Unlike RUBIS, we see that retraining improves the hit rate for DBT-2
by a lot. For a 1GB cache size for instance, using the transaction context we obtain a
5% hit rate increase without retraining and a 13% increase with retraining compared to

the baseline case.

CHAPTER 5. RESULTS 30

RUBiS
Scheme Rule Accuracy
No Context w/o Retraining 25%
No Context w Retraining 25%
Query Context w/o Retraining 49%
Query Context w Retraining 49%
Web Interaction Context w/o Retraining 49%
Web Interaction Context w Retraining 49%
DBT-2
Scheme Rule Accuracy
No Context w/o Retraining 60%
No Context w Retraining 67%
Query Context w/o Retraining 75%
Query Context w Retraining 79%
Transaction Context w/o Retraining 56%
Transaction Context w Retraining 62%

Table 5.2: Static Mining Rule Accuracy

5.2.2 Rule Parameters

In Table 5.1 we show the total number of rules generated with the static mining algorithm.
A context-oblivious approach generates 8.03 million rules for RUBIS and 36.42 million
rules for DBT-2. Since many of the rules have very low support, they are pruned by
choosing a minimum support of 1. By pruning the rules with support 1, we expect
to eliminate the false correlations. After pruning, the number of rules is significantly
reduced to 1.76 million rules for RUBIS and 3.02 million rules for DBT-2. With context-

awareness, we generate between 3 and 4 million rules for DBT-2 and 0.8 million rules for

CHAPTER 5. RESULTS 31

RUBIS. The memory footprint of 1 million rules is around 16MB, by estimating that a
rule can be represented by 16 bytes. Thus, keeping these rules in memory is feasible.
Table 5.2, shows the rule accuracy for both workloads. When using contexts, the
accuracy is high enough for both applications. For the no context approach, the accuracy
when running RUBIS is very low. This is because RUBIS has a higher context switch
rate, thus more false correlations than DBT-2. For DBT-2, when performing retraining

we also improve the rule accuracy compared to the run without retraining.

5.3 Dynamic Mining

In this section we present the results for the dynamic mining approach. First, we compare
the dynamic mining results against the static mining ones. Next, we analyze the dynamic
mining scheme with various window sizes. The dynamic mining technique that we used
cannot be applied to the no context approach. That is because it requires the access
stream to be split into sequences. That is the whole concept behind the sliding window
technique. Thus, we only plot results for the context-based schemes. We use a window
size of 10,000 for RUBIS and 80,000 for DBT-2. This numbers are around half of the

total number of context instances in a trace for that benchmark.

5.3.1 Dynamic vs. Static
Hit Rate

In Figures 5.3 and 5.4, we compare the hit rates for the two benchmarks when using
the dynamic mining and static mining with retraining schemes. For RUBIS, Figure 5.3,
dynamic mining improves the hit rate with up to 2% when compared to the static min-
ing with retraining. Compared to the baseline, the hit rate improvement is between
5-47%. For DBT-2, Figure 5.4, the improvement is up to 4% relative to the static mining

with retraining results, the maximum benefit being obtained for the transaction context.

CHAPTER 5. RESULTS 32

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Hit Rate

16 32 64 128
Cache Size (MB)

W Baseline ONo Context w Retraining O Query w Retraining
Ml Query Dynamic [1Web w Retraining B Web Dynamic

Figure 5.3: RUBIS Dynamic vs. Static Mining Hit Rate

Compared to the baseline, the increase is between 15-21% for storage cache sizes be-
tween 256 MB-1GB and from 3 to 6% for cache sizes of 2-4GB. Even though retraining is
very useful for static mining, when generating rules dynamically we eliminate the static

threshold that triggers retraining decisions.

Rule Parameters

In Figures 5.6 and 5.5, we show the cumulative number of efficient rules over time for
a 30 minute run. An efficient rule is a rule whose prefetched block is consumed by the
database system, a rule that translates into a useful prefetch request. For RUBIS we
measure with a cache size of 64MB and for DBT-2, 512MB. We use the web interaction
context for RUBIS and the transaction context for DBT-2.

The two workloads show different characteristics. For RUBIS, the static mining with-

CHAPTER 5. RESULTS 33

100%
90%
80%
70% —
60%
50%
40%
30%
20%
10%

0%

Hit Rate

256 512 1024 2048 4096
Cache Size (MB)

B Baseline ONo Context w Retraining O Query w Retraining

W Query Dynamic O Transaction w Retraining @ Transaction Dynamic

Figure 5.4: DBT-2 Dynamic vs. Static Mining Hit Rate

out retraining curve grows linearly, showing that the rules are still valid and that re-
training is not needed. In fact, for this run, retraining was not triggered as we can see
from the static mining with retraining curve. When using dynamic mining we obtain a
slightly higher slope, as expected. RUBIS is more read intensive and rule efficiency, hence
prefetching benefit for this application continues to be roughly the same during the run.

While RUBIS shows the same slope for the growth in the number of efficient rules
triggered over time, the growth of DBT-2 efficient rules gradually flattens starting around
the 9 minute mark, when no retraining is performed. This is due to the write intensive
nature of the DBT-2 benchmark. After the first 9 minutes of the run, the significant data
changes in DBT-2 make our prefetch rules for this application obsolete. As new data
blocks are accessed due to INSERT queries and the block sequences change, the number

of prefetch rules that are triggered for DBT-2 decreases. When performing retraining,

CHAPTER 5. RESULTS 34

100000 , : - — l
Static w Retraining
Static w/o Retrainin_g -----------
80000 Dynamic e |
38 60000 | _
=
a1
~
@]
S 40000
20000 t
O 1 L) | ,
0 5 10 15 20 25 30
Time (min)

Figure 5.5: RUBIS Dynamic vs. Static Mining Rule Evolution

we notice that there are two retraining points in the run, one around the 9 minute mark,
and one around the 20 minute one. By retraining we are able to refresh the rules, thus
maintain a high number of efficient rules. However, with dynamic mining we get the best
performance. The curve is linear, since the rules are updated on the fly: obsolete rules
are removed, while new rules are added to the list.

Table 5.3, shows the rule accuracy for both workloads, comparing the dynamic and
the static mining with retraining schemes. RUBIS has similar rule accuracy for all the
schemes with context. For DBT-2, when performing dynamic mining we also improve

the rule accuracy compared to the run with retraining.

5.3.2 Varying the Window Size

In the next set of experiment we ran the dynamic mining algorithm with various window

sizes and analyzed the hit rate, rule evolution and rule parameters. We used the DBT-2

CHAPTER 5. RESULTS 35

200000 , . - — |
Static w Retraining '
Static w/o Retraining ="
Dynamic e
150000 f
38
&
- 100000 +
@)
o)
O
50000 r
0 ,/'f‘/ , , . . .
0 5 10 15 20 25 30

Time (min)

Figure 5.6: DBT-2 Dynamic vs. Static Mining Rule Evolution

benchmark, the transaction context, and window sizes from 20,000 to 80,000.

Figure 5.7 plots the hit rate for the different window sizes used. We see that even
when using a smaller window size, such as 20K, we get a high increase in the hit rate.
The results for window sizes of 60K and 80K are similar, thus it does not make sense to
use a larger window size. This is because only rules from the last 60K context instances

are valid in the future.

In Figure 5.8 we show the rule evolution for a cache size of 512MB and for the window
sizes used in the mining algorithm. The results follow the hit rate ones. We see that all
the curves are linear with an increasing slope as we use a larger window size. For window

sizes of 60K and 80K the curves are similar.
The advantage of using a smaller window size comes in terms of the memory used to
maintain the rules. In Table 5.4 we see that the number of rules generated goes higher

as we increase the window size. However, even by maintaining only 1 million rules in

CHAPTER 5. RESULTS 36

RUBiS
Scheme Rule Accuracy
No Context w Retraining 25%
Query Context w Retraining 49%
Query Context Dynamic 49%
Web Interaction Context w Retraining 49%
Web Interaction Context Dynamic 49%
DBT-2
Scheme Rule Accuracy
No Context w Retraining 67%
Query Context w Retraining 79%
Query Context Dynamic 85%
Transaction Context w Retraining 62%
Transaction Context Dynamic 70%

Table 5.3: Dynamic vs. Static Mining Rule Accuracy

memory we get an improvement of up to 11% in hit rate. With 3 million rules we get up
to 20% higher hit rates in the storage cache.

In Table 5.5 we show the rule accuracy. As expected, the accuracy goes down with
larger window sizes. This is because when using a window size of 80K the probability of

maintaining rules that are obsolete is higher than with a window size of 20K.

CHAPTER 5. RESULTS

100%

90%

80%

70%

60%
50%

Hit Rate

40% -
30% 1
20% 1
10%

0%

256 512 1024

2048 4096

Cache Size (MB)

B Transaction Dynamic ws 80K

H Baseline O Transaction Dynamic ws 20K
O Transaction Dynamic ws 40K B Transaction Dynamic ws 60K

Figure 5.7: Hit Rate when Varying the Window Size

DBT-2
Scheme Number of Rules
Transaction Context Dynamic ws 20K 1,164,755
Transaction Context Dynamic ws 40K 2,243,970
Transaction Context Dynamic ws 60K 3,281,610
Transaction Context Dynamic ws 80K 4,308,628

Table 5.4: Rule Generation when Varying the Window Size

37

CHAPTER 5. RESULTS 38

200000 . i . — |
Dynamic ws 20K ——
Dynamic ws 40K --=----=
Dynamic ws 60K
150000 | Dynamic ws 80K
8
E n\-%*‘“":“
= 100000 ««*““\“\N -
@) .)
@)
o
50000 r
O ' 1 I | L
0 5 10 15 20 25 30

Time (min)

Figure 5.8: Rule Evolution when Varying the Window Size

DBT-2
Scheme Rule Accuracy
Transaction Context Dynamic ws 20K 82%
Transaction Context Dynamic ws 40K 7%
Transaction Context Dynamic ws 60K 73%
Transaction Context Dynamic ws 80K 70%

Table 5.5: Rule Accuracy when Varying the Window Size

Chapter 6

Related Work

Our research draws on related work in a variety of domains in storage systems and
databases, including: inferring block correlations through ”black-box” or ”gray-box”
approaches that do not require changing the storage interface, newly proposed storage
interfaces that aim at pushing semantic knowledge from the storage clients into storage
servers, high-level prefetching schemes that can take advantage of the logical knowledge,
e.g. by analyzing the query strings, storage cache optimization techniques and adaptive
cache management. In the following, we describe the related work in these areas and

compare our approach with the most relevant related works in each area.

6.1 Inferring Block Correlations without Breaking
the Interfaces

A recent work [18, 19] proposed a new frequent sequence mining algorithm to discover
block correlations from streams of 1/O accesses at the storage server. The authors try
to correlate blocks fully transparently inside the storage server without changing the
storage clients or the storage interface. Since it is a ”black-box” approach, the technique

is very appealing since it is general and targets any storage client. However, with a high

39

CHAPTER 6. RELATED WORK 40

concurrency degree in the storage clients, this algorithm can become ineffective. This is
because the algorithm generates lots of false correlations while, at the same time loses
the true ones. In our scheme based on static mining, we enhance this algorithm with
the knowledge of contexts. Furthermore, we extend the context-guided algorithm with
efficient re-training decisions, in order to refresh the block correlation rules that became
obsolete due to data changes.

Related work in the file system area is similar to ours in that they expose certain
aspects of the structure of the storage client e.g., the distinction between i-node and data
blocks, to the storage manager indirectly through probing at the storage client [3, 31, 4].

Sivathanu et al. [30] apply the semantically-smart storage approach to databases.
Through log snooping and changes to the DBMS to record a number of statistics, the
storage system can provide cache exclusiveness and reliability for the database running
on top. One drawback of this technique is that it is DBMS-specific, since the storage
server has to have knowledge of the characteristics of all databases running on top of it.
This may not be feasible in a data center for instance. Furthermore, their work is not

applicable to prefetching since they cannot accurately determine multi-block correlations.

6.2 Changing the Interfaces to Bridge the Semantic
Gap between Storage Clients and Servers

Type-safe disk is a newly proposed disk system that is aware of the pointer relationships
between blocks in file systems, e.g. an inode block points to a data block [29]. Although
the scheme is proposed in the context of file systems, it can be used in database systems
as well. The authors propose enhancing the basic block-based storage interface with a
number of primitives, such as CREATE_PTR(Src, Dest) that creates a pointer between
the Src and Dest blocks. The pointers in this case are similar to the correlations in our

scheme. In our work, we propose adding a context identifier to each I/O, which is a light

CHAPTER 6. RELATED WORK 41

change. Furthermore, the type-safe disks approach cannot efficiently identify multiblock
correlations or correlations in high-granularity contexts, such as transactions. Having
this would require implementing the mining algorithm in the storage client, which is
infeasible. In our system, we target leveraging the processing capabilities of the storage
system to perform the mining.

Another area of related work is the recently-standardized Object-based Storage Device
interface [2] (OSD) and its applicability to database systems. Several studies [26, 25
investigate ways for providing the DBMS with more knowledge of the underlying storage
characteristics. Other recent work in this area [27] performs a preliminary investigation on
the usefulness of increasing semantic knowledge in storage servers by mapping database
relations to objects. Our scheme can be implemented on top of the Object-based Storage
Device Interface as well, by mapping objects to blocks and making use of the richer
interface to pass the context identifier of the object. However, the new OSD interface

requires design changes in the storage clients, besides implementation changes.

6.3 High Level Prefetching for Databases

Bowman et al. [8, 6] describe prefetching techniques leveraging dependencies between
queries, which do not require modifications to interfaces. Specifically, they point out a
nesting pattern where the results of the outer query are used as arguments to the inner
query. The authors propose the Scalpel system where they use lateral derived tables to
rewrite the outer and inner queries into a single merged query. In a follow-up paper [7],
they apply a similar approach to a sequence of queries. Since we apply our methods
at the storage level, our approach is complementary. In addition, we target multiple
applications while the above papers target a single application.

Most database systems implement their own prefetching policy. MySQL, for instance,

uses sequential read-ahead and random read-ahead to optimize its performance. In the

CHAPTER 6. RELATED WORK 42

same way, commercial database systems, such as SQL Server or DB2, can defer reading
the data pages until all the row identifiers have been obtained from the index. This
technique is usually called List Prefetching. Our technique is complementary to the
prefetching scheme at the DBMS. In particular, in all of our experiments, MySQL has

employed its usual prefetching scheme.
Our work is also related but orthogonal to other prefetching optimizations in database

systems [23, 5].

6.4 Storage Cache Optimization Techniques

Several recent papers [17, 34, 9] explore techniques for establishing context communica-
tion, hence collaboration, between the database system, as the storage server client, and
the storage server in order to improve caching efficiency. These papers propose to pass
explicit hints from the database (client) cache to the storage cache. For example, these
hints can indicate the reason behind a write block request to storage and whether a block
is about to be evicted from the client cache and should be cached at the storage level [17],
explicit demotions of blocks from the storage client to server cache [34], or the relative
importance of requested blocks [9]. Similar to our own, these technique improve stor-
age cache efficiency, through context communication. As opposed to our work, inserting
the appropriate hints needs thorough understanding of the database system internals to
distinguish the context surrounding each block I/O request. We use readily available
information within the database system about preexisting contexts. These techniques,
including our own, modify the interface between the storage client and server, by requir-
ing that an additional identifier (representing the hint or our context tag, respectively)
be passed to the storage server.

Related transparent techniques for storage cache optimization include inferring access

patterns of the upper tier through observing characteristics of I/O requests. For example,

CHAPTER 6. RELATED WORK 43

in eviction-based prefetching [10], the storage cache detects whether a block has been
evicted from the client cache by matching the in-memory address of a newly requested
block with that of a block requested previously. The storage cache then issues prefetches

for these blocks.

6.5 Adaptive Cache Management

The general area of adaptive cache management based on application patterns or query
classes has been extensively studied in database systems and in file systems. For exam-
ple the DBMIN algorithm [13] uses the knowledge of the various patterns of queries, i.e.,
sequential scans, index accesses, and clustered joins to allocate buffer pool memory effi-
ciently and has been shown to be more efficient than the classic CLOCK algorithm [14].

In the file systems area, Choi et al. [12] propose a cache management scheme based
on application or file level characterization of block references. Similar to our work,
the authors observe that, in a multiprogramming system where multiple applications
are running concurrently, meaningful access patterns can be obtained by leveraging the
application or file context of a block access. The authors define a number of types of access
patterns, e.g. sequential, and, at run-time, they classify the current access pattern at the
application or file level. Furthermore, this classification is used in a per-application buffer
allocation scheme. The scheme that we propose can be easily applied to file systems, by
tagging each block request with a process, thread or file identifier.

Our approach relates as well to adaptive caching techniques based on learning, ana-

lyzed in the context of file systems [21, 22].

Chapter 7

Conclusions

In this thesis, we use a known data mining technique, frequent sequence mining, to
correlate database accesses at the storage server. We evaluate I/O prefetching in the
storage cache as an application of disk block correlations. We implement both a dynamic
block correlation mining algorithm as well as a static block correlation mining one. For
the static algorithm, we study schemes with and without correlation rule retraining. By
monitoring rule efficiency we are able to make efficient re-training decisions and thus,

update the rules that become obsolete due to data evolution.

Our technique is based on i) grouping block accesses according to high-level applica-
tion contexts, such as queries or transactions, through lightweight instrumentation of the
database system, and ii) training block prefetch rules and triggering prefetches according

to these rules.

In our experimental evaluation, we perform logging of actual access patterns during
runs for two applications, DBT-2, a TPC-C like workload and RUBIS, a bidding workload
similar to e-Bay. We perform the mining at the storage level and measure the respective
application hit rates in the storage cache. In our experiments we show that, by using
block correlations, we improve the storage cache hit rate by up to 21% for DBT-2 and

up to 47% for RUBIS, compared to the baseline. In addition, when training using the

44

CHAPTER 7. CONCLUSIONS 45

dynamic mining algorithm, we outperform the static mining-based approach in terms of

higher hit rates and more accurate block correlation rules.

Bibliography

1]

2]

3]

5]

IBM System Storage N7000 Modular Disk Storage System. http://www-
08.ibm.com/systems/storage/network/n7000/appliance/specification.html, 2006.

ANSI. Information Technology - SCSI Object-Based Storage Device Commands
(OSD). Standard ANSI/INCITS 400-2004, 2004.

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and Control
in Gray-Box Systems. In Proceedings of the 18th ACM Symposium on Operating
System Principles, pages 43-56, Banff, Alberta, Canada, October 2001.

Lakshmi N. Bairavasundaram, Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive Caching Mechanism
for RAIDs. In Proceedings of the 31st International Symposium on Computer Ar-
chitecture, ISCA, pages 176-187, Munich, Germany, June 2004.

Philip A. Bernstein, Shankar Pal, and David Shutt. Context-Based Prefetch for
Implementing Objects on Relations. In Proceedings of the 25th International Con-

ference on Very Large Data Bases, pages 327-338, Edinburgh, Scotland, September
1999.

Ivan T. Bowman and Kenneth Salem. Optimization of Query Streams Using Se-
mantic Prefetching. ACM Transactions on Database Systems, 30(4):1056-1101, De-
cember 2005.

46

BIBLIOGRAPHY 47

[7]

[9]

[10]

[11]

[12]

[13]

Ivan T. Bowman and Kenneth Salem. Semantic Prefetching of Correlated Query
Sequences. In Proceedings of the 23rd International Conference on Data Engineering,

ICDE, Istanbul, Turkey, April 2007.

Ivan T. Bowman and Kenneth Salem. Optimization of Query Streams Using Se-
mantic Prefetching. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, pages 179-190, Paris, France, June 2004.

Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni Schiefer. Empir-
ical Evaluation of Multi-level Buffer Cache Collaboration for Storage Systems. In
Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 145-156, Banff, Alberta, Canada, June
2005.

Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-based Cache Placement for
Storage Caches. In Proceedings of the USENIX Annual Technical Conference, Gen-
eral Track, pages 269-281, San Antonio, Texas, USA, June 2003.

Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Moment: Maintaining
Closed Frequent Itemsets over a Stream Sliding Window. In Proceedings of the jth
IEFEFE International Conference on Data Mining, ICDM, pages 59-66, Brighton, UK,
November 2004.

Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho. Towards
Application/File-level Characterization of Block References: a Case for Fine-grained
Buffer Management. In Proceedings of the ACM SIGMETRICS International Con-

ference on Measurement and Modeling of Computer Systems, pages 286-295, 2000.

Hong-Tai Chou and David J. DeWitt. An Evaluation of Buffer Management Strate-
gies for Relational Database Systems. In Proceedings of 11th International Confer-

ence on Very Large Data Bases, pages 127-141, Stockholm, Sweden, August 1985.

BIBLIOGRAPHY 48

[14]

[15]

[18]

[19]

[20]

[21]

F. J. Corbato. A Paging Experiment with the Multics System. MIT Press, pages
217-228, 1969.

Robert T. Douglass, Mike Little, and Jared W. Smith. Building Online Communities
With Drupal, phpBB, and WordPress. Apress, Berkeley, CA, USA, 2005.

Jim Gray. The Next Database Revolution. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 1-4, Paris, France, June

2004.

Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo Gao.
Second-Tier Cache Management Using Write Hints. In Proceedings of the FAST 05
Conference on File and Storage Technologies, San Francisco, California, December

2005.

Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and Yuanyuan Zhou. C-
Miner: Mining Block Correlations in Storage Systems. In Proceedings of the FAST
‘04 Conference on File and Storage Technologies, pages 173-186, San Francisco,
California, USA, March 2004.

Zhenmin Li, Zhifeng Chen, and Yuanyuan Zhou. Mining Block Correlations to
Improve Storage Performance. ACM Transactions on Storage, 1(2):213-245, May
2005.

Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, and Arbee L. P. Chen. Mining
Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window. In
Proceedings of the SIAM International Conference on Data Mining, SDM, Newport
Beach, California, USA, April 2005.

Tara M. Madhyastha, Garth A. Gibson, and Christos Faloutsos. Informed Prefetch-
ing of Collective Input/Output Requests. In Proceedings of the 1999 ACM/IEEE

BIBLIOGRAPHY 49

[23]

[26]

[28]

conference on Supercomputing: High Performance Networking and Computing, Port-

land, Oregon, USA, 1999.

Tara M. Madhyastha and Daniel A. Reed. Learning to Classify Parallel In-
put/Output Access Patterns. IEEE Transactions on Parallel and Distributed Sys-
tems, 13(8):802-813, August 2002.

Mark Palmer and Stanley B. Zdonik. Fido: A Cache That Learns to Fetch. In
Proceedings of the 17th International Conference on Very Large Data Bases, pages

255-264, Barcelona, Catalonia, Spain, September 1991.

Francois Raab. TPC-C - The Standard Benchmark for Online transaction Processing
(OLTP). In The Benchmark Handbook for Database and Transaction Systems (2nd
Edition). 1993.

Jiri Schindler, Anastassia Ailamaki, and Gregory R. Ganger. Lachesis: Robust
Database Storage Management Based on Device-specific Performance Characteris-
tics. In Proceedings of the 29th International Conference on Very Large Data Bases,

pages 706-717, Berlin, Germany, September 2003.

Jiri Schindler, John L. Griffin, Christopher R. Lumb, and Gregory R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Characteristics. In Pro-
ceedings of the FAST 02 Conference on File and Storage Technologies, pages 259-
274, Monterey, CA, January 2002.

Steven W. Schlosser and Sami Iren. Database Storage Management with Object-
based Storage Devices. In Workshop on Data Management on New Hardware, Da-

MoN 2005, Baltimore, Maryland, USA, June 2005.

Kai Shen, Tao Yang, Lingkun Chu, JoAnne Holliday, Douglas A. Kuschner, and

Huican Zhu. Neptune: Scalable Replication Management and Programming Sup-

BIBLIOGRAPHY 50

[29]

[30]

[33]

port for Cluster-based Network Services. In Proceedings of the 3rd USENIX Sympo-
sium on Internet Technologies and Systems, USITS, pages 197-208, San Francisco,
California, USA, March 2001.

Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. Type-Safe Disks.
In Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, OSDI, Seattle, WA, USA, November 2006.

Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Database-Aware Semantically-Smart Storage. In Proceed-
ings of the FAST ’05 Conference on File and Storage Technologies, pages 239-252,

San Francisco, California, December 2005.

Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E.
Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-
Smart Disk Systems. In Proceedings of the FAST 08 Conference on File and Storage
Technologies, San Francisco, California, USA, March 2003.

Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns: Gener-
alizations and Performance Improvements. In Proceedings of the 5th International
Conference on Extending Database Technology, EDBT, pages 3—-17, Avignon, France,
March 1996.

Mark Wong, Jenny Zhang, Craig Thomas, Bryan Olmstead, and Cliff
White. Database Test 2 Architecture. Open Source Development Lab,
http://www.osdl.org/lab_activities/kernel_testing/osdl_database_

test_su%ite/osdl_dbt-2/dbt_2_architecture.pdf, 0.4 edition, June 2002.

Theodore M. Wong and John Wilkes. My Cache or Yours? Making Storage More
Exclusive. In Proceedings of the USENIX Annual Technical Conference, General
Track, pages 161-175, Monterey, California, USA, June 2002.

