
Reliable Writeback for Client-side Flash Caches

Dai Qin
University of Toronto

Angela Demke Brown
University of Toronto

Ashvin Goel
University of Toronto

Abstract
Modern data centers are increasingly using shared

storage solutions for ease of management. Data is cached
on the client side on inexpensive and high-capacity flash
devices, helping improve performance and reduce con-
tention on the storage side. Currently, write-through
caching is used because it ensures consistency and dura-
bility under client failures, but it offers poor performance
for write-heavy workloads.

In this work, we propose two write-back based
caching policies, called write-back flush and write-back
persist, that provide strong reliability guarantees, under
two different client failure models. These policies rely on
storage applications, such as file systems and databases,
issuing write barriers to persist their data reliably on stor-
age media. Our evaluation shows that these policies per-
form close to write-back caching, significantly outper-
forming write-through caching, for both read-heavy and
write-heavy workloads.

1 Introduction

Enterprise computing and modern data centers are in-
creasingly deploying shared storage solutions, either as
network attached storage (NAS) or storage area networks
(SAN), because they offer centralized management and
better scalability over directly attached storage. Shared
storage allows unified data protection and backup poli-
cies, dynamic allocation, and deduplication for better
storage efficiency [2, 8, 16, 20].

Shared storage can however suffer from resource con-
tention issues, providing low throughput when serving
many clients [12, 20]. Fortunately, servers with flash-
based solid state devices (SSD) have become commonly
available. These devices offer much higher throughput
and lower latency than traditional disks, although at a
higher price point than disks [13]. Thus many hybrid
storage solutions have been proposed that use the flash
devices as a high capacity caching layer to help reduce
contention on shared storage [6, 7, 19].

While server-side flash caches improve storage perfor-
mance, clients accessing shared storage may still observe
high I/O latencies due to network accesses (at the link

level and the protocol level, such as iSCSI) compared to
clients accessing direct-attached storage. Attaching flash
devices as a caching layer on the client side provides the
performance benefits of direct-attached storage while re-
taining the benefits of shared storage [2, 4]. Current sys-
tems use write-through caching because it simplifies the
consistency model. All writes are sent to shared storage
and cached on flash devices before being acknowledged
to the client. Thus, a failure at the client or the flash de-
vice does not affect data consistency on the storage side.

While write-through caching works well for read-
heavy workloads, write-heavy workloads observe net-
work latencies and contention on the storage side. In
these commonly deployed workloads [8, 18], the write
traffic contends with read traffic, and thus small changes
in the cache hit rate may have significant impact on read
performance [7]. Alternatively, with write-back caching,
writes are cached on the flash device and then acknowl-
edged to the client. Dirty cached data is then flushed to
storage when it needs to be replaced. However, write-
back caching can flush data blocks in any order, causing
data inconsistency on the storage side if a client crashes
or if the flash device fails for any reason.

Koller et al. [7] propose a write-back based policy,
called ordered write-back, for providing storage consis-
tency. Ordered write-back flushes data blocks to the
shared storage system in the same order in which the
blocks were written to the flash cache. This write order-
ing guarantees that storage will be consistent until some
time in the past, but it does not ensure durability because
a write that is acknowledged to the client may not make
it to storage on a client failure.

Furthermore, the consistency guarantee provided by
the ordered write-back policy depends on failure-free op-
eration of the shared storage system. The problem is that
the write ordering semantics are not guaranteed by the
block layer of the operating system [1], or by physical
devices on the storage system [9], because the physical
devices themselves have disk caches and use write-back
caching. On a power failure, dirty data in the disk cache
may be lost and the storage media can become inconsis-
tent. To overcome this problem, physical disks provide
a cache flush command to flush dirty buffers from the

disk cache. This command enables implementing bar-
rier semantics for writes [22], because it waits until all
dirty data is stored durably on media. The ordered write-
back policy would need to issue an expensive barrier op-
eration on each ordered write to ensure consistency. In
essence, simple write ordering provides neither durabil-
ity, nor consistency without the correct use of barriers.

We propose two write-back caching policies, called
write-back flush and write-back persist, that take advan-
tage of write barriers to provide both durability and con-
sistency guarantees in the presence of client failures and
power failure at the storage system. These policies rely
on storage applications (e.g., file systems, applications
on file systems, databases running on raw storage, etc.)
issuing write barriers to persist their data, because these
barriers are the only reliable method for storing data
durably on storage media. For example, journaling file
systems issue a barrier before committing a transaction,
and applications invoke the fsync(fd) system call to
flush all file data associated with the fd file descriptor.
Write-back caching policies only need to enforce relia-
bility guarantees at these barriers, since applications re-
ceive no stronger guarantees from the storage system.
Our caching polices target files that are read and writ-
ten on a single client, such as files accessed by a virtual
machine (VM) running on the client. Thus, we do not
consider coherence between client-side caches.

Our two caching policies are designed to handle two
different client failure models that we call destructive
and recoverable failure. Destructive failure assumes that
the cached data on the flash device is unrecoverable, be-
cause either it is destroyed or there is insufficient time
for recovering data from the device. This type of fail-
ure can occur, for example, due to flash failure or a fire
at the client. Recoverable failure is a weaker model that
assumes that the client is unavailable either temporarily
or permanently, but the cached data on the flash device
is still accessible and can be used for recovery. This type
of failure can occur due to a power outage at the client.

The write-back flush caching policy is designed to
handle destructive failure. When a storage application is-
sues a barrier request, this policy flushes all dirty blocks
cached on the client-side flash device to the shared stor-
age system and then acknowledges the barrier. This pol-
icy provides durability and consistency because appli-
cations are already expected to handle any storage in-
consistency caused by out-of-order writes that may have
reached storage between barriers (e.g., undo or ignore the
effect of these writes). The main overhead of the write-
back flush policy, as compared to write-back caching, is
that barrier requests may by delayed for a long time, thus
affecting sync-heavy workloads.

The write-back persist caching policy is designed to
handle recoverable failure. When an application issues a

barrier request, this policy persists the in-memory cache
metadata to the client-side flash device atomically. The
cache metadata consists of mappings from storage block
locations to flash block locations; it is needed to locate
blocks on the flash device. Durability and consistency
are provided by this policy, assuming that the flash device
is still available on a failure, because the cache metadata
on the device enables accessing a consistent snapshot of
data at the last barrier. This policy has minimal overhead
on a barrier because persisting the cache metadata to the
flash device is a fast operation.

Our evaluation of the two caching policies shows the
following results: 1) both policies perform as well as
write-back for read-heavy workloads, 2) the write-back
flush policy performs significantly better than write-
through for write-heavy workloads, even though it pro-
vides the same reliability guarantees, 3) the write-back
persist policy performs as well as write-back for write-
heavy workloads, even though it provides much stronger
reliability guarantees, 4) the write-back persist policy
has significant benefits as compared to write-through or
write-back flush for sync-heavy workloads.

We make the following contributions: 1) we take ad-
vantage of the write barrier interface to greatly simplify
the design of client-side flash caching policies, providing
both durability and consistency guarantees in the pres-
ence of destructive and recoverable failure, 2) we discuss
various design optimizations that help improve the per-
formance of these policies, and 3) we implement these
policies and show that they provide good performance.

The rest of this paper is organized as follows. We dis-
cuss prior work on write-back flash caching in Section 2,
providing motivation for our work. Section 3 describes
our caching policies and Section 4 describes the design
of our caching system and the optimizations that improve
the performance of our policies. Section 5 shows the re-
sults of our evaluation. Section 6 describes related work
and Section 7 presents our conclusions and future work.

2 Motivation

Current client-side flash caches use write-through
caching [2, 4] because the client and the client-attached
flash are considered more failure prone. This caching
method also simplifies using existing virtual machine
technology since guest state is not tied to a particular
client. Write-through caching trivially provides durabil-
ity and consistency on destructive client failures because
storage is always up-to-date and consistent. However,
write-through caching by itself doesn’t provide any guar-
antees on storage failures, unless application-issued bar-
riers are honored on the storage side. The main drawback
of write-through caching is that it has high overhead for
write-heavy workloads.

Next, we discuss two write-back policies that aim to
reduce this overhead.

Ordered Write-back Caching Ordered write-back
caching flushes data blocks to storage in the same or-
der in which the blocks were written to the flash cache,
thus ensuring point-in-time consistency on a destructive
failure [7]. This approach does not provide durability be-
cause a write that is acknowledged to an application may
never reach storage on a destructive failure.

However, durability is a critical concern in many en-
vironments. Consider a simple ordering system in which
customers place an order and the system stores the order
in a file. After confirming the order with the customer,
the system persists the contents of the file by invoking
the fdatasync() system call, and then notifies the cus-
tomer that the order has been received.
int fd = open(...);
...
write(fd, your_order);
fdatasync(fd);
printf("We have received your order.");

The fdatasync() system call requires writing file
contents to storage media durably and thus the file sys-
tem issues a write barrier. However, with ordered write-
back caching, fdatasync() is ignored, and data cached
on the flash device may not be available on storage after
destructive failure. As a result, recent writes may be lost
even though the customer is informed otherwise.

Another serious issue with ignoring barriers is that
point-in-time consistency can only be guaranteed under
failure-free storage operation, since the storage can cache
writes and issue them out of order. To avoid this prob-
lem, a barrier needs to be issued on every write on the
storage side. Thus simple write ordering for ensuring
consistency is both expensive, and unnecessary, as de-
scribed later.

Journaled Write-Back Caching Koller et al. present
a second caching policy called journaled write-back that
improves performance over ordered write-back by coa-
lescing writes in the cache [7]. Journaled write-back pro-
vides point-in-time consistency guarantees at a system-
defined epoch granularity. Within an epoch, writes to the
same location can be coalesced on the client. All writes
within an epoch are written to a write-ahead log (jour-
nal) on the storage side, so that data can be committed
atomically to storage at epoch granularity.

Although the paper does not mention it, this approach
also requires issuing barriers at commit. The system-
defined epoch granularity presents a trade-off, with fre-
quent commits affecting performance, and infrequent
commits risking more data loss. Furthermore, the sys-
tem assumes that sufficient NVRAM is available on the
storage side to avoid the overheads of journaling.

Unlike either ordered or journaled write-back caching,
our write-back policies ensure durability by taking ad-
vantage of application-specified barriers. Also, we do not
require any journaling on the storage side because appli-
cations have no reliability expectations between barriers.

3 Caching Using Barriers

Storage applications that require consistency and dura-
bility already implement their own atomicity scheme
(e.g., atomic rename, write-ahead logging, copy-on-
write, etc.) or durability scheme (e.g., using fsync) via
write barriers. Our key insight is that write-back caching
policies can efficiently provide both durability and con-
sistency by leveraging these application-specified barri-
ers. Since applications have no storage reliability expec-
tations between barriers, the caching policies also only
need to enforce these properties at barriers.

We assume that the client flash cache operates at the
block layer (i.e., it is below the client buffer cache and
independent of it) and caches data for the underlying
shared storage system. We now describe the semantics
of write barriers, and then describe our caching policies.

3.1 Write Barriers
The block-level IO interface is typically assumed to con-
sist of read and write operations. However, a write opera-
tion to storage does not guarantee durability. In addition,
multiple write operations are not guaranteed to reach me-
dia in order. All levels of the storage stack, including
the block layer of the client or the storage-side operating
system, the RAID controller, and the disk controller, can
reorder write requests. Modern storage systems compli-
cate the block interface further by allowing IO operations
to be issued asynchronously and queued [21].

Durability and write ordering are guaranteed only af-
ter a cache flush command is issued by a storage appli-
cation, making this command a critical component of the
block IO interface. The cache flush command is sup-
ported by most commonly used storage protocols, such
as ATA and SCSI, and is widely used by storage-sensitive
applications, such as file systems, databases, source code
control systems, mail servers, etc.

The cache flush command ensures that any write re-
quest that has been acknowledged by the device before a
cache flush command is issued is durable by the time the
flush command is acknowledged. The status of any write
request acknowledged after the flush command is issued
is unspecified, i.e., it may or may not be durable after
the flush. However, the durability of this acknowledged
write will be guaranteed by the next flush command.

The flush command enables the implementation of
write barriers to ensure ordering and durability [22].
In particular, applications can issue writes concurrently

Policy Recoverable Destructive Storage Latency
Client Cache Failure Client Cache Failure Failure

Consistency Durability Consistency Durability Consistency & Write Barrier
Durability

Write-through Yes Yes Yes Yes Yes1 High Low
Write-back flush Yes Yes Yes Yes Yes Low High
Ordered write-back2 Yes No Yes No No Low Low3

Write-back persist Yes Yes No No Yes Low Low
Write-back No No No No No Low Low

Yes1: The write-through policy handles storage failure when barriers are supported.
Ordered write-back2: Ordered and journaled write-back (proposed in previous work [7]) have the same properties.
Low3: Barriers are ignored and hence they don’t introduce any additional latency.

Table 1: Comparison of Different Caching Policies

when no ordering is needed. To ensure these writes are
all durable, the application waits for these writes to be
acknowledged and then issues the cache flush command.
When this command is acknowledged, further writes can
be issued with the guarantee that they will be ordered af-
ter the previous writes.

3.2 Caching Policies
Our caching design is motivated by a simple princi-
ple: the caching device should provide exactly the same
semantics as the physical device, as described in Sec-
tion 3.1. This approach has two advantages. First, ap-
plications running above the caching device get the same
reliability guarantees as they expect from the physical
device, without requiring any modifications. Second, the
caching policies can be simpler and more efficient, be-
cause they need to make the minimal guarantees pro-
vided by the physical device.

In this section, we present our write-back flush and
write-back persist policies. Both policies essentially im-
plement the semantics of the write barrier. The flush pol-
icy handles destructive failures in which the flash device
may not be available after a client failure, while the per-
sist policy handles recoverable failures in which the flash
device is available after a client failure. The choice of
these policies in a given environment depends on the type
of failure that the storage administrator is anticipating.

3.2.1 Write-Back Flush

The write-back flush policy implements barrier seman-
tics on a cache flush request by flushing dirty data on the
flash device to storage. The flush process sends these
blocks to storage, issues a write barrier on the storage
side, and then acknowledges the command to the client.

Similar to write-through, the write-back flush policy
does not require any recovery after failure. Any dirty
data cached either on flash or storage since the last barrier
may be lost, but it is not expected to be durable anyway.
As a result, this policy is resilient to destructive failure.

The main advantage of this approach over write-
through caching is that writes have lower latency because
dirty blocks can be flushed to storage asynchronously.
Moreover, it provides stronger guarantees than vanilla
write-through caching because it handles storage failures
as well (see Section 2). Compared to write-back caching,
barrier requests will take longer with this policy, which
primarily affects sync-heavy workloads.

3.2.2 Write-back Persist

The write-back persist policy implements barrier seman-
tics on a cache flush request by atomically flushing dirty
cache metadata to the flash device. The dirty file-system
blocks are already cached on the flash device, but we
also need to atomically persist the cache metadata in
client memory to flash, to ensure that blocks can be
found on the flash device after a client or storage failure.
This metadata contains mappings from block locations
on storage to block locations on the flash device, helping
to find blocks that are cached on the device.

The write-back persist policy assumes that the flash
device is available after failure. During recovery, the
cache metadata is read from flash into client memory.
The atomic flush operation at each barrier ensures that
the metadata provides a consistent state of data in the
cache, at the time the last barrier was issued.

The main advantage of write-back persist is that its
performance is close to that of ordinary write-back
caching. Some latency is added to barrier requests, but
persisting the cache metadata to the flash device has
low overhead, given the fairly small amount of meta-
data needed for typical cache sizes. The drawback is
that destructive failure cannot be tolerated because large
amounts of dirty data may be cached on the flash de-
vice, similar to write-back caching. Furthermore, if the
client fails permanently, then recovery time may be sig-
nificant because it will involve moving data from flash
using either an out-of-band channel (e.g., live CD), or by
physically moving the device to another client.

Operation Description
find_mapping find a mapping entry in either the clean or the dirty map
insert_mapping, remove_mapping insert or remove mapping in the clean or dirty map
persist_map atomically persist the dirty map to flash
alloc_block, free_block allocate or free a block on flash
evict_clean_block evict a clean block by freeing the block and removing its mapping

Table 2: Mapping and Allocation Operations

Table 1 provides a comparison of the different caching
policies. The caching policies are shown in increasing
order of performance, with write-through being the slow-
est and write-back being the fastest caching policy. The
write-back flush policy provides the same guarantees as
write-through, with low write latency, but with increased
barrier latency. The write-back persist policy provides
performance close to write-back, but unlike the write-
back flush policy, it doesn’t handle destructive failure.

4 Design of the Caching System

We now describe the design of our caching system that
supports the write-back flush and persist policies. We
first present the basic operation of our system, followed
by our design for storing the cache metadata and the allo-
cation information. Last, we describe our flushing policy.

4.1 Basic Operation
Our block-level caching system maintains mapping in-
formation for each block that is cached on the flash de-
vice. This map takes a storage block number as key, and
helps find the corresponding block in the cache. We also
maintain block allocation and eviction information for
all blocks on the flash device. In addition, we use a flush
thread to write dirty data blocks on the flash device back
to storage. The mapping and allocation operations are
shown in Table 2. As we discuss in Section 4.2.2, we
separate the mappings for clean and dirty blocks into two
maps, called the clean and dirty maps.

Table 3 shows the pseudocode for processing IO re-
quests in our system, using the mapping and allocation
operations. On a read request, we use the IO request
block number (bnr) to find the cached block. On a cache
miss, we read the block from storage, allocate a block
on flash, write the block contents there, and then insert
a mapping entry for the newly cached block in the clean
map. On a write request, instead of overwriting a cached
block, we allocate a block on flash, write the block con-
tents there, and insert a mapping entry in the dirty map.
This no-overwrite approach allows writes to occur con-
currently with flushing – a write is not blocked while a
previous block version is being flushed. Mappings are
updated only after writes are acknowledged to maintain
barrier semantics (see Section 3.1).

We avoid delaying read and write requests when the
cache is full (which it will be, after it is warm) by only
evicting clean blocks from the cache, using the standard
LRU replacement policy. The clean blocks are main-
tained in a separate clean LRU list to speed up evic-
tion. We ensure that clean blocks are always available
by limiting the number of dirty blocks in the cache to
a max_dirty_blocks threshold value. Once the cache
hits this threshold, we fall back to write-through caching.

The flush thread writes dirty blocks to storage in the
background. It uses asynchronous IO to batch blocks,
and writes them proactively so that write requests avoid
hitting the max_dirty_blocks threshold. The dirty
map always refers to the latest version of a block, so only
the last version is flushed when a block has been written
multiple times. After a block is flushed, it is moved from
the dirty map to the clean map. The flush thread waits
when the number of dirty blocks reaches a low threshold
value, unless it is signaled by the write-back flush policy
to flush all dirty blocks (not shown in Table 3).

The write-back flush and write-back persist policies
are implemented on a barrier request. The flush policy
writes the dirty blocks to storage and waits for them to be
durable by issuing a barrier request to storage. The per-
sist policy makes the current blocks on storage durable
and persists the dirty map on the flash device, perform-
ing the two operations concurrently and atomically.

These policies share much of the caching functional-
ity. Next, we describe key differences in the mapping
and allocation operations for the two policies.

4.2 Mapping Information
The mapping information allows translating the storage
block numbers in IO requests to the blocks numbers for
the cached blocks on flash. We store this mapping infor-
mation in a BTree structure in memory because it enables
fast lookup, and it can be persisted efficiently on flash.

4.2.1 Write-back Flush

The mapping information is kept solely in client memory
for the write-back flush policy, because the cache con-
tents are not needed after a client failure, as explained in
Section 3.2.1. On a client restart, the flash cache is empty
and the mapping information is repopulated on IO re-
quests. Cache warming can help reduce this impact [23].

Read Request Write Request

entry = find_mapping(bnr)
if (entry):
cache hit
return read(flash, entry->flash_bnr)

else:
cache miss
data = read(storage, bnr)
if (flash_is_full):
evict_clean_block()

flash_bnr = alloc_block()
write(flash, flash_bnr, data)
insert_mapping(clean_map, bnr, flash_bnr)
return data

entry = find_mapping(bnr)
if (entry):
free_block(entry->flash_bnr);
remove_mapping(entry->mapping, bnr);

if (flash_is_full):
evict_clean_block()
if nr_dirty_blocks > max_dirty_blocks:
fallback to write_through
write_through();
return

flash_bnr = alloc_block()
write(flash, flash_bnr, data)
insert_mapping(dirty_map, bnr, flash_bnr)

Flush Thread Barrier Request

foreach entry in dirty_map:
read dirty block from flash
and write to storage
data = read(flash, entry->flash_bnr)
write(storage, bnr, data)
move dirty block to clean state
remove_mapping(dirty_map, bnr)
insert_mapping(clean_map, bnr,

entry->flash_bnr)

if (policy == FLUSH):
signal(flush_thread)
wait(all_dirty_blocks_flushed)
barrier()

else if (policy == PERSIST):
barrier()
persist_map(dirty_map, flash)

Table 3: IO Request Processing

4.2.2 Write-back Persist

The mapping information needs to be persisted atom-
ically for the write-back persist policy, as explained
in Section 3.2.2. This persist_map operation is per-
formed on a barrier, as shown in Table 3. We implement
atomic persist by using a copy-on-write BTree, similar to
the approach used in the Btrfs file system [17].

Only the dirty mappings need to be persisted to ensure
consistency and durability, since the clean blocks are al-
ready safe and can be retrieved from storage following a
client restart. This option reduces barrier latency because
the clean mappings do not have to be persisted. How-
ever, persisting all mappings may be beneficial because
a client can restart with a warm cache.

We have chosen to persist only the dirty mapping in-
formation. To do so, we keep two separate BTrees, called
the clean map and the dirty map, for the clean and dirty
mappings. The dirty map is persisted on a barrier re-
quest; we call this the persisted dirty map. Compared
to persisting all mappings using a single map, this sepa-
ration benefits both read-heavy and random write work-
loads. In both cases, the dirty map will remain relatively
small compared to the single map, which would either be
large due to many clean mappings, or would have dirty
mappings spread across the map, requiring many blocks
to be persisted. An additional benefit is that recovery,
which needs to read the persisted dirty map, is sped up.

When the flush thread writes a dirty block to storage,
we move its mapping from the dirty map to the clean
map, as shown in Table 3. This in-memory operation up-
dates the dirty map, which is persisted at the next barrier.

4.3 Allocation Information

We use a bitmap to record block allocation information
on the flash device. The bitmap indicates the blocks that
are currently in use, either for the mapping metadata or
the cached data blocks.

We do not persist the allocation bitmap to flash for
several reasons. First, the bitmap does not need to be
persisted at all for the write-back flush policy since the
cache starts empty after client failure, as discussed in
Section 4.2.1. Second, we separate the clean and dirty
mapping information and only persist the dirty map for
the write-back persist policy. As a result, we would also
need to separate the clean and dirty allocation informa-
tion and only persist the dirty allocation information to
ensure consistency of the mapping and allocation infor-
mation during recovery. Since we read in the dirty map
during recovery anyway, which allows us to rebuild the
allocation bitmap, this added complexity is not needed.

In the write-back persist policy, the cache blocks
that are referenced in the persisted dirty map cannot be
evicted even if they are clean, or else corruption may
occur after recovery. For example, suppose that Block

A is updated and cached on flash Block F, and then the
dirty map is persisted on a barrier. Now suppose Block
B is updated and we evict Block A and overwrite flash
Block F with the contents of Block B. On a failure, the
dirty map would be reconstructed from the persisted dirty
map, and so Block A would now map to Block F, which
actually contains Block B. We solve this issue by main-
taining a second in-memory bitmap, called the persist
bitmap. This bitmap is updated on a barrier, and tracks
the cache blocks in the persisted dirty map. A block is
allocated only when it is free in both the allocation and
the persist bitmaps, thus avoiding eviction of blocks ref-
erenced in the persisted dirty map.

4.4 Flushing Policies
Section 4.1 describes the basic operation of the flush
thread. In this section, we describe two optimizations,
flushing order and epoch-based flushing, that we have
implemented for flushing dirty blocks.

4.4.1 Flushing Order

Our system supports flushing dirty blocks in two dif-
ferent orders, LRU order and ascending order. For the
LRU order, the dirty blocks are maintained in a separate
dirty LRU list. After the least-recently used dirty block is
flushed, it is moved from the dirty LRU list to the clean
LRU list. We use the last access timestamp to ensure
that the flushed block is inserted in the clean LRU list in
the correct order. As a result, after a cold dirty block is
flushed, it is likely to be evicted soon.

We also support flushing dirty blocks in ascending or-
der of storage block numbers. To do so, we use the dirty
map (which stores its mappings in this sort order), as
shown in the flush thread code in Table 3. Since the
flash device can cache large amounts of data, we expect
that flushing blocks in ascending order will significantly
reduce seeks on the storage side compared to flushing
blocks in LRU order. However, flushing in ascending or-
der may have an affect on the cache hit rate because the
flushed blocks may not be the least-recently used dirty
blocks. As a result, warm clean blocks may be evicted
before cold dirty blocks are flushed and evicted.

4.4.2 Epoch-Based Flushing

In the write-back flush policy, barrier request processing
is a slow operation because all the dirty blocks need to be
flushed to storage. Suppose an application thread has is-
sued a barrier, e.g., by calling fdatasync(), but before
the barrier finishes, another thread issues new writes. If
barrier processing accepts these writes, it will take even
longer to finish the barrier request, and with a high rate of
incoming writes, barrier processing may never complete.
Alternatively, new writes could be delayed until the com-
pletion of the barrier request. However, these writes may

also incur high barrier latency, which defeats the goal of
using a write-back policy to reduce write latencies.

We can take advantage of the barrier semantics, de-
scribed in Section 3.1, to minimize delaying new writes,
with epoch-based flushing. Each cache flush request
starts a new epoch, and only the writes acknowledged
within the epoch must become durable when the next
flush request completes. This flushing of dirty blocks
within an epoch requires two changes to the default
write-back flush policy. First, the dirty mappings need
to be split by epoch. Second, instead of waiting for all
dirty blocks in the dirty map to be flushed (as shown
in Table 3), the barrier request only waits until all the
blocks associated with the dirty mappings in the current
epoch are flushed. Since each barrier request starts a
new epoch, and barrier processing can take time, mul-
tiple epochs may exist concurrently. To maintain data
consistency, an epoch must be flushed before starting to
flush the next epoch.

We maintain a separate BTree for all concurrent
epochs in the dirty map. While epoch-based flushing
increases concurrency because writes can be cached on
the flash device while blocks are being flushed to storage
on a barrier, it also increases the cost of the find and re-
move mapping operations because they need to search all
BTrees. As a result, we have chosen a maximum limit of
four concurrent epochs. If new writes are issued beyond
this limit, then the writes are delayed.

5 Evaluation

To evaluate our caching policies, we have implemented
a prototype caching system using the Linux device map-
per framework. This framework enables the creation of
virtual block devices that are transparent to the client, so
minimal configuration is required to use the system.

Our implementation uses two Linux workqueues, ser-
viced by two worker threads, for issuing asynchronous
IO requests to the block layer. The first thread lies in the
IO critical path and (i) issues read requests to the flash
device on a cache hit or to storage on a cache miss, (ii)
issues write requests to flash, and (iii) performs barrier
processing, as shown in Table 3. The second thread is
only used to issue write requests to flash to insert blocks
into the cache following a read miss. We also use a flush
thread to write dirty blocks to storage in the background.
This thread issues read requests to flash, and write re-
quests to storage. It uses asynchronous IO to batch re-
quests, which helps hide network and storage latencies,
thus improving flushing throughput.

Inspired by the journaled write-back policy [7], we im-
plemented a variant of write-back flush called write-back
consistent that flushes dirty data in each barrier epoch
asynchronously. Similar to the flush policy, the consis-

tent policy ensures that data in each epoch is flushed to
storage before data in the next epoch. However, the con-
sistent policy acknowledges the barrier operation imme-
diately, without waiting for the flush operation, so it pro-
vides consistency but no durability on destructive failure.

We evaluate our write-back flush and persist caching
policies by comparing them with four baseline policies,
no caching (no flash used), write-through, write-back
consistent and write-back caching. Of these, only the
persist policy issues barrier requests to the flash device
because it needs to persist its mapping atomically to the
device. All the policies issue barriers to storage when the
application makes a barrier request (see Table 3), with
the exception of the write-back policy, which provides
no reliability guarantees. Next, we present our experi-
mental methodology and then the performance results.

5.1 Experimental Methodology
Our experimental setup consists of a storage server con-
nected to a client machine with a flash device over 1
Gb Ethernet. The storage server runs Linux 3.11.2, has
4 Intel E7-4830 processors (32 cores in total), 256GB
memory and a software RAID-6 volume consisting of 13
Hitachi HDS721010 SATA2 7200 RPM disks. Storage
is served as an iSCSI target, using the in-kernel Linux-
IO implementation. We disable the buffer cache on the
server so that we can directly measure RAID perfor-
mance, and also because our Linux-IO implementation
ignores barriers when the buffer cache is enabled.

The client has 2 Xeon(R) E5-2650 processors and a
120GB Intel 510 Series SATA SSD. We use 8GB of the
flash device as the client cache, with 2M mapping entries
(1 per 4KB page). Each entry is 16 bytes, which together
with the BTree structure, leads to a memory overhead of
about 40MB for the mapping information.

We limit the memory on the client to 2GB so that our
test data set will not completely fit in the client’s buffer
cache. In this setup, the ratio of the memory size and
flash device capacity is similar to a mid-end, real-world
storage server. For example, the NetApp FAS3270 stor-
age system has 32GB RAM and a 100GB SSD when at-
tached to a DS4243 disk shelf [14]. The client runs Linux
3.6.10 and mounts an Ext4 file system in ordered jour-
nal mode using the iSCSI target provided by the storage
server. Ext4 initiates journal commits (leading to barriers
issued to the block layer) every five seconds.

5.1.1 Workloads

We use Filebench 1.4.9.1 [5] to generate read-heavy,
write-heavy and sync-heavy workloads on the client. For
the read- and write-heavy workloads, barriers are initi-
ated due to Ext4’s commit interval. More frequent barri-
ers occur due to application-level sync operations in the
sync-heavy workload.

Read-heavy: webserver and webserver-large Web-
server consists of several worker threads, each of which
reads several whole files sequentially and then appends
a small chunk of data to a log file. Files are selected us-
ing a uniform random distribution. Overall, webserver
mostly performs sequential reads and some writes. We
use two versions of this workload: webserver is a smaller
version with 4GB of data, which can fit entirely on flash;
webserver-large is a larger version, with 14GB of data,
which causes cache capacity misses in our experiments.

Write-heavy: ms_nfs and ms_nfs-small ms_nfs is a
metadata-heavy workload that emulates the behavior of
a network file server. It includes a mix of file create,
read, write and delete operations. The directory width,
directory depth, and file size distributions in the data set
are based on a recent metadata study by Microsoft Re-
search [11]. Similar to webserver, we also use a compact
version of ms_nfs, consisting of 6.5GB of data, while the
original ms_nfs has 22GB.

Sync-heavy: varmail Varmail simulates a mail server
application that issues frequent sync operations to ensure
write ordering. For varmail, we use a single, default con-
figuration with 4GB of data, which fits on flash, because
a mail server typically does not have a large working set.

5.1.2 Metric

Filebench starts with a setup phase in which it populates
a file system before running the workload. During setup,
data is cached on flash and flushed in the background.
We pause Filebench after setup finishes until the flush
thread has stopped flushing data, to avoid interference
between the setup phase and the workload. Then, we run
each workload for 20 minutes.

Filebench reports the average IO operations/second
(IOPS) for a workload at the end of the run. We mod-
ified it to report average IOPS every 30 seconds during
the run. We found that this IOPS value varies in the first
10 minutes and then stabilizes, due to cache warming ef-
fects at both the buffer cache and the flash cache. We
present steady-state IOPS results, by averaging the 20
IOPS readings taken in the last 10 minutes of the run.

5.2 Experimental Results
We first present the overall performance results for all the
caching policies. We have enabled all flushing optimiza-
tions for our write-back policies. We flush in ascending
order for both policies, and we use epoch-based flush-
ing with 4 epochs for the write-back flush and write-back
consistent policies. Finally, we show the impact of these
flushing optimizations.

Figure 1 shows the average IOPS for the different
caching policies for the three types of workload. As ex-
pected, all write caching policies perform comparably

Figure 1: IOPS for different caching policies

for read-heavy workloads. For webserver, the caching
policies increase IOPS by more than 2X compared to
no-cache because the workload fits in the cache. We
found that webserver saturates the flash bandwidth and
hence write-back persist performs slightly worse because
it needs to persist its mapping table to flash on barri-
ers. In contrast, webserver-large has a low cache hit rate.
Thus, it issues many reads to storage, making the storage
a bottleneck, and so the no-cache policy performs as well
as any caching policy.

The ms_nfs workloads create many dirty blocks and
then free them, causing cache pollution and many cache
misses, because the caching layer is unaware of freed
blocks. Nonetheless, our write-back policies perform
well, with write-back persist performing comparably
to vanilla write-back because the workloads are write-
heavy (84% and 58% write requests in ms_nfs-small and
ms_nfs, respectively). With ms_nfs-small, write-through
caching performs slightly worse than no-caching be-
cause the cache misses require filling the cache, however
the difference is within the error bars. With the larger
ms_nfs, storage becomes a bottleneck, and hence perfor-
mance decreases for all workloads. However, this work-
load has a smaller ratio of write requests than ms_nfs-
small and so the performance benefits of write-back
caching over write-through caching are smaller.

In ms_nfs-small, the cache hit rate for write-back flush
is 52%, while the hit rate for write-back persist is 79%,
accounting for the difference in their performance. For
write-back flush, the high barrier latency (due to flushing
dirty blocks back to storage) causes filesystem journal
commits to be delayed since the next transaction can-
not commit until the previous one has completed. For
ms_nfs-small, only 13 transactions were committed dur-
ing the 20 minute run. This delay increases the epoch
size (we observed a maximum of 4.6GB, with 2GB on
average), which leads to dirty blocks occupying a large

fraction of the flash cache. Read requests tend to be for
clean blocks however, since recently written dirty blocks
are more likely to be in the buffer cache, and the reduced
number of clean blocks in the flash cache leads to a lower
hit rate. We see a similar effect in the ms_nfs workload,
although the hit rates are lower in both cases (45% for
write-back flush vs. 60% for write-back persist).

Varmail is the most demanding workload for our poli-
cies. It issues fsync() calls frequently and waits for
them to finish, making the workload sensitive to barrier
latency. Write-back persist issues synchronous writes
to flash and hence has significant overheads compared
to the write-back policy. However, persist still per-
forms much better than the other policies that issue syn-
chronous writes to storage. The write-back flush pol-
icy performs worse than the write-through policy by 7%,
because in our current implementation, the flush thread
always performs an additional block read from flash to
flush the block to storage.

Contrary to our expectation, the write-back consistent
policy, which doesn’t provide durability, performs worse
than the write-back flush policy for the ms_nfs work-
loads. These workloads quickly consume all available
epochs because each file-system commit issues a barrier
that starts a new epoch, but the barriers themselves are
not held up by flushing. When no epochs are available,
all writes are blocked. We observed that epochs do not
become large (as with write-back flush) but writes are
frequently blocked due to having no available epochs.
Increasing the number of epochs did not significantly im-
prove performance. In contrast, the write-back flush pol-
icy delays barriers, but due to this delay it does not run
out of epochs. This result suggests that the delay intro-
duced by barrier-based flushing provides a natural con-
trol mechanism for avoiding other limits due to cache
size, number of epochs, etc.

Figure 2: Effect of flushing order in the flush policy

Figure 3: Effect of flushing order in the persist policy

5.2.1 Flushing Order Optimization

In this section, we evaluate the performance of flush-
ing in two different orders, LRU order and ascending
order, as described in Section 4.4.1. LRU order is ex-
pected to improve cache hit rate, while ascending order
is expected to improve flushing throughput. For the read-
heavy workloads, flushing is not a bottleneck and hence
the flushing order does not affect performance.

Figure 2 shows the effect of flushing order for the write
and sync-heavy workloads with the write-back flush pol-
icy. In this policy, the flushing operation can become a
bottleneck because all the blocks dirtied in the last epoch
need to be flushed on a barrier. Compared to LRU or-
der, flushing in ascending order improves performance
for the write-heavy workloads, by 19% for ms_nfs-small
and 39% for ms_nfs. This result indicates that flushing
is the bottleneck for write-heavy workloads and flushing
in ascending order reduces disk seeks on storage. The
varmail performance is not affected by the flushing order
because there are few writes between barriers.

Figure 3 shows the effect of flushing order with the
write-back persist policy. We measured the flushing
throughput and found that flushing in ascending order
performs significantly better than LRU order for both
write and sync-heavy workloads. However, ms_nfs-

Figure 4: Effect of number of epochs in the flush policy

small fits in the flash cache, making flash bandwidth the
bottleneck, and hence the flushing order has minimal im-
pact on performance. For ms_nfs, ascending order im-
proves performance due to fewer seeks on storage.

With varmail, flushing in ascending order helps mi-
grate mapping entries from the dirty map to the clean
map much more rapidly due to higher flushing through-
put. Since varmail is very sensitive to barrier latency,
and there are fewer entries in the dirty map to persist to
flash at barriers, ascending order improves performance
by 45% over LRU order.

We found that the hit rate did not change significantly
when flushing in ascending order versus LRU order for
write-back persist. We observed that the flushing oper-
ation is relatively efficient for these workloads, and as a
result, cold blocks do not remain in the dirty LRU queue
for long periods when flushing in ascending order. Once
these blocks are flushed, they are moved to the clean
queue, and then evicted. To assess the impact on the re-
placement policy, we logically combined the clean and
the dirty mapping queues in timestamp order, and found
that the tail of the clean queue is at most 8.5% from the
tail of the combined queue in the worst case. As a result,
ascending order flushing does not significantly affect the
eviction decision and outperforms or is comparable to
LRU flushing in all cases.

5.2.2 Epoch-Based Flushing Optimization

The write-back flush policy delays barrier requests be-
cause it needs to flush all dirty blocks back to storage.
We implemented epoch-based flushing, described in Sec-
tion 4.4.2, for the write-back flush policy to reduce this
impact. We did not implement this optimization for the
write-back persist policy because the dirty map can be
persisted to the flash device efficiently on a barrier.

Figure 4 shows the benefits of using multiple epochs
for flushing data. For both the write and sync heavy
both workloads, using a maximum of two epochs im-
proves performance significantly over using a single

epoch. However, performance does not necessarily im-
prove any further with four epochs because there may not
be enough write concurrency in the workloads. Also, we
keep a separate BTree for each epoch and need to search
all the BTrees for the mapping operations, which may
have a small impact on performance.

6 Related Work

There have been many recent proposals for using flash
devices to improve IO performance, as we discuss here.

Koller et al. [7] present a client-side flash-based
caching system that provides consistency on both recov-
erable and destructive failures. They present ordered
write-back and journaled write-back policies, and their
evaluation shows that journaled write-back performs bet-
ter because it allows coalescing writes in an epoch. Un-
like our write-back policies, both ordered and journaled
write-back do not provide durability because they ignore
barrier-related operations, such as fsync(). They also
ignore disk cache flush commands, and thus do not guar-
antee consistency on storage failure.

Holland et al. [6] present a detailed trace-driven sim-
ulation study of client-side flash caching. They explore
a large number of design decisions, including write poli-
cies in both the buffer and flash caches, unification of the
two caches, cost of cache persistence, etc. They showed
that write-back policies do not significantly improve per-
formance. Write-through is sufficient because the caches
are able to flush the dirty blocks to storage in time, and
thus all application writes are asynchronous. However,
their traces do not contain barrier requests (only reads
and writes), thus they do not consider synchronous IO
operations. Also, their simulation does not consider
batching or reordering requests, which offers significant
performance benefits, as we have shown.

Mercury [2] provides client-side flash caching that fo-
cuses on virtualization clusters in data centers. It uses
the write-through policy for two reasons. First, their cus-
tomers cannot handle losing any recent updates after a
failure. Second, a virtual machine accessing storage can
be migrated from one client machine to another at any
time. With write-through caching, the caches are trans-
parent to the migration mechanism. Mercury can per-
sist cache metadata on flash, similar to the write-back
persist policy. However, their motivation for persisting
cache metadata is to reduce cache warm up times on a
client reboot. Thus the cache metadata is only persisted
on scheduled shutdown or reboot on the storage client.

FlashTier [19] presents an interface for caching on
raw flash memory chips, rather than on flash storage
with a flash translation layer (i.e., an SSD). Their ap-
proach benefits from integrating wear-level management
and garbage collection with cache eviction, and using the

out-of-band area on the raw flash chip to store the map-
ping tables. FlashTier complements our work because it
allows using the flash device more efficiently.

Bcache [15] is a Linux-based caching system that sup-
ports caching on flash devices, similar to our system. It
implements write-through caching and allows persisting
metadata to flash. A comparison of our write-back poli-
cies against Bcache would be interesting. Bcache, how-
ever, does not support barrier requests in the kernel ver-
sion that we used for our implementation, so the results
would not be comparable.

Previous work on flash caching [6, 7] suggests that
the flash cache hit rate, and thus the replacement pol-
icy, is crucial to performance. The Adaptive Replace-
ment Cache (ARC) [10] algorithm is effective because it
takes access frequency and recency into account, which
makes ARC scan-resistant (i.e., it resists cache pollution
on full table scans) and helps it adapt to the workload to
improve cache hit rates. We have focused on the write-
back policy and reliability, and have used only a simple
LRU replacement policy.

Bonfire [23] shows that on-demand cache warm up
(after system reboot) is slow because of growing flash
caches. They warm the cache by monitoring I/O traces
and loading hot data in bulk, which speeds up warm up
time by 59% to 100% compared to on-demand warm up.
We could use a similar approach for warming our cache.

7 Conclusions and Future Work

We have shown that a high-performance write-back
caching system can support strong reliability guarantees.
The key insight is that storage applications that require
reliability already implement their own atomicity and
durability schemes using write barriers, which provide
the only reliable method for storing data durably on stor-
age media. By leveraging these barriers, the caching sys-
tem can provide both consistency and durability, and it
can be implemented efficiently because applications have
no reliability expectations between barriers.

We designed two flash-based caching policies called
write-back flush and write-back persist. The write-back
flush policy provides the same reliability guarantees as
the write-through policy. The write-back persist policy
assumes failure-free flash operation, and provides im-
proved performance by flushing data to the flash cache
rather than to storage on barrier requests, thereby reduc-
ing the latency of the barrier request.

Our evaluation showed three results. First, for read-
heavy workloads, all caching policies, write-through or
write-back, perform comparably. Second, our write-back
policies provide higher performance than write-through
caching for bursty and write-heavy workloads because
IO requests can be batched and reordered. The dirty

blocks in the flash cache can be batched and flushed
asynchronously. They can also be reordered to improve
the write access pattern and thus the flushing throughput
on the storage side. Third, write-back persist performs
comparably to write-back for all workloads, other than
sync-heavy workloads, for which it still offers significant
performance improvements over write-through caching.

In the future, we plan to use the trim command [3]
to reduce cache pollution caused by freed, dirty blocks.
We also plan to optimize the flush thread to avoid read-
ing blocks from flash when they are available in the
buffer cache. Finally, we plan to evaluate our write-back
caching policies in virtualized environments [2].

References

[1] J. Axboe and S. Bhattacharya. http:
//lxr.free-electrons.com/source/
Documentation/block/biodoc.txt#L826.

[2] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Con-
dict, J. Kimmel, S. Kleiman, C. Small, and
M. Storer. Mercury: Host-side flash caching for
the data center. In Proc. of the 28th IEEE Sym-
posium on Mass Storage Systems and Technologies
(MSST), pages 1–12, April 2012.

[3] J. Corbet. Block layer discard requests. http://
lwn.net/Articles/293658/.

[4] EMC. http://www.emc.com/collateral/
hardware/data-sheet/h9581-vfcache-ds.
pdf, 2013.

[5] Filebench. http://sourceforge.net/apps/
mediawiki/filebench.

[6] D. A. Holland, E. Angelino, G. Wald, and M. I.
Seltzer. Flash caching on the storage client. In Proc.
of the 2013 USENIX Annual Technical Conference,
ATC’13, pages 127–138, June 2013.

[7] R. Koller, L. Marmol, R. Rangaswami, S. Sun-
dararaman, N. Talagala, and M. Zhao. Write poli-
cies for host-side flash caches. In Proc. of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), pages 45–58, February 2013.

[8] R. Koller and R. Rangaswami. I/O deduplication:
Utilizing content similarity to improve I/O per-
formance. ACM Trans. Storage, 6(3):13:1–13:26,
Sept. 2010.

[9] C. Mason. ext3[34] barrier changes. http://lwn.
net/Articles/283169/, 2008.

[10] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In Proc. of the
2nd USENIX Conference on File and Storage Tech-
nologies (FAST’03), pages 115–130, Mar. 2003.

[11] D. T. Meyer and W. J. Bolosky. A study of practi-
cal deduplication. In Proc. of the 9th USENIX Con-

ference on File and Storage Technologies (FAST),
pages 1–13, Feb. 2011.

[12] D. Narayanan, A. Donnelly, E. Thereska, S. El-
nikety, and A. Rowstron. Everest: scaling down
peak loads through I/O off-loading. In Proc. of
the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 15–28,
Nov. 2008.

[13] D. Narayanan, E. Thereska, A. Donnelly, S. El-
nikety, and A. Rowstron. Migrating server storage
to SSDs: Analysis of tradeoffs. In Proc. of the 4th
ACM European Conference on Computer Systems,
EuroSys ’09, pages 145–158, Mar. 2009.

[14] NetApp. http://www.netapp.com/us/
products/storage-systems/fas3200/
fas3200-tech-specs-compare.aspx.

[15] K. Overstreet. bcache. http://bcache.
evilpiepirate.org/, 2013.

[16] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. Snapmirror: File-
system-based asynchronous mirroring for disaster
recovery. In Proc. of the First USENIX Conference
on File and Storage Technologies (FAST), pages
117–129, Jan. 2002.

[17] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The
Linux B-tree filesystem. ACM Trans. Storage,
9(3):9:1–9:32, Aug. 2013.

[18] D. Roselli, J. R. Lorch, and T. E. Anderson. A
comparison of file system workloads. In Proc. of
the USENIX Annual Technical Conference, pages
1–14, June 2000.

[19] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier:
A lightweight, consistent and durable storage
cache. In Proc. of the 7th ACM European Con-
ference on Computer Systems, EuroSys ’12, pages
267–280, Apr. 2012.

[20] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova,
N. C. Hutchinson, and A. Warfield. Capo: Recapit-
ulating storage for virtual desktops. In Proc. of the
9th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 29–43, Feb. 2011.

[21] Tagged command queuing. Wikipedia.
http://en.wikipedia.org/wiki/Tagged_
Command_Queuing.

[22] Write barriers. Fedora Documentation.
http://docs.fedoraproject.org/en-US/
Fedora/14/html/Storage_Administration_
Guide/writebarr.html.

[23] Y. Zhang, G. Soundararajan, M. W. Storer, L. N.
Bairavasundaram, S. Subbiah, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Warming
up storage-level caches with Bonfire. In Proc. of
the 11th USENIX Conference on File and Storage
Technologies (FAST’13), pages 59–72, Feb. 2013.

