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ABSTRACT
This paper describes the design and implementation of a

high performance packet replay tool called TCPivo. TCPivo

is implemented on commodity hardware using widely avail-

able open-source software and can be used as a cost-effective

means for evaluating the performance of networking devices.

To achieve high throughput and accuracy, TCPivo employs

novel mechanisms for managing trace files and accurate low-

overhead timers. In addition, through the use of low-latency

kernel patches and priority scheduling, TCPivo can be made

highly resilient to background system load. Using these

mechanisms, the tool is able to support packet replay at

rates well above OC-3 on an x86-based server.

1. INTRODUCTION
In order to properly evaluate the design of network devices

such as routers, switches, and firewalls, system architects
can employ a wide-range of tools ranging from simulation to
actual physical testing of the device. At one end of the spec-
trum, designers can evaluate their systems by completely
simulating both the hardware itself and the network traffic
being processed. Examples of this approach include the ns

simulator [1] and the IXP network processor simulator [2].
While simulation offers a completely reproducible environ-
ment, it can be prohibitively slow and inaccurate [3]. Cycle-
level simulations can be several orders of magnitude slower
than the hardware itself and simulated traffic often does not
have the same properties as actual traffic. Another approach
for evaluating devices is to use the device itself and employ
a traffic generator to emulate network load. For example,
one could implement a network device using a network pro-
cessor such as the IXP and evaluate it using a commercially
available hardware packet generator such as those provided
by IXIA [4]. This approach allows for evaluations to be
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done in real-time and in a reproducible manner. However,
besides being expensive 1, such tools have questionable ac-
curacy when emulating real traffic since they stochastically
generate traffic versus replaying an actual trace. Stochastic
generation misses important low-level features of traffic in-
cluding address mixes, protocol mixes, and per-application
traffic characteristics [5]. Packet generators such as these
also can not reproduce the modulation of packets as they
pass through numerous hops in the network. Features such
as ACK compression [6] are commonly found in real traces,
but are not easily reproduced using synthetic generators.

While simulation and synthetic emulation both have their
uses, another approach is to take the actual device and to
test it with a trace-driven packet generator. In this ap-
proach, a trace is collected and stored to disk using a tool
such as tcpdump and then later replayed against a target
device. When driven by a representative library of traces,
such an approach is fast, reproducible, and highly accu-
rate in terms of address mixes and packet loads, thus en-
abling designers to accurately test route caching architec-
tures, packet classification algorithms, queue management
algorithms, scheduling algorithms, and buffer provisioning
in a very realistic environment. There are two things one
needs to do such an evaluation: a high-performance packet
collection engine and a high-performance packet replay en-
gine. While tools for high-performance packet collection ex-
ist [7, 8], similar replay engines do not. In this paper, we
describe the design of TCPivo, a high-performance replay
engine that accurately reproduces traffic recorded from a
variety of existing trace collection tools [9, 10, 8, 11].

2. TCPIVO DESIGN
There are many ways to build a high-performance packet

replay tool. In the design of TCPivo, we constrain ourselves
to commodity hardware (i.e. x86-based systems) and readily
available, open-source software (i.e. Linux and its available
patches). While specialized hardware and proprietary real-
time operating systems can be used to build a much more
powerful tool, our approach is cost-effective and allows users
to run on pre-existing systems. Of the variety of open-source
operating systems, we select Linux due to its level of hard-
ware support and its widespread use. A key question in our
approach is whether or not commodity hardware and soft-
ware have the ability to accurately replay a packet stream at

1The pricing for an IXIA 1600 starts at $41,000
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Figure 1: Read latency using fread()

Processor 1.8GHz Intel Xeon

Chipset E7500

Memory 512MB DDR PC1600 SDRAM

FSB 400MHz

NIC Intel 82544 1000Mbs

PCI Full length 133MHz PCI-X

Disk 120GB 7200rpm UDMA/100

OS Linux 2.4.20-pre1

File System ext3

Table 1: Evaluation server

high-speed. With recent advances in processor and network
technology, it is clear that the raw hardware power exists.
However, it is not clear whether or not current software and
operating systems can take full advantage of it.

There are four major issues that must be addressed in
building the replay engine. The first issue is the prefetching
and I/O management of the trace itself. The trace must
be efficiently and predictably retrieved from storage (pre-
sumably a disk) in real-time. The second issue is the time-
triggering of packet send events. To accurately reproduce
packet inter-arrival times recorded in the trace, the system
must have an accurate, low-overhead mechanism for timing
packet sends. The third issue is the sending path itself. To
achieve high-performance, the send path must be as fast as
possible. The final issue is the scheduling of the process in
relation to other applications and system activities. TCPivo
must be allowed to run immediately whenever packets need
to be sent. Driven by these individual design issues, the
following section describes the mechanisms employed and
demonstrates their efficacy.

3. TCPIVO
In the following section, we describe the design decisions

behind TCPivo and evaluate them using a set of fixed work-

loads. The evaluation of TCPivo was performed on an Intel-
based server described in Table 1. To evaluate the perfor-
mance of the approaches, we measured the difference be-
tween the time a packet should have been sent and the time
it was actually sent using the gettimeofday() system call.
In the benchmarks on our system, this call took on aver-
age, 1.16µs to run. The measurement of the packet’s send-
ing time was taken immediately after the sending system
call (sendto()), thus introducing a slight measurement er-
ror equal to the time it took to perform the call. As shown in
Section 3.3, this latency was about 5µs (microseconds). For
all of our experiments, the workload used consisted of several
fixed-interval, 64MB, 1 million packet traces 2. The trace
files used contained per-packet timestamps, MAC headers,
and TCP/IP headers. In addition, each trace consisted of
a continuous stream of packets sent at a periodic interval δ.
Using these workloads, we then evaluated the tool by mea-
suring the difference between the time a packet in the trace
should have been sent and the time it was actually sent. We
refer to this difference as the send-time error and denote it
as ε.

3.1 Trace file management
To properly send packets from the trace, the tool must

first ensure that the trace data is readily available when
packets are to be sent. In particular, packet information and
packet sending times must be prefetched from the file sys-
tem and made available to the replay engine just before it is
needed. While a multithreaded design can solve this prob-
lem by employing a thread to do the prefetching, modern
file systems typically do some form of predictive prefetch-
ing in order to minimize the latency of file I/O. To evalu-
ate the effectiveness of the Linux’s prefetching mechanism,
we examined its ability to efficiently read the trace. Fig-
ure 1(a) shows the fread() latency for each packet in the

2The tool supports the DAG format along with other trace
file formats such as tcpdump and TSH via freely available
conversion software [11]
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Figure 2: ε using fread() with δ=20µs

(a) Read latency (b) ε with δ=20µs

Figure 3: Performance using madvise()

64MB, 1 million packet trace. The latency is measured via
gettimeofday() calls placed before and after the fread().
As the figure shows, the fread() latency has extremely high
variability and very high peaks of over 100ms, indicating
that the file system is doing an unacceptably poor job in
prefetching from the disk. One way to address this problem
would be to “warm up” the file cache with the trace file be-
fore running the experiment. Figure 1(b) shows the fread()
latency when run a second time. As the figure shows, the
latency is relatively fixed and is on the order of 10µs, a clear
indication that the contents of the trace have been already
prefetched and stored in memory. There are, however, some
rather large spikes in the figure. As we will show in Sec-
tion 3.4, these spikes are caused by long, non-preemptible
paths that are present in the default Linux kernel.

To illustrate the impact of the file system when using
a real replay workload, we replayed a large trace with a

fixed sending interval δ of 20µs. While there are many
ways to implement the timing functions, in this experiment,
the tool employed a polling loop that continually invokes
gettimeofday() until the send-time has been reached. Fig-
ure 2(a) plots the send-time error ε when the experiment
is performed for the first time. As the figure shows, the
latency induced by the file system prevents the tool from
keeping up as indicated by the monotonically increasing er-
ror. Figure 2(b) shows the send-time error when the experi-
ment is run the second time. As the figure shows, the tool is
able to handle the workload, reproducing the packet stream
somewhat more accurately.

The above experiments indicate the utility of precaching
the trace file into memory. Unfortunately, such an approach
only works for small trace files that fit into the file cache.
Because trace files can be much larger than resident mem-
ory, it is clear that some form of active, on-the-fly prefetch-
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Figure 4: ε using a polling loop

δ Polling usleep() Firm timers

70µs 78% 40% 19%

2500µs 99% 4% 1%

Table 2: CPU utilization of different approaches

ing is required. One way to do this is to use a separate
thread which actively loads the trace into memory. While
this can effectively perform the task, it consumes processing
resources and requires a locking mechanism to synchronize
access to the shared memory. Both can limit the maximum
replay throughput supported. A more effective way for do-
ing this is to memory map upcoming parts of the trace using
mmap() and then, using the madvise() call, to pass a behav-
ioral hint to the kernel in order to allow it to aggressively
DMA the parts of the trace into memory in the background.
In this case, since the trace is stored contiguously, passing
a sequential access hint is all that is required. The use of
mmap() and madvise() is efficient and can be done within
the logic of the main sending loop. In our implementation,
a double-buffered approach is used where one buffer is used
to prefetch the next part of the file while the other is be-
ing actively accessed. The size of each buffer was set to
32MB. Figure 3(a) shows the read latency using this ap-
proach. As the figure shows, the latency is extremely small
and very predictable. Figure 3(b) plots ε for the madvise()

approach using the same workload as before, but with a
double-buffered prefetching implementation. As the figure
shows, the file system is able to efficiently and predictably
supply the tool with packets from the trace even at a δ of
20µs. Note that while the tool is able keep up with the
workload, accuracy clearly degrades as the system is pushed
to its limits. The sensitivity of the system at this point is
evident in the increased packet jitter and in the small spike
in latency observed half-way through the experiment. This
spike is caused by calling mmap() to prefetch the next block

of the trace.

3.2 Timers and timing
In the previous experiments, the tool employed a polling

loop that continually invoked gettimeofday() until the packet
time was reached. This approach, while affording an ex-
tremely high degree of accuracy, is extremely CPU-intensive.
To avoid this resource consumption, one could use the usleep()
system call to put the sending process to sleep until the send
time of the next packet. This approach saves a large amount
of CPU time, but it does so at the expense of accuracy. In
most cases, usleep() employs a timer mechanism which is
triggered by a periodic tick interrupt. On x86-based ma-
chines this interrupt is generated by the Programmable In-
terval Timer (PIT) and has a period of 10ms. As a result,
based on where the send-time falls on this interval, it can
experience up to 10ms of jitter. Figure 4, Figure 5, and Ta-
ble 2 show the send-time error ε and the CPU utilization of
the tool using a polling implementation and a usleep() im-
plementation. The experiments were run using fixed sending
intervals of δ=70µs and δ=2500µs. To capture CPU utiliza-
tion, the time program was used. While this facility can be
somewhat error-prone [12], modern implementations reflect
performance more accurately and are good for qualitative
comparisons such as ours. As the figures and table show,
the use of usleep() forces one to give up accuracy in return
for efficiency. Using usleep(), the CPU utilization remains
extremely low while ε fluctuates wildly due to the 10ms pre-
cision of the PIT. An interesting point to note is that when
the real-time priority of a process is set in Linux 2.4-based
kernels, the implementation of usleep() changes. For sleep
times that are under 2ms, usleep() employs a polling loop
to implement them. Figure 6 shows ε upon re-running the
usleep() experiments with the real-time priority set. As
the figure shows, the accuracy of the tool matches those of
the polling implementation shown in Figure 4(a). As before,
the CPU utilization of the tool jumps to 78%, also matching
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Figure 5: ε using usleep()

Figure 6: ε using usleep() at real-time priority

δ=70µs

Task Average time spent

Main loop 9.38µs

Data padding 1.45µs

Checksum calculation 1.27µs

sendto() 5.16µs

Trace read 1.30µs

Table 3: Profile of sending loop

that of the polling implementation.
It is clear that decreasing the periodic tick interval would

increase the accuracy of the timer immensely, however, do-
ing so would also increase the interrupt handling overhead
as well. To address this, modern real-time operating sys-
tems provide high resolution timers based on an aperiodic

interrupt source [13]. For x86-based systems, the PIT or the
CPU APIC (Advanced Programmable Interrupt Controller)
can be programmed to generate aperiodic interrupts to sup-
port high-performance, time-sensitive applications such as
TCPivo. Figure 7 shows the performance of the same work-
load using firm timers [14, 15]. Firm timers use a combina-
tion of the periodic PIT and an aperiodic APIC timer [16] to
accurately and efficiently implement usleep(). Figure 7 and
Table 2 show ε and the CPU utilization using firm timers
over the two workloads. As the figure shows, this imple-
mentation achieves the best of both worlds. It retains the
accuracy of the polling approach while matching the effi-
ciency of usleep() across all time intervals. In addition,
the figure also shows that as the packet inter-arrival times
decrease towards the system limit, the timing becomes less
accurate.

3.3 Packet transmission
An efficient packet transmission loop is essential in sup-

porting high-speed network replay. To make sending more
efficient and to support playback at speeds faster than the
disk’s speed, TCPivo supports the ability to replay pack-
ets without the original payload by replacing the payload
with an equal amount of null-padded data instead. Because
one of the applications for this tool is to evaluate routers
and switches, it is often not necessary to send the original
packet payloads with the packets themselves. For all of the
results in this paper, this option was used. Padding the
payload allows the sending loop to be much faster, as full
packet payloads do not need to be read from the file system.
As a side-effect of using dummy data, however, a new, valid
checksum must be calculated for the packet at run-time. Ta-
ble 3 shows the latency profile of the tool using madvise(),
firm timers, and padded payloads. The latencies were cal-
culated by instrumenting a single component at a time with
gettimeofday() calls across a large number of packet sends.
As shown in the table, the main sending loop takes, on av-
erage, less than 10µs. Assuming MTU-sized packets, this
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Figure 7: ε using firm timers

(a) Memory load (b) Read/Write load

Figure 8: ε using firm timers with background load and δ=70µs

allows TCPivo to nearly saturate the gigabit ethernet link
of our test system. When broken down further into compo-
nents, most of the latency of the loop occurs with the call
to send the packet with data padding and checksum com-
putation each taking under 2µs to perform. As a further
optimization, TCPivo supports a trace pre-processing step
that pre-computes the checksum assuming padded data in
order to reduce the latency of the sending loop further.

3.4 Scheduling
The previous experiments were all run using a dedicated

server with very little competing load. Since in practice,
there could be many other services and processes running,
it is important that the tool perform predictably under load.
The first step to ensuring correct behavior is to use the real-
time scheduling priorities of Linux. While this can ensure
TCPivo gets priority over other user processes, the tool is still

at the mercy of the kernel which must schedule it to run at
the right time. Unfortunately, since Linux 2.4-based sys-
tems contain relatively long, non-preemptible paths within
the kernel, it is often the case that the tool can not run
when it needs to. Figure 8 demonstrates this problem by re-
running the experiment in Figure 7 using real-time priorities,
firm timers, and δ=70µs, but with two different background
loads. The first background load consists of a memory stress
test in which a user process continuously reads and writes a
buffer of 128MB to generate page faults. The second back-
ground load consists of a file system stress test in which a
user process continuously reads and writes a file of 8MB.
Figure 8 shows the results under these two loads. As the
figures show, in both cases, the addition of this low prior-
ity, background load is enough to completely disrupt the
performance of the tool.

To address this issue, several patches to the Linux kernel
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Figure 9: ε using low-latency kernel and firm timers with background load and δ=70µs

have been developed. Among them are a preemptible kernel
patch and a low-latency kernel patch [17, 18]. By mak-
ing the kernel preemptible or by reducing the longest non-
preemptible path through it, the tool can be made much
more predictable. Figure 9 shows the performance of the
same experiments using the low-latency patch to Linux.
As the figure shows, although the added load still impacts
packet replay, reducing the length of non-preemptible paths
in the kernel allows it to maintain more accurate timing.

3.5 Overall accuracy on-the-wire
Up until now, we have only focused on everything up to

the sending event. However, significant latency and jitter
can occur between when the application issues the send and
when the packet actually hits the wire. For example, the
kernel may be pre-empted immediately after the sending
event or buffering may occur at the network interface, caus-
ing the packet to hit the wire well after the application issues
it. Since it is difficult to instrument the underlying device
drivers and network cards to obtain actual sending times
on the wire, we instead use a second machine on the same
network to monitor the generated packet stream. In our
experiment, an identical receiver machine as described in
Table 1 is connected via a dedicated VLAN to the sender.
Figure 10 shows the inter-packet arrival times measured at
the receiver when the sender replays a workload of packets
with inter-packet arrivals of δ=70µs. As the figure shows,
additional jitter is experienced as the packets are modulated
through the device drivers on both ends and network itself.
For the most part, however, the timing remains tight. As
part of future work, we plan on investigating sources of this
error and possible fixes for it.

4. RELATED WORK
While we were finishing the development of TCPivo, an-

other packet replay engine, tcpreplay, was released [19].
tcpreplay performs a similar function as TCPivo, however,
many of the performance issues addressed in TCPivo are

Figure 10: Inter-packet arrival times at receiver

δ=70µs

not addressed in tcpreplay. To demonstrate the impact of
our design, we instrumented the latest version of tcpreplay
(1.2a) with timing code and examined its performance. Fig-
ure 11 shows its performance using the 70µs and the 2500µs
workloads used in the previous section. As the figure shows,
the combination of poor file system prefetching and inaccu-
rate timers adversely impacts the performance of the tool.

5. CONCLUSION
By addressing the issues of trace prefetching and timers

and by employing a low-latency kernel, TCPivo is able to
accurately replay network traces at high-speed on commod-
ity hardware. As part of future work, we are continually
working towards making the tool more accurate. To this
end, we are working on alleviating issues such as PCI bus
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Figure 11: ε using tcpreplay

arbitration and PCI/NIC buffering that can impact the ac-
curacy of the replayed stream. Once completed, we plan
on releasing the source code for TCPivo [20] as well as all
of the associated kernel patches. In addition, we hope to
work with the developers of tcpreplay to merge the perfor-
mance features of TCPivo into tcpreplay. Finally, we plan
on pursuing additional mechanisms that will allow for multi-
gigabit replay including removing unnecessary data copying
via IO-Lite [21], examining kernel modifications for improv-
ing performance [22, 23], and examining the parallelization
of the replay task itself on SMP servers.
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