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Abstract— Traditionally, real-time scheduling mechanisms
have been used to provide predictable scheduling latency but
these mechanisms are difficult to use in general-purpose operat-
ing systems (OSs) because they require precise specification of
thread requirements in terms of low-level resources such as CPU
cycles. In a general-purpose environment such a specification
may not be statically available. In this paper, we present the
design, implementation and evaluation of a novel feedback-based
real-rate scheduler that automatically infers thread requirements
and thus makes it easier to use real-time scheduling mechanisms
in general-purpose OSs. The real-rate controller uses thread-
specified time-stamps that indicate a thread’s progress to estimate
resource requirements. The goal of the controller is to regulate
the overallocation of resources and the delay experienced by a
thread. It meets these goals by using gain compensation and by
choosing an appropriate sampling period for the controller that
depends only on the granularity of thread time-stamps. A key
benefit of the real-rate approach is that it can be easily applied
in a general-purpose environment across different applications
because the controller does not require any tuning.

I. INTRODUCTION

Traditionally, real-time scheduling mechanisms such as pri-
ority schemes [7], [11] and reservation-based schemes [10]
have been used to provide predictable and low scheduling
latency. Priority schemes assume that the CPU needs of each
thread are known and the highest priority thread voluntarily
yields the CPU. If the highest-priority thread does not vol-
untarily yield the CPU such schemes can cause starvation.
Reservation-based schemes such as proportion-period schedul-
ing (PPS) avoid the problem of starvation. For example,
PPS provides temporal protection to threads by allocating a
fixed proportion of the CPU at each thread period. However,
similar to priority-based schemes, PPS assumes that the CPU
requirements of threads are known ahead of time. Hence
threads must specify their proportion and their period to the
scheduler before the scheduler accepts them.

Our goal is to support time-sensitive applications, such as
interactive media and video surveillance applications, in a
general-purpose environment. In such an environment, there
are several reasons why the resource requirements of threads
may not be known statically. First, these requirements depend
on the processor speed. For example, a real-time thread will
generally require a smaller proportion of the CPU on a
faster processor. Second, the resource needs are often data
dependent. For example, video encoding and decoding times
of variable-bit rate (VBR) streams such as MPEG depend on
the size and the type of frames. Larger size frames take longer
encoding and decoding times because more data is accessed.
Also, decoding times depend on whether frames are encoded
independently (I frames in MPEG) or differentially (B and P
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Fig. 1. Decoding times of MPEG frames can vary dramatically over short
intervals of time.

frames). For example, Figure 1 shows the decoding times of
frames for two different MPEG movies (the first is a clip from
a full feature Hollywood movie while the second is a short
dance video) played for approximately 200 and 20 seconds
respectively. The decoding times vary considerably based on
the complexity of the scene and the type of frames. Finally,
given that memory access times are significantly larger than
cache access times, a thread’s resource needs change dramati-
cally based on the mix of applications running on the system,
which affects cache pollution. With all these effects, resource
specification becomes a complex problem. Hence, although
proportion-period scheduling provides temporal protection and
fine-grained control over resource allocation, it has not been
widely accepted for general purpose OSs.

To use proportion-period scheduling in such an environ-
ment, a method of dynamically estimating the resource needs
of time-sensitive threads is needed, so that their timing require-
ments can be met. The key insight in this work is that from a
thread’s point of view, there is a basic difference in its timing
needs and its resource needs. Threads are aware of their timing
needs. For example, a video decoding thread knows how often
it needs to process data. However, as explained above, this
thread does not know its resource needs. Consequently, a
method for automatically determining a mapping between a
thread’s timing needs and its resource needs is required. Such
a mapping changes over time and hence has to be determined
dynamically.

In this paper, we present the design and implementation
of a novel CPU scheduler, called a real-rate scheduler, that
uses feedback to dynamically determine a thread’s resource
needs from its “specified” timing needs and its observed timing
behavior, and then automatically specifies these resource needs
to a proportion-period scheduler. In our application model, a
thread specifies its timing needs to the real-rate scheduler with
time-stamps that indicate a thread’s desired rate of progress.
Ideally, the scheduler should ensure that every thread main-



tains its desired rate of progress towards completing its work.
Allocating more CPU than is needed will be wasted, whereas
allocating less than is needed will delay the thread. In essence,
the real-rate solution monitors thread time-stamps to measure
thread progress and increases or decreases the allocation of
CPU to those threads as needed.

This paper shows that our software system can be modeled
and the real-rate controls designed using gain compensation
in a linear controller. The goal of the controller is to regulate
the overallocation of resources and the delay experienced by
a thread. Overallocation wastes resources, while delay slows
down a thread’s progress. These two goals are conflicting
since precise allocation can delay a thread when its resource
requirements increase suddenly. We use simulations to tune
the controller and select the “best” parameters to make delay
small while keeping overallocation within a certain bound.
To do so, we show that the controller sampling period must
be tuned based on the granularity of thread time-stamps that
indicate progress.

The novelty of this work is in the application of control-
based scheduling to meet the timing requirements of systems
software without requiring resource specification. The real-rate
controller is a reasonably simple linear control design but it
allows satisfying requirements such as limiting overallocation
to a certain range and reducing worst-case delay for threads
whose resource needs can be very different and whose needs
can vary dramatically over time. This simple real-rate control
design not only reduces controller overhead but a key benefit
of our approach is that it can be easily applied in a general-
purpose environment because the controller does not require
any tuning.

The next section provides an overview of the real-rate
scheduler. Then Section III describes the design of the real-rate
scheduler and Section IV presents our evaluation. Section V
describes related work in scheduling. Finally, Section VI
concludes by justifying our claims about the benefits of our
feedback scheduling approach.

II. SCHEDULER OVERVIEW

Our feedback-based real-rate scheduling solution assigns
proportions to threads dynamically and automatically as the
resource requirements of threads change over time based on
monitoring each thread’s progress. The desired behavior is that
a thread progress at the same rate as real time. We measure
thread progress by observing the input/output (I/O) and the
inter-process communication (IPC) events performed by a
thread because such events capture the timing requirements
imposed by the external world. In particular, the scheduler
requires that the data items transferred as part of I/O and
IPC events are time-stamped. These time-stamps capture the
thread’s progress, i.e., the difference between time stamps on
two successive I/O items represents the time that should expire
between their successive consumption (input) or production
(output) if the system is running at the desired or specified
rate. For example, a thread can time-stamp packets in a flow
to indicate the progress rate desired by the thread. Time-stamps

not only specify the desired progress rate but they also allow
us to monitor the actual timing behavior of the running system
and to compare it with the desired behavior. Note that time-
stamps are assigned by the thread, either prior to run time, for
example, in the case of a video stream that has been prepared
and stored for later playout, or at run time, for example, in
the case of a video stream that is being captured from a live
source. Details about time-stamp assignment are presented in
Section III-A.

Each time-stamp on a data item is a static value. The real-
rate scheduler reads these values periodically and observes
them “progressing” in real-world time. The basic feedback
goal of the real-rate scheduler is to use these time-stamps to
assign proportions to threads so that the rate of progress of
time-stamps matches real-time. Given this goal, an accurate
and responsive feedback controller will limit the instantaneous
rate-mismatch between the thread’s notion of time (difference
in time-stamp values) and real-time (difference in clock val-
ues). In addition, the accumulated mismatch over time between
the two quantities is a measure of delay introduced in a real-
rate thread and the controller can be tuned to reduce this value.

A. Notation and Definitions

Similar to real-time systems, a real-rate system consists of
• Threads that are a stream of jobs.
• A job processes an I/O event, which we will refer to as

a (data) packet.
• Temporal constraints are associated with packets and not

with jobs. A job "inherits" the constraints of the packet
that it is serving.

• The temporal constraints are in the form of time-stamps
and not deadlines. The time-stamps are relative and only
meaningful when compared with other time-stamps.

The real rate of a thread ri is defined as the interval between
time-stamps monitored unit sampling time interval apart.
Based on this definition, when the real-rate is less than unity,
the thread progresses slower than real-time and vice-versa. The
goal of the real-rate mechanism is to maintain a constant unit
real rate of progress. When this goal is met, the time-stamps
of a thread will progress at the same rate as real-time, which
reduces delay at a thread due to a rate mismatch. The key
notation used in this paper is shown below:

Ts Sampling time interval
ti Thread time-stamp monitored at sam-

pling time i
ri = (ti+1− ti)/Ts Real rate of the thread between sam-

pling time i and i + 1
di = iTs − ti Thread delay at sampling time i
Tg Granularity of time-stamps
Q = Tg/TS Quantization of time-stamps

Real-rate control tuning has two sub-goals. First, it keeps the
controller’s allocation overshoot (described in more detail in
Section III-F), which leads to wasted resources, within a fixed
bound. Second, the parameters are tuned to ensure that the
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Fig. 2. Block diagram of the real-rate scheduler.

delay di at each thread converges to zero and maximum delay
is kept small. These goals are conflicting and the controller
tuning process attempts to find an appropriate balance.

There are two main differences between real-rate scheduling
and other feedback-based real-time scheduling schemes such
as FC-EDF [9]. First, real-rate scheduling does not explicitly
have a notion of deadlines or missed deadlines and, hence,
does not aim to reduce the number of missed deadlines.
Instead, the goal of real-rate scheduling is to ensure that time-
stamps progress in real time (to control the difference between
consecutive finishing times) and the controller’s performance
is judged by the maximum time-stamp delay that can be
introduced (roughly, the maximum number of instantaneously
missed deadlines). Second, previous feedback approaches [9],
[2] measure the processing time of each job. With real-
rate scheduling, time-stamps are monitored a fixed sampling
period apart, immaterial of the number of time-stamps (on
packets or jobs) that occur in between. With this approach,
monitoring is periodic while jobs may or may not be periodic.
A constant sampling-period controller limits monitoring and
control overhead when the job rate is high.

B. System Architecture

Figure 2 shows the high-level architecture of the real-rate
scheduler. The scheduler consists of two main components:
a proportion-period scheduler and a real-rate controller. The
proportion-period scheduler is a hard reservation scheduler that
ensures that threads receive their assigned proportion of the
CPU during their period. The controller periodically monitors
the progress made by these threads, which we call real-rate
threads, and adjusts each thread’s proportion automatically.
Note that the diagram resembles a classic closed-loop, or a
feedback controlled system.

The proportion-period scheduler (PPS) in our architecture
allocates CPU to both real-rate threads that have a visible
metric of progress but do not have a known proportion and
reserved threads that have a known proportion and period.
PPS is a specific hard reservation scheduler based on EDF.
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The decoder indicates its progress to the controller by attach-
ing time-stamp to frames after decoding them. The controller
reads these time-stamps periodically even though time-stamps
can be issued aperiodically.

Fig. 3. A multimedia decoder time-stamps frames to indicate progress.

However, any other reservation scheduler will suffice for
the real-rate approach. The next section describes the main
component in our architecture, the real-rate controller.

III. REAL-RATE CONTROLLER

The real-rate controller uses a monitoring component to
measure progress and assigns proportion to real-rate threads
to ensure that they make their desired progress. The following
sections describe the design of the real-rate controller in detail,
including the monitoring component, the proportion control
mechanism, the issue of time-stamp granularity, the choice of
sampling period, the method for handling resource overloading
and the method for tuning the parameters of the real-rate
controller.

A. Monitoring Progress

The novelty of the real-rate approach lies in the estimation
of thread progress as a means of controlling CPU allocation.
The real-rate controller requires that a thread specify its timing
requirements to the controller using time-stamps that indicates
its desired rate of progress.

Consider a multimedia decoder that must decode frames in
real-time so that the frames can be displayed with a small
amount of buffering and low delay. Figure 3 shows that
the decoder time-stamps each frame and the controller uses
these time-stamps to monitor the progress of the decoder.
Time-stamps can be assigned after each frame or at a finer
granularity than a frame such as an MPEG macroblock or a
coarser granularity such as a group of pictures.

B. Proportion Control Mechanism

To design a control law for real-rate threads, we first need to
understand the model of the system or the system’s dynamics.
Figure 4 shows the system and control variables on a time-
line. This figure shows sampling instants i and i+1 that are Ts

time apart. At these sampling instants, the time-stamps that are
monitored have values ti and ti+1. The proportion assigned
to the thread between the two sampling instants is pi. With
these definitions, ti+1 − ti is the progress made by the thread
Ts real-time interval apart. Hence, the real rate of the thread
ri between the two sampling instants is (ti+1 − ti)/Ts.
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1) System Model: The key assumption in our feedback-
based real-rate model is that a real-rate thread makes progress
that is approximately proportional to the CPU allocated to it.
We define this relationship between the real-rate of a thread
and the proportion of CPU allocated to it as ri = (1/gi)pi. We
assume that gi can vary instantaneously over time but within
some range and its average value varies slowly over time. This
assumption is motivated by our experience with multimedia
applications where decoding times can vary instantaneously
but within a range of 2-5 times its current value as shown in
Figure 1.

We will call the factor gi the proportional gain of the
thread. From the definitions above, the system model can be
defined as follows: The real-rate ri = pi/gi but it is also
ri = (ti+1 − ti)/Ts. Rearranging the terms and replacing ri

in the two equations produces the system model shown in
Equation 1 below.

ti+1 = ti + Tspi/gi (1)

This system model equation defines the value of the thread
time-stamp at sampling instant i + 1, given the time-stamp
at sampling instant i and the proportion pi assigned at that
time. This system model is a time-variant equation because
the proportional gain gi is not a constant, but an unknown
variable whose value depends on time i. Next, this equation
is used to derive the real-rate control law.

2) Control Law: The control law should be designed so that
the system goals can be met and the disturbance in the system
model can be rejected. The disturbance in our system model is
gi and, ideally, it can be canceled by selecting our control law
to be pi = gi. In this case, time-stamps would increase by Ts

every sampling time in Equation 1, which would ensure that
the real-rate is 1. However, we will see shortly that gi is not
known at sampling instance i. To design the control law, we
will first assume that gi is available, then design an estimator
for gi to replace its exact value in the control law.

The closed-loop model of a control system is the dynamics
of the combination of the system model and the control
law that drives the system. To derive a linear, time-invariant
closed-loop model, we use gain compensation, where the
control law inverts the disturbance gi. Here, we use this
standard technique to the system model in Equation 1 to
derive the control law for the real-rate controller as shown
in Equation 2.

pi = (gi/Ts)[t
des
i+1 − ti − (α − 1)(ti − tdes

i )] (2)

The proportion pi is the proportion assigned to the thread at
sampling instant i until sampling instant i+1. The variable ti

is the time-stamp of the thread, monitored at sampling instant
i and tdes

i is the desired value of the time-stamp. The term
ti − tdes

i is an error term since it is the difference between the
actual output and the desired output of the system. To obtain
tdes
i and tdes

i+1, note that the goal of the controller is to reduce
the build up of delay di at each real-rate thread. Delay di

will not build up at sampling instant i if the time-stamp value
ti is iTs since the thread will have made real-rate progress
equal to real-time. Hence, tdes

i = iTs (if t0 is non-zero, then
it should be subtracted from all time-stamps). Having derived
the desired values of the time-stamps, control Equation 2 can
be simplified to finally yield the real-rate control Equation 3.

pi = gi[1 + α(i − ti/Ts)] (3)
This control equation shows that the proportion pi is in-

creased (or decreased) when the observed time-stamp ti is less
(or greater) than iTs. When it is less, delay di, which is equal
to iTs − ti, is being accumulated and hence the allocation of
the thread should be increased to speed up the thread. Note
that due to gain compensation, the time-variant proportional
gain term gi is present in the control equation also. Below, we
show how it can be estimated.

Analysis of Equation 2 shows that the gain parameter α
should lie between 0 and 2 for stable controller behavior.
The parameter α determines the responsiveness of this control
equation. For example, larger values of α make the control
equation more responsive because the proportion changes in
larger steps for the same error term ti − tdes

i . Section IV
discusses this issue further.

3) System Parameter Estimation: The control law in Equa-
tion 3 assumes that the proportional gain gi is known. Recall
from the previous section that we assumed that the relationship
between the proportion of CPU allocated to a thread and its
real-rate progress is linear, and defined as ri = (1/gi)pi.
Hence gi is equal to pi/ri. Unfortunately, pi is assigned at
time i and hence ri is only known at i + 1 (see Figure 4) and
hence gi can only be known at time i + 1 (and not at time i).
In this sense, Equation 3 is non-causal because it depends on
values in the future, and hence cannot be directly solved.

To get around non-causality, the real-rate control model
assumes that the average value of the proportional gain gi

changes slowly over time, or gi ≈ gi−1. Hence, gi can be
approximated as pi−1/ri−1, or pi−1Ts/(ti− ti−1). Both these
values are known at time i. In the absence of a precise model
of the dynamic nature of gi, we use a simple low-pass filter
to estimate gi based on past values of p and r. This approach
reduces noise in the estimation at the expense of being less
responsive to changes in gi. In particular, ĝi the estimate of gi

is derived as: ĝi = (1−β)ĝi−1+βTspi−1/(ti−ti−1). With this
parameter estimation technique, the real-rate estimation and
control laws can be expressed with Equations 4 and 5 shown
below. These laws together constitute the real-rate controller.



ĝi = (1 − β)ĝi−1 + βTspi−1/(ti − ti−1) (4)
pi = ĝi[1 + α(i − ti/Ts)] (5)

We choose the initial proportion gain ĝ0 at the start time to
be 0. However, the proportion p0 at the start time has to be
a non-zero value to get the estimation started. Currently, we
choose p0 to be a small system-defined allocation value, 0.1%
of total CPU. This choice can increase startup delay since the
proportion allocated will be smaller than needed to make unit
real-rate progress. However, our experiments show that this is
not a serious problem because the proportion tends to increase
rapidly (almost exponentially) in the beginning and hence the
estimate converges quickly. The parameter β is chosen based
on the amount of noise in the sampling of the time-stamp ti.
We describe how the α and β parameters are chosen in more
detail in Section IV.

There are two boundary conditions in the controller. First, if
the time-stamp ti does not increase, then the thread has made
no visible progress in the last sampling period and hence ĝi the
control state and pi the output state are not changed. Second,
when pi becomes very small, the thread will not be able to
run and its progress cannot be measured correctly. Currently,
the minimum proportion a thread is assigned at any time is
the same as the system-defined starting proportion value, or
0.1% of the CPU.

C. Granularity of Time-stamps

The granularity of time-stamps generated by a real-rate
thread has a significant impact on the performance of the
real-rate controller. In particular, the controller cannot sample
progress effectively at a sampling period finer than the time-
stamp granularity. In general, the time-stamp granularity de-
pends on application semantics. For example, a video encoding
thread may time-stamp every frame, in which case the time-
stamp granularity is 33.3 ms for a 30 frames per second video.
On the other hand, a CD quality audio encoder that generates
44100 samples per second may time-stamp every 100th sample
(time-stamps on every sample would have high overhead) so
the time-stamp granularity would be 2.27 ms.

To simplify the job of the controller and to tune the estima-
tor and control law parameters, the real-rate controller requires
real-rate threads to specify the approximate granularity of the
time-stamps they will be generating. This thread parameter is
specified to the controller as part of the monitoring interface
described in Section III-A. In the future, we plan to determine
time-stamp granularity based on observing the progress of
time-stamps.

D. Choice of Sampling Period

The sampling period of the controller determines its re-
sponsiveness. Finer-grained sampling allows the controller to
be more responsive although it increases system overhead.
However, the controller should sample no faster than the
granularity of the time-stamps that indicate thread progress

or else the progress signal gets heavily quantized, which in-
troduces error and potential instability in the feedback system.
We define the term time-stamp quantization Q as Tg/Ts,
where Tg denotes the time-stamp granularity and Ts is the
sampling period. If time-stamps are large as compared to
the sampling period, then they have a large quantization and
vice-versa. We use experiments, described in Section IV, to
determine the optimal sampling period given the time-stamp
granularity so that the real-rate controller can achieve one of
its goals of reducing delay. Since the time-stamp granularity
Tg is specified by threads, the optimal sampling period can be
determined using the optimal quantization value. In addition to
time-stamp granularity, the thread period also helps determine
the sampling period [3].

E. Control Mechanism During Overload

When enough CPU resources are not available the pro-
portion pi that is calculated at step i will be higher than
the amount of available resources. The real-rate controller
uses a simple saturation model for the actuator where it
assigns as much resources as are available. If the resource
requirements are temporarily high then the thread will be
delayed temporarily after which the controller will allocate
resources to speed up the thread appropriately. To reduce
unnecessary saturation where a large control effort leads to
saturation even though enough resources are available, we
limit control effort by tuning the value of the α parameter
in Equation 5 to a small value as described in more detail in
Section IV-A.

F. Tuning the Real-Rate Controller

This section describes qualitatively how the real-rate feed-
back controller is tuned to achieve its goal. The goal of the
real-rate controller is to reduce the maximum delay introduced
at each thread while keeping the proportion allocation over-
shoot within a fixed range (the overshoot for a step input is
the maximum amount the output exceeds its final goal as a
percentage of the step size). The delay di experienced by
the thread is iTs − ti in Equation 5. This value should be
minimized or else adaptive applications on realizing that they
are being delayed may unnecessarily reduce their rate require-
ments. Second, larger overshoot will cause faster resource
overloading than needed, which will again lead to adaptive
applications unnecessarily reducing their rate requirements.

The choice of the α and β parameters in Equations 4
and 5 affects the delay and the overshoot experienced by the
thread. Increasing α and β parameters decreases the additional
delay but also increases the overshoot. In this paper, we use
simulation to understand the trade-off between these goals
and tune α and β so that delay is kept small while at the
same time overshoot is limited to a reasonable value such as
15-30 percent, used in standard control. Our simulation also
provides intuition and a systematic methodology for tuning the
controller parameters.



IV. EVALUATION

We have implemented the real-rate scheduler as a combina-
tion of the proportion-period CPU scheduler and the real-rate
controller in the Linux 2.4.20 kernel [4], [3]. In this section, we
use simulation to evaluate and characterize the performance of
our prototype controller. We examine the responsiveness of the
controller as a real-rate thread’s resource requirements change
over time and explain how the controller parameters should
be tuned. Next we use the decoding times of real MPEG files
to evaluate how well the controller can meet its goals.

We analyze the real-rate mechanism in Equations 4 and 5
with a step input, where the proportional gain gi or the
processing needs of the thread are increased instantaneously
from gmin to gmax to simulate instantaneous changes in
the mapping between resource requirements and real-rate
progress. The simulation measures the delay and allocation
overshoot introduced by the controller, and hence indicates
how well the control law together with the estimator tracks
gi. We call the ratio G = gmax/gmin the step ratio. As the
step ratio G increases, the delay and overshoot is likely to
increase because the controller takes longer to stabilize to
the larger change in the proportional gain. For tracking the
proportional gain, the monitor provides time-stamps whose
granularity introduces a “monitor” disturbance which makes
tracking harder. To understand the effect of this disturbance,
the experiments below vary time-stamp granularity Tg while
inducing the proportional gain step.

To summarize, the real-rate mechanism has three parame-
ters, α, β and p0 that need to be tuned to meet the controller’s
goals of low delay and overshoot. The variables in the exper-
iment are the step ratio G (system disturbance) and the time-
stamp granularity Tg (monitor disturbance). The following
sections explain how the parameters α and β should be chosen.
Due to space limitation, the effect of the choice of p0 on delay
is described elsewhere [3].

A. Choice of α

The first set of simulation experiments show how the α
parameter of the control law in Equation 5 should be chosen.
To do so, we first show how the choice of α values affects
delay and overshoot. Here, time-stamps are assumed to be con-
tinuous, i.e., quantization Q is zero or there are no quantization
issues due to coarse granularity time-stamps. The next section
shows that the optimal value of the estimator parameter β is
1 under this situation. Hence, β is chosen to be 1 in these
experiments. The next section relaxes this assumption.

Figure 5(a) shows the overshoot as α is changed from 0 to
2, where it must lie for stability, when G = 2. As expected,
larger values of α increase the proportion overshoot because
the controller becomes more responsive to variations in current
delay. A large overshoot can result in overload or saturation
so from now on we will choose α values so that overshoot is
limited to within a certain maximum range from 10-30% as
shown with the lines at the bottom-left of Figure 5(a).

Figure 5(b) shows the maximum delay introduced by the
controller for different values of the step ratio G. Increasing
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Fig. 5. Choice of control parameter α.

the value of G implies that the controller has to adapt to larger
changes in progress needs, hence the increased delay. Note
that the absolute value of the proportion requirements does
not affect delay. For example, the increased delay will be
the same if the proportion requirements increase by a factor
of 2 from say 10% to 20% versus from 20% to 40%. The
real-rate controller possesses this desirable property because
it explicitly estimates the value of gi in Equation 4, which it
then uses as a parameter for the control law in Equation 5. A
linear control law that does not estimate gi but uses a constant
parameter would not possess this property.

In Figure 5(b), the largest possible value of α was chosen to
reduce the worst-case delay, while keeping overshoot to less
than 15%. In this case, when there is no quantization and β
is chosen to be 1, the α value was 0.15 in all cases. Hence,
from now on, we will use an α value close to 0.15 because
it limits overshoot. In our implementation, α is chosen to be
a negative power of 2 for integer arithmetic in the kernel and
thus is 1/8 or 0.125.

B. Choice of β

The previous section made the unrealistic assumption that
the time-stamp quantization Q is zero. In practice, real-rate
threads perform work and hence progress at a certain granular-
ity. This granularity is captured in the value of Q, which is the
ratio of the time-stamp granularity and the sampling period.
Quantization affects the behavior of the estimator in Equa-
tion 4. Generally, with increasing quantization, the estimator
parameter β must be made smaller to reduce disturbance due
to quantization. However, reducing β also reduces the response
of the estimator to real changes in the value the proportional
gain gi which is required by the control law.

To understand how β should be chosen for different time-
stamp granularities, we performed the previous experiments
for measuring delay again. This time α was fixed to 1/8 while
β was varied. In addition, the quantization Q was varied.
We performed exhaustive experiments with different values
of β and Q. The details of the experiments and the intuition
behind the choice of β are not presented here due to space
constraints. However, the final results are shown in in Figure 6.
Here the x-axis shows the quantization in time-stamps and the
y-axis shows the delay in terms of any arbitrary time-stamp
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Fig. 6. For minimizing delay, optimal quantization value lies between 0.2
and 0.3.

granularity. The different lines show the results for different
values of the step ratio G. The values of β are not shown in
the graph. They are roughly 0.75 when Q = 0.1, 0.5 when
Q lies between 0.2 and 0.3 and 0.25 when Q = 0.4. These
graphs show that when quantization Q is small and equal to
0.1 (sampling is done once every 10 samples) the delay is
high because the controller is unresponsive. However when Q
is large and equal to 0.4 then the delay is high because time-
stamp granularity introduces disturbance. This figure shows
that the optimal quantization Qoptimal lies between 0.2 and
0.3 since then delay in minimal. Based on this figure, the
sampling period is optimal when Ts = Tg/Qoptimal, or the
sampling period Ts should be 3 to 5 times the time-stamp
granularity. At this operating point, the β parameter should be
chosen to be a fixed value of 0.5. The next section discusses
the implications of these numbers.

C. Discussion

The previous sections have shown that the real-rate con-
troller can be easily tuned for reducing the delay of real-rate
threads. The sampling period of the controller should be 3-5
times the time-stamp granularity specified by the thread. The
parameters α and β in Equations 4 and 5 can be fixed at 1/8
and 1/2. To start the equations, ĝ0 is set to 0 and p0 can be
chosen arbitrarily but a correct choice reduces startup delay.

Figure 6 summarizes the behavior of a real-rate controller. If
the instantaneous change in gi in an application is a factor of 2
(G = 2), then the worst-case delay lies between 2-3 times the
time-stamp granularity. We have made measurements of the
value of G for the video streams shown in Figure 1 and for
other videos [13] and its value was found to lie between 2 and
5. Assuming G = 2, the controller can introduce 66-100 ms
of delay for a video application, if the video data is time-
stamped 33.3 ms apart. To reduce this delay, data has to be
time-stamped at a finer granularity. For example, sub-frames
of each frame could be time-stamped at a finer-granularity. A
CD audio application with time-stamps 2.27 ms apart (time-
stamps every 100 samples in a 44KHz signal) will experience
5-6 ms of worst-case delay if the maximum variation in G is
2. In the future, we plan to measure the value of G rigorously
for other types of real-rate applications.
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Fig. 7. Controller simulation with decoding times of two MPEG streams.

D. Controller Evaluation for MPEG Decoding

In this section, we evaluate how well the controller meets
its goals by simulating it with different MPEG video streams.
Here we describe our results for two variable bit-rate videos:
the first is a 200 second action clip from the movie Charlie’s
Angels while the second is a short dance video. The actual
decoding times of each frame are used to simulate the propor-
tional gain in the controller. The output of the controller is the
proportion assignment. We measure how well the controller
meets its goals of 1) keeping the proportion overshoot within
a bound and 2) and keeping the thread delay to a small value.
Based, on Figure 6, the controller was run with quantization
of 0.25 or the sampling time was 4 times the granularity of
the time-stamps where the time-stamp granularity was a frame
duration.

Figure 7 shows the results of our evaluation. The graphs on
the left show the results for the Angels video while those on
the left are for the dance video. The graphs on the top show the
mismatch in the proportion and the decoding times when the
decoding times are as shown in Figure 1. These graphs show
that as per our goal, the controller is able to limit the mismatch
on the positive side or the overshoot to less than 15-30%.
Occasionally, the overshoot rises above 30% in the second
video because G, the instantaneous change in the proportional
gain, rises above 5 at these times while our controller design
assumed a worst case of 4. Note that the average proportion
allocation mismatch is close to zero so our controller does not
over-allocate resources in the long term.

The graphs at the bottom of Figure 7 show the delay
introduced by the controller. Figure 6 shows that the worst-
case delay of the controller should be no more than 5 times the
time-stamp granularity or 5 frames with the optimal sampling
period. The bottom graphs confirm this result and show that
if a multimedia decoder keeps a buffer of 4 frames then our
controller will deliver all frames on time. Even with one or
two frames, the missed “deadlines” are reduced significantly.



V. RELATED WORK

Our feedback scheduling solution is similar to rate-based
scheduling proposed by Jeffay [5]. However, with rate-based
scheduling, applications must specify WCET and an upper
bound on response time. In contrast, our system provides
dynamic estimation and adjustment of rate parameters, and
only requires that the progress metric be specified.

Stankovic [9], [8] uses a feedback controlled earliest-
deadline first (FC-EDF) algorithm to adjust allocations of
threads in order to reduce the thread’s missed deadlines. While
this approach uses missed deadlines as an input to the feedback
controller, our feedback approach uses time-stamps and does
not need missed deadlines to monitor progress. Abeni [1]
uses feedback in a reservation-based scheduler to remove the
need for specifying WCET in the task parameters. Later,
Abeni [2] developed an accurate mathematical model of a
CPU reservation, and formally analyzed the performance of
their closed loop scheduler using control theoretic tools.

There are several differences between these approaches and
real-rate scheduling. Real-rate scheduling does not explicitly
have a notion of deadlines or missed deadlines. The goal of
real-rate scheduling is to ensure that time-stamps as specified
by a thread, for example in the packets of a flow, progress
in real time. As a result, instead of reducing the number of
missed deadlines, the controller’s performance is judged by the
worst-case time-stamp delay that can be introduced. Second,
the previous approaches measure the processing time of each
job. With real-rate scheduling, time-stamps are monitored a
fixed sampling period apart, immaterial of the number of time-
stamps (on packets or jobs) that occur in between. Finally,
given our focus on scheduling time-sensitive applications in
a general-purpose environment, a key goal of this work is
to simplify the choice of feedback parameters as much as
possible.

Li [6] uses a standard PID feedback controller for resource
allocation. In the past, we had also used a PID controller
for real-rate scheduling [12]. The problem we noticed with
the PID controller is that it could be tuned to perform well
around a given fixed point (say 50% allocation) but the same
controller did not perform well when the resource needs were
vastly different (say 5%). The reason is that it does not allow
explicit estimation of resource requirements as we do with the
combination of Equations 4 and 5.

VI. CONCLUSIONS

The key benefit of the real-rate controller is that applications
do not have to specify their scheduling requirements in re-
source specific terms such as CPU cycles. Instead, applications
use an application-specific notion of progress expressed as
timing information. The controller uses feedback control to
automatically derive the resource requirements based on this
timing information.

This paper shows that software systems can be modeled
and controllers designed for them using a standard gain
compensation technique. The goal of the real-rate controller is
to limit proportion overshoot and reduce the worst-case delay

experienced by a thread. Our analysis based on simulations has
shown how such delay can be reduced and quantified by using
an appropriate sampling period for the controller given the
granularity of time-stamps generated by the thread. In general,
finer-grained time-stamps help to reduce scheduling delays.

While several researchers have used such control analysis
for scheduling, its applicability in generic OS environments
has been an open issue since the behavior of software systems
is harder to characterize under a variable mix of applica-
tions compared to a dedicated control system. Our real-
rate approach shows that software systems can be modeled
and analyzed, and further, controllers using standard control
techniques can be designed for them using very generic
assumptions about the operating environment.
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