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Abstract

Finding, understanding, and fixing bugs in software systems is challenging. Dynamic binary trans-
lation (DBT) systems provide a powerful facility for building program analysis and debugging
tools. However, DBT abstractions are too low-level and provide limited contextual information to
instrumentation tools, making it hard to implement such tools.

In this theis, we introduce behavioral watchpoints, a new software-based watchpoint frame-
work that simplifies the implementation of DBT-based program analysis and debugging tools.
Behavioral watchpoints have two key features: 1) they provide contextual information at the
instruction level which are directly available with watchpoints and 2) they enable specializing
instruction-level instrumentation with individual data structures. We describe three applications
that were easily developed using our watchpoint framework: detecting buffer overflows, detecting
read-before-write and memory freeing bugs and detecting memory leaks. We implemented behav-
ioral watchpoints using Granary, a DBT framework for instrumenting operating system kernels.
We evaluated the overheads of watchpoints for analyzing and debugging operating system kernel
modules and show that these overheads are reasonable.
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Chapter 1

Introduction

Program debugging is a tedious and time-consuming part of software development. Detecting soft-
ware bugs such as data corruption, bad pointers, and data races requires developers to manually
inspect millions of instructions that may modify the corrupt data. Such an instruction may be dif-
ficult or prohibitively costly to find. The advent of multicore systems and the ever-increasing size
and complexity of software has made debugging even more challenging. This makes it important
to develop tools that can handle large and more complex programs. At the same time there is a need
for tools to provide interesting information about program execution that can be used to improve
the quality of the programs.

Dynamic binary translation (DBT) systems provide a powerful infrastructure for building pro-
gram debugging and analysis tools. A DBT system enables monitoring and potentially manipu-
lating every instruction in an existing binary before it executes, helping detect programming er-
rors, and thus improving program dependability. Instruction-grained inspection can help detect
the most subtle program faults including low level issues such as memory bugs [30] and security
errors [31, 12], as well as high level issues such as concurrency errors [34, 1] and interface er-
rors in multilingual programs [22]. Several popular DBT frameworks, such as DynamoRIO [6],
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Pin [7] and Valgrind [30] have been used develop such debugging tools. Existing tools such as
Memcheck [41] and Helgrind [26] are developed over Valgrind which uses binary translation to
detect common memory errors (e.g., use-after-free, read-before-write, memory leaks) and thread-
ing bugs (e.g., data races) in user space programs. Other tools like Program shepherding [21] and
vx32 [15] use DBT to improve program security and enforce modularity. The use of DBT system
in developing these tools has three distinct advantages.

i) The DBT system operates at instruction granularity giving the tools complete control over
program execution. It provides the tools the ability to observe and modify any executed in-
structions and gather any runtime information.

ii) The DBT system operates on binaries and does not require the client program to be changed
or compiled in any particular way, making it easy to use.

iii) The DBT system naturally allows instrumenting all code. Instrumenting all client code stati-
cally can be difficult if code and data are mixed or different modules are used, and is impossi-
ble if the client uses dynamically generated code. The ability to instrument all code is crucial
for correct and complete handling of third-party code such as pre-compiled libraries.

These advantages make dynamic binary instrumentation (DBI) a compelling technique for de-
veloping many dynamic analysis tools. However, using a DBT framework for developing these
powerful and efficient debugging applications is challenging for three reasons.

First, a DBT system provides infrastructure for instrumenting program code, an approach we
call code-centric instrumentation, whereas many interesting debugging applications would prefer
to have data-centric instrumentation. Applications such as data race detection, memory usage
bugs, or performance debuggers that find false sharing hotspots are all naturally data-centric. The
code-centric approach makes it harder to implement these debugging tools.

Second, DBT abstractions are too low-level: individual instructions only reveal what memory
addresses are being accessed. This is at odds with specialising instruction-level instrumentation
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with higher-level abstractions. For example, developing a tool to debug a data corruption prob-
lem in a specific field of a data structure (e.g., i flags field of an inode structure of Linux
file system), or detecting an invariant violation in a data structure requires instrumentation to be
specialised to individual data structures.

Third, existing DBT systems instrument all code to provide comprehensive coverage, which
introduces significant overheads for realistic instrumentation. For example, if a memory corrup-
tion bug affects only inode structures, then instrumenting every memory access in the kernel is
excessive. In practice, we would like to instrument only the code that operates on inodes.

In this work, we introduce behavioral watchpoints, a novel software-based watchpoint frame-
work that simplifies the implementation of DBT-based program analysis and debugging tools.
Similar to previous software-based watchpoints [48], it supports millions of watchpoints, enabling
large-scale program analysis. However, unlike previous approaches that are limited by their view
of memory as an opaque sequence of bytes, behavioral watchpoints embed context-specific infor-
mation in each watchpoint, and this information is available when a watched address is accessed.
Upon access, the watchpoint action taken depends on this context, implying that different watch-
points behave differently. For example, if a programmer wishes to debug corruption to a specific
field of a data structure such as a field in the TCP buffer header, then a behavioral watchpoint
will be triggered only when the specific field is updated in any TCP buffer header. This approach
simplifies building powerful DBT tools because the context-specific information can be arbitrarily
rich (e.g., derived from static analysis), and is available as needed at runtime.

The other key feature of behavioral watchpoints is that they enable adding instrumentation
selectively, by enabling or disabling binary translation on demand, so that overhead is introduced
only when instrumentation is needed. A watchpoint can be triggered by a hardware trap that
starts binary translation and watchpoint interpretation. The translation may continue until the
end of the basic block or current function. This approach benefits from the lower overhead of
binary translation when several watchpoints are likely to be triggered, and the lower overhead
of infrequent traps when watchpoints are unlikely to be triggered. For example, kernel modules
may initialize structures (such as the sk buff used by network drivers) that are shared with the
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core kernel. The kernel expects such structures to contain legitimate data pointers when they are
received from the module. However, a module can pass a bad pointer and cause the kernel to access
illegal memory. Finding the source of this corruption requires complete visibility into all memory
accesses to the structure, whether in the module or the kernel. Behavioral watchpoints enable
this visibility with low overhead by allowing comprehensive instrumentation of module code and
on-demand translation of kernel code.

We have implemented behavioral watchpoints using Granary, a DBT framework designed to
instrument kernel modules [16, 14]. Granary instruments arbitrary, binary Linux kernel modules
efficiently and without imposing overhead when the core kernel is running and provides a powerful
infrastructure for debugging and analysis of kernel modules. We have prototyped several module
debugging applications using behavioral watchpoints. These applications include a buffer-overflow
detector, a memory leak detector, and a shadow-memory based tool for logging the access patterns
of different classes of modules for detecting buggy or malicious behavior.

1.1 Thesis contributions
This thesis makes the following contributions:

1. We describe the design and implementation of the behavioral watchpoint framework. The
framework is implemented using Granary, a DBT system for kernel modules, which provides
access to the contextual-information on every memory access. We also describe code-centric
and trap-based approaches for implementing behavioral watchpoints.

2. We evaluate the two approaches by comparing the effort involved in developing tools and
the performance overheads of the two approaches. We discuss the different use cases of both
the approaches in debugging operating system kernels.

3. We also describe the prototype applications that we developed using behavioral watchpoints
and have used for debugging and analysis of some kernel modules. We developed three
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different applications, the buffer-overflow detector, selective shadowing and leak detector
tool for debugging memory issues in kernel modules.

The rest of the thesis is structured as follows. Chapter 2 describes Granary and its various
features that are helpful in developing the behavioral watchpoint framework. Chapter 3 describes
our design and approach for implementing behavioral watchpoints. Chapter 4 discusses the several
prototype applications that we developed using watchpoints. Chapter 5 discusses the related work
closely associated with the field. Finally, Chapter 6 concludes the thesis and highlights directions
for future work
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Chapter 2

Granary

This chapter provides background information about Granary [16], on which we build our watch-
points. Granary is a dynamic binary translation (DBT) framework designed to instrument kernel
modules, which are a frequent source of bugs and vulnerabilities in operating systems [8, 24].

Granary instruments arbitrary, binary Linux kernel modules efficiently and without imposing
overhead when the core kernel is running. Granary is unique among DBT frameworks because it
analyzes and uses program type information. For example, Granary can substitute the execution of
a function with a wrapped version of itself. A wrapped function has the same type specification as
its unwrapped counterpart and can freely modify its arguments and return value. Granary can wrap
some module functions in this way, even if the module source code is unavailable. Granary is de-
signed with three goals for practical module analysis: i) comprehensively analyze all modules; ii)
impose no performance overheads on non-module kernel code; iii) require no changes to modules
and minimal changes to the kernel, so that it can be easily ported between different hardware and
kernel versions. Granary meets all these goals as follows:

1. Granary is comprehensive because it controls and instruments the execution of all module
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code. Granary maintains control by ensuring that normal module code is never executed.
Instead, only decoded and translated module code is executed. Translated module code
contains instrumentation and always yields control back to Granary. The ability to com-
prehensively instrument the kernel modules help enables implementing watchpoints on an
arbitrary memory reference.

2. Kernel code runs without overhead because Granary relinquishes control whenever an instru-
mented module executes kernel code. Granary implements a novel technique for re-gaining
control when kernel code attempts to execute module code. Each time the instrumented
module code invokes a kernel function, all arguments of the function are wrapped. Argu-
ment wrappers are type- and function-specific, and ensure that potential module entry points
(e.g. module function pointers) are replaced with behaviorally-equivalent values that first
yield control to Granary. The type- and function-specific wrappers provide the behavioral
watchpoint framework the ability to add type information with the watchpoints. They also
help the watchpoint framework identify kernel allocators and wrap them to add watchpoints
on newly allocated objects.

3. Granary does not require any changes in the module or the kernel code. Granary’s wrapping
mechanism is portable across different kernel versions because the majority of wrappers are
automatically generated by parsing kernel headers and using several meta-programs.

Granary interposes on the Linux kernel’s module loading process. When a kernel module
is loaded, Granary bootstraps by translating the first basic block of the module’s initialisation
function. It then replaces the pointer to that function with a pointer to the translated basic block.
The translation process continues when the kernel initialises the module by invoking the translated
module code.

Granary translates and instruments module binaries on demand (one basic block at a time). The
new basic blocks are decoded and translated as execution “discovers” those basic blocks. Trans-
lated basic blocks are linked together and stored in a globally accessible code cache. Granary’s
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just-in-time translation approach means that code executing from the code cache may yield control
to Granary to request the address of the next basic block to execute. When instrumented code
yields to Granary, a “context switch” occurs that transfers execution to a CPU-private stack where
Granary operates. Granary context-switches back to the code cache when the next basic block has
been found or translated so that instrumented execution may continue.

Granary provides three important features that are helpful in developing DBT-based program
analysis tools.

2.1 Mixed-Mode Execution
Granary supports two modes of execution: instrumented and native. Module code is instrumented
and executes from Granary’s code cache, which is under Granary’s control. Non-module kernel
code runs natively. A mode switch occurs when execution transfers between native and instru-
mented code. Some mode switches happen naturally (e.g., when instrumented code returns to
native code) and other mode switches are mediated by Granary (e.g., when instrumented module
code invokes a kernel function).

The mode switch from instrumented module code to native kernel code is easier to detect
since the instrumented code runs under Granary’s control. Granary treats all kernel functions as
detach points, where a mode switch from instrumented to native code occurs. At these points,
Granary stops executing. However, Granary needs a way to regain control when native kernel code
invokes module code. Granary uses static analysis information to dynamically discover attach
points by wrapping the kernel/module interface. Kernel functions are wrapped by kernel wrappers
that inspect and traverse argument pointers in search of pointers to module functions and replaces
them with a function-specific module wrapper. Figure 2.1 shows an example of a type wrapper
for Linux device driver structure which is used for wrapping function pointers. After the module
initialisation process, the attaching of Granary when module code starts executing, happens in one
of three ways:
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struct device_driver {
...
int (*probe)(struct device *);
int (*remove)(struct device *);
void (*shutdown)(struct device *);
int (*suspend)(struct device *,

pm_message_t);
int (*resume)(struct device *);
...
const struct dev_pm_ops *pm;
...

};

TYPE_WRAPPER(struct device_driver, {
PRE_OUT {

WRAP_FUNCTION(arg.probe);
WRAP_FUNCTION(arg.remove);
WRAP_FUNCTION(arg.shutdown);
...

}
POST_OUT {

POST_WRAP(arg.pm);
}

})

Figure 2.1: The Linux device driver structure is shown on the left. The automatically generated
type wrapper for this structure is shown on the right. In the wrapper code, arg is a reference
to a struct device driver object passed as, or referenced by, an argument to a kernel or
module wrapper. Code in the PRE OUT section is applied to arguments of the wrapped type before
a kernel wrapper is invoked. Similarly, code in the POST OUT section is applied to arguments of
the wrapped type after a kernel wrapper is invoked. POST WRAP invokes the type wrapper that
is specific to the value to which it is applied (arg.pm). Type wrappers also support IN suffixes
instead of OUT suffixes, which apply to data going into modules (i.e., over module wrappers).
Finally, the RETURN prefix is used to apply some code to return values of either kernel or module
wrappers.

1. Implicit attaching: It happens when kernel returns to the module. The native kernel code
returns to instrumented module code in the code cache. This is done at the cost of return ad-
dress transparency, i.e., code cache addresses are visible on returns to the executing module
code.

2. Fast attaching: When the kernel invokes a wrapped module function. The addresses of
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these module wrapper functions are provided to the kernel through type wrapping at the
interface.

3. Slow attaching: When the kernel invokes unwrapped module code. If the kernel executes an
uninstrumented module function that was passed to the kernel in a type-unsafe manner, then
the processor will raise a fault because Granary uses hardware page protection to prevent
module code from being executed. Granary handles these faults by returning execution to
the instrumented version of the faulting module code.

Granary detaches when control transfers from instrumented code to native (uninstrumented)
code. Detaching occurs in one of two ways:

1. Implicit detaching: Instrumented module code returns to the original kernel, or is inter-
rupted (initial interrupt handling is done by the kernel and hence interrupt handling runs
uninstrumented code).

2. Wrapped detaching: Instrumented module code invokes a kernel wrapper that later trans-
fers control to the kernel.

Mixed-mode execution provides Granary the ability to instrument only module code. How-
ever the attach/detach mechanism of Granary is more generic and it allows the instrumentation
tool to switch the execution mode anytime. This selective instrumentation feature is used by the
behavioral watchpoint framework to implement on-demand instrumentation. Granary’s wrapper
provides instrumentation tools information that is derived from static analysis of the kernel.

2.2 Policy-Driven Instrumentation
Granary provides the application the ability to specialise the instrumentation based on execution
context. Granary tracks the execution context of a program using technique called policy-driven
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instrumentation. It allows applications to manage different instrumentation policies which can
be dynamically switched as and when required based on the context. The behavioral watchpoint
framework uses policy-driven instrumentation to track the execution context of the module to add
watchpoints on the selected objects. The policy-driven instrumentation in the leak detector helps
the watchpoint framework track the module entry and exit path and identify the context of memory
allocation. The framework adds watchpoint with newly allocated object only if it happens in the
module context.

Granary implements policy tracking and switching by encoding policy information in the meta-
data and control transfer instructions (CTIs) of basic blocks. The policy information propagates
through the control transfer instruction and the targeted basic block either inherits or switches to
the new policy as specified.

2.3 Reifying Instrumentation
Granary uses a technique called reifying instrumentation to provide the benefits of high-level static
analysis information to dynamic instrumentation tools. Reifying instrumentation bootstraps on
Granary’s mixed-mode execution approach, which exposes static type information to instrumenta-
tion tools. The type information can be used by the behavioral watchpoint framework to identify
and add context specific information with the watched objects. The behavioral watchpoint frame-
work actively uses the context-specific information associated with the watched objects to create
various analysis tools such as selective memory shadowing for generating the models of typical
module behavior.

The high-level static information present at the wrapper serves two roles in the tool. First,
the type wrappers are used to assign type-specific IDs to module-allocated memory that is shared
across the module/kernel interface. This type-specific ID assignment is critical because it allows
us to match memory reads and writes to specific kernel data structure fields. Second, the kernel
and module function wrappers are used to generate call graphs of a module’s execution. This call
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graph models module behaviour (according to the kernel) because we label module code nodes
with kernel data structure and function pointer field names (derived from module wrappers). This
labelling allows us to generalise across similar modules. For example, code reached by calling the
ext4 mount and btrfs mount functions from the ext4 and btrfs modules, respectively,
are both labelled as file system type::mount, because these function addresses are stored
(and later replaced by module wrappers) in the mount field of a file system type data struc-
ture.

These three features make Granary unique among DBT-systems. We choose Granary as the
underlying DBT system, this is because of its ability to integrate the high-level static analysis
informations with low-level instruction manipulation and support the context-aware runtime code
specialisation. These are important to implement different features of behavioral watchpoints. In
next chapter, we will discusses the design, implementation and the different features enabled by
the behavioral watchpoint that helps in developing program analysis tools.
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Chapter 3

Behavioural Watchpoints

Behavioral watchpoint provides an efficient software-based watchpoint framework that simplifies
the implementation of DBT-based program analysis and debugging tools. This chapter describes
the design of behavioral watchpoints and the various features enabled by our design. We present the
challenges raised by our approach and then describe our implementation of behavioral watchpoints.
Two characteristics that defines the watchpoints are:

i) Context-specific information is embedded in each watchpoint. This information is directly
available when a watched address is accessed, providing significant versatility in monitoring
a large number of memory addresses.

ii) A behavioral watchpoint watches a range of addresses, enabling object-granularity watch-
points, i.e., one watchpoint can watch an entire object or memory block.
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3.1 Design
The design of the behavioral watchpoint framework is motivated by our aim to provide context-
specific information on memory accesses, which helps provide significant versatility when moni-
toring these accesses. This context specific information is stored in an in-memory data structure
and accessed before memory read/write operations. Our design is based on the key observation that
the pointers in 64 bit architectures have spare bits. Both AMD64 and Intel x86-64 processors use a
48 bit implementation leaving 16 spare bits that can be used to store pointer metadata information.

We implement watchpoints by adding an extra level of indirection to memory addresses. An
unwatched address is converted into a watched address by changing its spare high-order bits. The
high order bits of an unwatched address have the value 0xffff. We call this value the canonical
value. For watched addresses, the high-order bits are converted to a non-canonical value that helps
identify context-specific information about the range of memory being watched. This information,
called the watchpoint’s descriptor, contains the originating watched address, meta-information
and a set of functions (vtable) to invoke when watched memory is dereferenced. Since watchpoint
information is embedded in the high-order bits, a typical offset of a watched address is another
watched address that shares the same descriptor.

The design of behavioral watchpoints is shown in Figure 3.1. Our design uses 15 high-order
bits (called the counter index) and an additional 8 bits (bits 20-27, called the inherited index) of a
watched address to identify the index into a global watchpoint descriptor table. The watchpoint
descriptor table stores a pointer to the watchpoint’s descriptor. The key advantage of our design
scheme is i) the ability to map watched addresses to unwatched addresses using a simple bitmask
and ii) the ability to easily access a watchpoint’s descriptor when a watched address is accessed.
The high-order 15 bits counter index allows us to use 32K watchpoints at a time and the additional
8 bits of inherited index extends the number of possible watchpoints to 8M. The inherited index is
left unchanged when converting an unwatched address into watched.

However, one drawback of our design is that an offset of a watched address can cause the
low-order bits to overflow into the inherited index and this will lead a watched address to point
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to an incorrect descriptor. One approach to deal with this issue is to assign multiple descriptors
for the watched objects holding the same meta-information and putting them in adjacent indices
or duplicating the same descriptor entry across adjacent indices. This is possible because inherited
indexes make the descriptor table more sparse allowing them to have duplicate entries.

Our design of behavioral watchpoints is geared to the 64 bit x86 (x86-64) architecture. In
kernel space on the x86-64 architecture, the addressable memory includes the canonical form of
addresses with their 16 high-order bits set to 1. Tagging these higher order bits with the descrip-
tor information converts them to a non-canonical address that triggers a hardware exception when
dereferenced. The watchpoint framework takes advantage of the exception to implement behav-
ioral watchpoints.

Our watchpoint framework uses two approaches to perform memory operations on watched
objects. First, when watchpoints are expected to be triggered frequently, it dynamically adds in-
strumentation at every memory load and store to avoid hardware exceptions. Watched addresses
are detected before they are dereferenced and resolved to their unwatched counterparts (by masking
the 16 high-order bits to 1). The approach is called code-centric instrumentation because the deci-
sion about the code translation and instrumentation is taken based on the execution path. Second,
when watchpoints are unlikely to be triggered, the alternative approach is to dereference a watched
address and implement behavioral watchpoints in the trap handler. This enables on-demand binary
translation and allows adding instrumentation only when a watchpoint is triggered. We call this
approach data-centric instrumentation because code translation and instrumentation is based on
watchpoint accesses.

The design of behavioral watchpoints provides the following benefits:

i) Multiple watchpoints can watch the same range of memory: Two copies of an address (e.g.,
two pointers to the same object) can be watched separately, so long as the high-order bits
index different entries in the watchpoint descriptor table. This is useful for distinguishing
between logically different objects that occupy the same memory region. For example, this
enables efficient detection of use-after-free bugs without preventing deallocated memory from
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being immediately reallocated for another use. This efficiency comes from our ability to have
one watchpoint for the freed object and another watchpoint for the newly allocated memory
occupying the same space.

ii) Watchpoint descriptors are context specific: Our design separates the allocation and manage-
ment of descriptors from the watchpoint framework. It is the responsibility of each client to
manage its descriptors. When a watchpoint gets added to an object, the client determines the
vtable, type and meta-information that needs to be stored in the descriptor, as shown in Fig-
ure 3.1. The vtable determines the function that is invoked when watched memory is accessed.
Each vtable provides eight functions: four read and four write functions. Each function is spe-
cific to a memory operand size (1, 2, 4, or 8 bytes). A watchpoint descriptor is initialised with
either a generic or a type-specific vtable, which is specific to the type of the watched address.
The meta-information allows the descriptors to be arbitrarily customized or extended based
on the needs of the client.

iii) Watchpoints are viral: Behavioral watchpoints can be used virally. If an address A is watched,
then every address derived from A (e.g., through copying or offsetting) is also watched. This
is useful for memory and taint analysis tools. For instance, a watchpoint that is added early in
the lifetime of an address (e.g., immediately before the address of newly allocated memory is
returned from an allocator) can persist and propagate until no more derived addresses exist.

3.2 Implementation
Behavioral watchpoints are implemented using Granary, a dynamic binary translation (DBT) frame-
work [16] described in Chapter 2. We implement behavioral watchpoints by adding watchpoint in-
strumentation before every memory read (load) and write (store) instruction in the code cache. The
watchpoint instrumentation actively looks for non-canonical addresses being used as a source or
destination address and triggers watchpoint handling code if it encounters them. The watchpoint
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framework provides an interface for the client to write the watchpoint handling code efficiently.
Our approach of implementing the watchpoint framework has three advantages:

i) The framework makes it easy to add watchpoints with the object. It provides an indirection to
the memory address of the unwatched object and tags it with the counter index. It separates
the allocation and management of descriptors and provides the client an interface to manage
its own descriptors. The framework only manages the global descriptor table and assigns the
descriptors to the corresponding indices.

ii) The direct mapping of watchpoints with the descriptors make the descriptor information avail-
able when the watched objects are accessed. This is helpful in specialising the instrumentation
based on the descriptor’s information.

iii) The runtime overhead of watchpoint implementation comes from the watchpoint instrumen-
tation. Our implementation of watchpoint instrumentation has a fixed cost and the overhead
does not increase drastically with the increase in the number of watchpoints.

3.2.1 Code-Centric Instrumentation

The Code-centric instrumentation dynamically adds watchpoint instrumentation at every memory
reference before putting each basic block in code-cache. Code-centric watchpoint instrumentation
detects the dereference of watched addresses and resolves them to their unwatched counterparts
before performing the memory operation, thus avoiding any hardware traps that would be gen-
erated if a watched address is accessed directly. Code-centric instrumentation has low overhead
when compared with trap based instrumentation when watchpoints are expected to be triggered
frequently.
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We implemented behavioral watchpoints using Granary, which comprehensively instruments
all module code. Granary detaches itself at the kernel interface thus providing support for code-
centric instrumentation only for module code. A module analysis tool developed using the watch-
point framework may need to track the behavior of objects that are shared between the kernel
and a module using watchpoints. For these shared objects, we use code-centric instrumentation
for the module code, and trap-based or data centric instrumentation (with the transitive policy, as
described in the next section) for the kernel code.

3.2.2 Data-Centric Instrumentation
Data-centric instrumentation is triggered by hardware traps when a watched address is derefer-
enced. At this point, Granary is attached so that code can be instrumented. We used three policies
for detaching instrumentation: i) basic-block instrumentation, ii) function-only instrumentation,
and iii) transitive instrumentation.

The basic block instrumentation policy detaches instrumentation at the end of the current basic
block. This policy translates the minimum amount of code but causes the highest number of traps.

The function-only policy retains the same instrumentation policy across the body of a function
and does not allow the transfer of policy across control-transfer instructions. The framework stops
instrumenting and detaches itself at the end of function body (i.e, with the ret instruction). Any
call to other functions detaches the framework temporarily and then the framework is attached
once that function returns. The policy instruments a moderate amount of code with a corresponding
decrease in the number of hardware traps, compared to the basic block policy.

The transitive policy allows the framework to follow the code-centric instrumentation trans-
ferring its instrumentation policy across the call or jmp instructions; the framework detaches
itself when the function returns. The transitive policy instruments code aggressively based on the
assumption that once the watched address is dereferenced in an execution path, there is high prob-
ability of encountering the watchpoints again in the same function or the functions called by this
function. Our evaluation result supports this assumption.
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The ability to add selective instrumentation by attaching and detaching the watchpoint frame-
work on demand introduces overhead only when instrumentation is needed. The data-centric ap-
proach benefits from the lower overhead of infrequent traps when watched addresses are less likely
to be dereferenced, e.g., when watchpoints are added selectively for a few objects.

3.2.3 Instrumentation Optimizations

The implementation of behavioral watchpoints essentially requires monitoring of all memory read
(load) and write (store) operations. A basic monitoring framework using dynamic binary instru-
mentation inserts new instructions before every memory references looking for the watchpoint ad-
dresses. The framework also inserts watchpoint instrumentation before every memory operation.
A naive implementation of watchpoint instrumentation performs the following operations:

i) Save and restore the registers, including flags registers, that are used or affected by watchpoint
instrumentation. We use the stack to spill these registers.

ii) Calculate the referenced address and check if this is one of the non-canonical addresses. This
is done by inspecting high-order 16 bits of the addresses. Inject a callback function, if the
address is in the non-canonical form. This requires the masking of both user and kernel space
addresses. The 47th and 48th bit of the address is reserved and used for this purpose.

iii) Emulate the actual instruction with corrected address to perform the normal load/store oper-
ation and continue execution after restoring registers and flags. The instruction emulation is
done by replacing the original instruction or by creating a new instruction and providing an
indirection.

iv) Continue the normal execution after restoring the registers and flags, if the address is not one
of the watched addresses.
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The naive implementation of watchpoint instrumentation suffers from high runtime overhead.
Granary allows implementing several optimizations for reducing runtime overhead. The watch-
point instrumentation uses the following optimizations:

i) Dead Registers Analysis: The instrumentation system needs scratch registers for creating and
injecting new instructions. These registers can be obtained by spilling them to the stack or
to memory locations. The frequent spilling of these registers on stack or memory location
increases the cost of instrumentation significantly [36, 27]. Granary provides support for
managing live registers. It goes over the basic block, performs the register liveness analysis
and collects all the registers that can be safely used without spilling them on the stack. The
register manager traverses all the instructions in a basic block moving upward and collecting
the source and destination registers making all the non-source and non-base-displacement
registers (whole destination registers) as dead.

ii) Flag Liveness Analysis: In an instrumentation system, the newly injected instructions should
not affect the state of the processor. The watchpoint instrumentation ensures this by saving
and restoring the status registers before and after the injected instructions. This is costly and
so the framework reduces this cost by performing eflag liveness analysis [25]. The watchpoint
instrumentation saves and restores the flags register only if it is alive.

iii) Eliminate Stack Operations: In the x86 architecture, any operation on the stack or an op-
eration involving the stack pointer is also a memory operation. Watchpoint instrumentation
is not required for these memory operations unless it is specified by the client. The watch-
point framework identifies all such instructions and prevents them from getting instrumented.
Applications such as the stack-based overflow detector require instrumenting any operation
involving stack pointers and they need to specifically add such instrumentation.

Figure 3.2 shows the native and instrumented versions of the instructions performing memory
operations. The DBT system provides several other optimizations such as Group Checks, which
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consolidate the two consecutive memory reference checks into a single check if there are no inter-
vening instructions that affect address generation, and Merge Checks which exploit the locality of
memory references and merge the instrumentation for instructions accessing different members of
the same object in the same basic block. We have not implemented all these optimizations in the
watchpoint framework because our purpose is not to be exhaustive but rather to demonstrate that
watchpoint instrumentation can perform online monitoring of memory references with reasonable
overhead.

3.3 Limitations
The design of behavioral watchpoints introduces non addressable memory in the system. The use
of non-canonical addresses puts the following restrictions on the way watchpoints can be used.
Some of these limitations are application specific and depend on how the program analysis tool
uses them.

i) The behavioral watchpoint framework suggests adding watchpoints early in the life of the
objects. Adding watchpoints at an arbitrary location should be avoided as it can introduce
inconsistency in the program. A program running with both watched and unwatched versions
of the same object will provide only partial information about the object. However some
program analysis tools such as RCU debugger takes advantage of this limitation and generates
two versions of the same objects, each of them getting watched differently.

ii) Behavioural watchpoints uses high-order bits to store the descriptor information. The descrip-
tor provides the meta-informations about the object being watched. This puts restriction on
the use of behavioral watchpoints in analysing applications which play with the high-order
bits of its addresses. Such application will destroy the descriptor information stored with the
watchpoints. Applications doing the similar operations such as sign extension of the 64-bit
addresses or handling of only 32-bit addresses also loses the descriptor information. The
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watchpoint framework has no mechanism to recover the lost descriptor information from the
watchpoints. Identifying and ignoring such applications or the operations in an application is
an important challenge for the watchpoint framework.

iii) Behavioural watchpoints are implemented for the Linux kernel. The Linux kernel uses bitwise
operations for the fast page-table lookup. These bitwise operations converts the virtual page
addresses into the page frame number and assumes that the 16 high-order bits of the addresses
are all one. Linux kernel also maintains different address space regions and perform different
functions for the page table-lookup. The design of behavioral watchpoints are not friendly
with these operations.

3.4 Evaluation

In this section, we evaluate the performance overhead of behavioral watchpoints. The watchpoint
framework implements behavioral watchpoints by injecting instrumentation for every memory read
(load) and write (store) operations, introducing runtime overhead in the system. We evaluated the
cost of watchpoint instrumentation, including the cost of handling hardware traps for data-driven
instrumentation, using synthetic microbenchmarks.

We also measured the overhead of using behavioral watchpoints on the throughput of common
file I/O operations using the iozone [32] file system benchmark and the performance of real-world
workloads using several file system utilities and the Filebench benchmarks. We ran all our exper-
iments on a desktop equipped with an Intel® Core™ 2 Duo 2.93 GHz CPU with 4GB physical
memory. In our experimental setup, we used the ext3 file system module that was mounted on a
1GB RAMDisk (mounting loads the ext3 and jbd journaling kernel modules). The watchpoint
framework wraps the kernel memory allocators to add watchpoints for all newly allocated objects.
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Optimizations Native Watch Null Watch All
Code-driven (with BB optimizations) 1x 2.7x 3.8x
Code-driven (without BB optimizations) 1x 5.0x 6.2x
Data-driven approach 1x 1x 283x

Table 3.1: The performance overhead of watchpoint instrumentation on a synthetic microbench-
mark (Figure 3.3). The code-driven approach evaluates the cost of using watchpoint instrumen-
tation and the benefit of basic block optimizations. The overhead of the data-driven approach is
dominated by the cost of handling hardware traps.

3.4.1 Microbenchmark

Our microbenchmark consists of a tight-loop of memory operations that exhibits the worst-case
overhead of using watchpoint instrumentation. Figure 3.3 shows the synthetic microbenchmark
we used to evaluate the overhead of watchpoint instrumentation and hardware traps. We also
evaluated the benefits of our optimization schemes such as register-liveness analysis and flag-
liveness analysis used for watchpoint instrumentation. We call this basic block optimizations.

Table 3.1 shows the maximum cost of using watchpoint instrumentation and handling a hard-
ware trap. Watch None represents the overhead of baseline watchpoint instrumentation when no
watchpoints have been added, and Watch All shows the overhead when all module allocated ob-
jects are being watched. The added overhead of Watch All comes due to the indirection required
for masking watched addresses and emulating the original instructions.

Table 3.1 also shows the high overhead of handling hardware traps. In the data-centric ap-
proach, the hardware trap triggers the instrumentation of the module code. The high overhead of
a hardware trap shows that the approach is useful for selective instrumentation when watchpoints
are less likely to be triggered.
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Watchpoint statistics for the code-centric instrumentations
Watch None Watch All

Number of basic blocks 2249 5495
Number of basic blocks with watched memory operations 0 1208
Number of executed basic blocks 238782485 825836778
Number of dynamic memory operations 568643857 1693113417
Number of watched memory operations 0 199495293
Number of kernel hardware traps 0 12630779

Table 3.2: The statistics of the watchpoint framework for code-driven instrumentation when mod-
ule allocated objects are watched. It also shows the effect of watched objects leaked to the kernel.
The increase in the number of hardware traps causes an increase in the number of basic blocks and
the number of executed basic blocks.

3.4.2 Iozone filesystem benchmark

We used the iozone [32] file system benchmark to measure the overhead of behavioral watchpoints
on the throughput of common file system operations. In our experimental setup, we used the ext3
file system module that was mounted on a RAMDisk of size 1GB. We enabled direct IO to avoid
the effect of buffer cache on file system. The iozone, in throughput mode, created two processes
(reader, writer) that perform the file I/O operations on a file of size 480Mb with a record size of
4Kb. The watchpoint framework wraps the two most commonly used memory allocators in ext3
and jbd: kmalloc and kmem cache alloc, to add watchpoints on the allocated objects.
We evaluated both the code-centric & data-centric approaches using iozone and compared their
performance.
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Code-centric instrumentation: The code-centric approach comprehensively instruments the
module code and dynamically adds watchpoint instrumentation at every memory reference. This
baseline watchpoint instrumentation causes overhead even when there are no added watchpoints.
In the code-centric approach the module always runs under the control of Granary and executes
code from the code-cache. It uses the kernel and module function wrappers for fast attaching and
detaching at the interface.

In the code-centric instrumentation, we first evaluated the overhead of watchpoint instrumenta-
tion and the cost of using Granary as the underlying DBT system. This is important to understand
the baseline cost of using the watchpoint framework.

Figure 3.4 represents the overhead of code-centric instrumentation on the throughput of file
I/O operations. The overhead of the watchpoint framework increases to ~70% when all objects
allocated by the module are watched. This is because many of these watched objects are shared
and leak to the kernel. When these objects are dereferenced in the kernel, they cause hardware
traps because Granary detaches itself at the kernel interface and the watchpoint instrumentation
is no longer added to the memory references. These hardware traps are costly and reattach the
watchpoint framework which then instruments the kernel code transitively.

Table 3.2 represents the number of hardware traps encountered and number of executed basic
blocks for the code centric instrumentation. The additional increase in the number of basic blocks
(~2.5×) and the number of executed basic blocks (~3.5×) comes due to the kernel code instru-
mentation on hardware traps. It also shows that the one out of every sixteen watched memory
operations causes hardware traps.

For understanding the source of these hardware traps, we developed a tool using the watchpoint
framework which tracks the accesses of module allocated objects. We typed these objects based
on their size and the memory allocator used for its allocation. Table 3.3 shows the access pattern of
the module allocated objects. The post processing analysis shows that file system inode objects
with its size “768” gets accessed by the kernel maximum number of times and adding watchpoint
on inode objects cause maximum number of hardware traps.

We verified this by removing watchpoints from all inode objects and running iozone in
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Access pattern of module allocated objects
Memory Allocator Size Module Accesses Count Kernel Accesses Count

kmalloc

8 1233865 0
50 720 288
51 648 240
59 792 528

4096 23452 0

kmem cache alloc

16 31533 0
24 25019188 0
32 2348 0
64 2469028 3099

112 21404553 0
192 19902520 4916028
768 57760206 37373718

1024 34865132 7940485
8196 299 821648

get free page 4096 820273 2973

Table 3.3: The memory accesses patten of the module allocated objects. It represents the number
of times an object is getting accessed by the module and the kernel code. The objects are classified
based on its size and the memory allocator used for allocation.
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Watchpoint statistics for the code-centric instrumentations
Watch none inode Watch All

Number of basic blocks 2874 5495
Number of basic blocks with watched memory operations 732 1208
Number of executed basic blocks 266083908 825836778
Number of dynamic memory operations 594195510 1693113417
Number of watched memory operations 92600064 199495293
Number of kernel hardware traps 5285701 12630779

Table 3.4: The watchpoint statistics of the framework for code-driven instrumentation when all
objects allocated by the modules (except inodes) are watched.

throughput mode. Figure 3.5 shows that the overhead for Watch All decreases by ~50% and is
close to the overhead of baseline instrumentation i.e, Watch None. The small differences in the
overhead of Watch All and Watch None are because there were still some shared objects which was
getting watched and causing hardware traps. Table 3.4 shows the details about such objects.

The evaluation of code-centric instrumentation shows that the hardware traps on the kernel
code are the major source of overhead in implementing behavioral watchpoints. These hardware
traps can be removed by providing full kernel support to the code-centric instrumentation. Granary,
being the underlying DBT-system, currently does not provide support for whole kernel instrumen-
tation.

Data-centric instrumentation: We implemented data-centric instrumentation with three detach
policies: i) transitive policy, ii) function-only policy and iii) basic block policy. Section 3.2.2
discusses each of the three policies in detail.
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Watchpoint statistics for data-centric instrumentation (with different detach policies)
transitive function block

Number of basic blocks 5755 3335 1144
Number of basic blocks with watched memory operations 1479 1218 1141
Number of executed basic blocks 833167407 108965164 37378155
Number of dynamic memory operations 1702295819 565666812 251985370
Number of watched memory operators 336149753 234340514 206334774
Number of kernel hardware traps 13403663 42259345 97518601
Number of module hardware traps 112172 23496407 42902684

Table 3.5: The statistics of the watchpoint framework for data-centric instrumentation when all
the objects allocated by the modules are watched. It compares the three detach policies used by
the data-centric approach.
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We evaluated the overhead of data-centric instrumentation with iozone, using the same exper-
imental setup as with the code-centric instrumentations. We disabled the kernel and the module
wrappers since they allow Granary to take complete control over the module code and prohibit the
module code from running native. In data-centric instrumentation, the module code gets executed
natively when there are no added watchpoints.

Before comparing the code-centric and data-centric approaches, we first evaluated the three
detach policies of data-centric instrumentation. Figure 3.6 shows the overhead of each policy
on the throughput of file I/O operations. The transitive policy instruments code aggressively and
performs better than the function only and basic block detach policies. Table 3.5 shows the number
of executed basic blocks and the number of hardware traps encountered when each of the three
detach policies are used. The transitive policy encounters the minimum number of hardware traps
and executes the largest number of basic blocks.

Figure 3.7 compares the overhead of code centric and data centric instrumentation. It shows
that the code centric instrumentation performs better than the data centric instrumentation when all
objects allocated by the module are watched. This is because the code centric instrumentation han-
dles less hardware traps, which is costly and affects the performance of the system. Our evaluation
compares the code centric instrumentation with the data centric instrumentation using transitive
detach policy.

Selective instrumentation: The data centric approach enables selective instrumentation by adding
watchpoints on selected objects. We first evaluated the performance of selective instrumentation
by adding watchpoints only on file inode objects. Figure 3.8 shows the overhead of selective
instrumentation and compares it with the overhead of data-centric instrumentation when all the
module allocated objects are watched. Selective instrumentation performs better since it adds
less watchpoints thus encountering fewer hardware traps, and executing fewer instrumented basic
blocks.

We also compared the performance of selective instrumentation when using code-centric and

34



data-centric approaches. Figure 3.9 compares the overhead of selective instrumentation for both
the approaches. It shows that selective instrumentation using data centric instrumentation has
less overhead than with code centric instrumentation. This is because fewer basic blocks gets
executed with data-centric instrumentation. The number of hardware traps encountered in both the
approaches are also approximately same, causing similar overhead.

The evaluation of code-centric approach shows that a major source of overhead in code-centric
instrumentation comes due to adding watchpoints on file inode objects. These objects gets ac-
cessed mostly by the kernel code causing hardware traps. We removed the effect of these hardware
traps from code-centric instrumentation by adding watchpoints selectively on the objects accessed
only by the modules. We took the help of table 3.3 for adding watchpoints on the objects selec-
tively.

Figure 3.10 represents the overhead of selective instrumentations for data-centric approach
and compares it with the code-centric instrumentation. It shows that the selective instrumentation
reduces the overhead of using the watchpoint framework to ~5% where as the baseline instru-
mentation for code-centric approach causes an overhead of ~40%. This is because the selective
instrumentation executes less number of basic blocks (~2.3×). The evaluation also shows that the
performance of sequential write operation in case of data-centric approach is less than the code-
centric. We analyzed the behavioral of write operations and found that ~50% of the total hardware
traps was only happening during sequential write operations. This could be a reason of sequential
write not performing better.

The evaluation of both, the code-centric and data-centric approaches for implementing be-
havioral watchpoints, shows an interesting trade-off between the amount of instrumented code
executed from the code-cache and how much of that code actually needs to be instrumented. The
code-centric approach always suffers from the overhead of baseline instrumentation since it always
executes instrumented basic block from code cache. The data-centric instrumentation overcome
this by adding instrumentation on-demand. However, it suffers from the high cost of the hardware
traps which triggers the instrumentation. The number of executed basic blocks also increases with
the hardware traps which causes additional overhead.
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We also saw that the number of hardware traps depend on the type of the watched objects.
Adding watchpoints on frequently accessed shared objects such as file inodes, causes a large
number of traps affecting the performance of the watchpoint framework where as watching rela-
tively less accessed objects such as ext3 block alloc info causes less traps improving the
performance of the data-centric instrumentation.

The advantages and disadvantaged of both the approaches opens up the space to further explore
the possibility of switching between the two approaches at runtime. This will reduce both the over-
head of baseline instrumentation and the cost of hardware traps, thus improving the performance
of the system. The evaluation of code-centric instrumentation also shows its need to provide the
whole kernel instrumentation support. We plan to take this as an immediate future work.

3.4.3 Macrobenchmark
We further evaluated the overhead of the behavioral watchpoint framework using a file system
macrobenchmark consisting common system utilities. We used the same experimental setup and
mounted the ext3 module on a RAMDisk of size 1GB. The macrobenchmark operated on the
Linux source tree (linux-3.2.50). Table 3.6 shows the overhead of behavioral watchpoints on
the standard system utilities. For both the code-centric and data-centric approaches, the framework
adds watchpoints selectively on all inode objects allocated from the look-aside buffer. The eval-
uation shows data-centric instrumentation is performing better than code-centric instrumentation
when used for watching objects selectively all the inode objects.

In both the code-centric and data centric approaches, the major factors which affects the per-
formance are the number of basic block executed and the number of hardware traps encountered
during the execution. We also used microbenchmark to study the changes in the number of hard-
ware traps and the basic block executed with the change in the number of watchpoints. Figure 3.11
shows that both the code centric instrumentation and data centric instrumentation encounters same
number of hardware traps. This is because we add watchpoints selectively on all inode objects
which gets accessed both by the module and the kernel code equally causing hardware traps. We
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Native execution Data centric approach Code centric approach
cp 6.64 10.82 11.61
tar 2.64 3.84 4.16
stat 3.90 5.12 5.44
grep 3.94 5.36 5.54

Table 3.6: The CPU (system & user) time for the standard system utilities performing file system
operations on a RAMDisk of size 1GB. The framework adds watchpoints selectively on all inode
objects of the ext3 module.

also see fewer occurrences where the number of traps in case of data centric is less than the code
centric instrumentation. One reason for this could be that the code centric instrumentation always
detaches itself at the interface where as the data centric instrumentation, with transitive detach
policy, does not always detaches itself at the interface.

Figure 3.11 also shows that with fewer watchpoints the code centric instrumentation still exe-
cutes many more basic blocks than the data centric approach. This causes increased overhead for
code centric instrumentation even when fewer watchpoints are added.

3.4.4 Server Benchmark
We used the Linux port of Filebench version 1.4.9, with four of the standard server workload
personalities, to evaluate the watchpoint framework. We used the same experimental setup as
with the iozone and enabled default settings to define the workload characteristics. The relevant
characteristics for the workloads are shown in Table 3.7. With the default characteristics, the
datasets easily fit in the RAMDisk used for evaluation. This does not limit the workload with the
performance of I/O operations.
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Workload Setting Data Size
Fileserver nfiles=10K 1.2GB
Webserver nfiles=1K, 14.76MB
Webproxy nfiles=10K 154MB
Varmail nfiles=1K 14.76MB

Table 3.7: Benchmark characteristics.

Figure 3.12 shows the throughput of the different Filebench server workloads. For evaluation
we used data-centric instrumentation with all file inode objects getting watched. The data centric
instrumentation reduces the throughput for all the workload personalities by 40%. We also eval-
uated the code-centric instrumentation using Filebench and noticed similar drop in the throughput
but we are not showing it here.
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0x000000:

0x765400:

Base Address

Virtual Table

Meta-info

Index
Descriptor 

Table

0x7FFFFF:

Counter

Index

Inherited

Index

⋮

Descriptor

⋮

0x 7654 FFFFA 00 92600 

0x FFFF FFFFA 00 92600 

Watched Address

Unwatched Address

Figure 3.1: A watched address (bottom left) and its corresponding unwatched address (top left) are
compared. The watched address takes the form of non-canonical address that are not addressable
in kernel space. The watchpoint framework uses a counter index and an inherited index to store
the descriptor information in a global descriptor table. The process of resolving the watchpoint
descriptor is shown.
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Listing 3.1: Original instructions
1 mov %rbx,0x340(%r13)
2 mov $0x400,%esi
3 mov %rax,0x80(%rbx)

Listing 3.2: Translated instructions
1 lea 0x340(%r13),%rsi
2 bt $0x30,%rsi
3 jb addr_not_watched_2
4 bt $0x2f,%rsi
5 jae addr_not_watched_2
6 callq granary_bounds_check_8_rsi
7 bswap %rsi
8 mov $0xffff,%si
9 bswap %rsi

10 LABEL: addr_not_watched_2
11 mov %rbx,(%rsi)
12 mov $0x400,%esi
13 push %rcx
14 lea 0x80(%rbx),%rcx
15 bt $0x30,%rcx
16 jb addr_not_watched_3
17 bt $0x2f,%rcx
18 jae addr_not_watched_3
19 callq granary_bounds_check_8_rcx
20 bswap %rcx
21 mov $0xffff,%cx
22 bswap %rcx
23 LABEL: addr_not_watched_3
24 mov %rax,(%rcx)
25 pop %rcx

Listing 3.3: Overflow detector
1 granary_bounds_check_8_rsi :
2 pushfq
3 push %rax
4 push %rdi
5 push %r8
6 mov %rsi,%rdi
7 mov %rsi,%r8
8 mov %rsi,%rax
9 shl $0x24,%r8

10 shr $0x38,%r8
11 shr $0x31,%rdi
12 shl $0x8,%rdi
13 or %r8,%rdi
14 lea 0x192c98(%rip),%r8

# 0xffffffffa03cf280 <client::wp::DESCRIPTORS>
15 lea (%r8,%rdi,8),%rdi
16 mov (%rdi),%rdi
17 cmp (%rdi),%eax
18 jl overflow_detected
19 mov %rax,%r8
20 add $0x7,%r8
21 cmp %r8d,0x4(%rdi)
22 jle overflow_detected
23 jmp no_overflow_detected
24 LABEL : overflow_detected
25 callq buffer_overflow_handler
26 LABEL : no_overflow_detected
27 pop %r8
28 pop %rdi
29 pop %rax
30 popfq
31 retq

Figure 3.2: The native and instrumented version of the instructions performing the basic memory
operations. The translated instruction (Listing 3.2) shows the watchpoint instrumentation required
for detecting watchpoints and performs the memory operation at the watched addresses. The buffer
overflow detector (Listing 3.3) gets triggered only if the addresses are watched. The overflow
detector makes a call to buffer overflow handler if the overflow is detected.
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typedef unsigned long long cycles_t;
cycles_t currentcycles() {

unsigned cycles_low, cycles_high;
__asm__ __volatile__ (

"cpuid\n\t"
"rdtsc\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t": "=r" (cycles_high),
"=r"(cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");

return ((unsigned long long)cycles_low)
| (((unsigned long long)cycles_high) << 32);

}
enum {

NUM_OUTER = 10,
NUM_INNER = 100000

};

/* Initialize the LKM */
volatile unsigned long x[2] = {100, 200};
int init_module() {

int i,j;
unsigned long addr;
unsigned long flags;
volatile struct foo_test *ptr =

(struct foo_test*)kmalloc(sizeof(struct foo_test), GFP_KERNEL);

cycles_t before[NUM_OUTER], after[NUM_OUTER];

for(j=0; j < NUM_OUTER ; j++)
{

preempt_disable();
raw_local_irq_save(flags);
before[j] = currentcycles();
for(i = 0; i < NUM_INNER; ++i) {

__asm__ volatile("mov %rax, %rax;");
(ptr)->l1 += x[i % 2];
__asm__ volatile("mov %rax, %rax;");

}
after[j] = currentcycles();
raw_local_irq_restore(flags);
preempt_enable();

}

return 0;
}

Figure 3.3: Synthetic microbenmark used to evaluate the watchpoint instrumentation. It performs
basic memory operation inside a tight-loop.
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Figure 3.4: Throughput in MB/sec of common file system operations for code-centric instrumenta-
tion. Direct IO is enabled to bypass the effect of the OS buffer cache on read requests. It compares
the overhead of the watchpoint framework with the performance overhead of Granary and with
native system.
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Figure 3.5: Throughput in MB/sec of common file system operations for code-centric instrumen-
tation when inode objects are not getting watched. The overhead of Watch All decrease because
of the less number of hardware traps and executed basic blocks.
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Figure 3.6: Throughput in MB/sec of common file system operations for data-centric instrumenta-
tion. It shows the overhead of three data-centric policies: transitive policy, function only, and basic
block only policy.
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Figure 3.7: Throughput in MB/sec of common file system operations for the code-centric and
data-centric approaches. The watchpoints are added on all objects allocated by the module.
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Number of dynamic memory operations 1519057148 1702295819
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Number of kernel hardware traps 5522314 13403663
Number of module hardware traps 11234 112172

Figure 3.8: Throughput in MB/sec of common file system operations and the watchpoint statis-
tics for data-centric instrumentation when watchpoints are added selectively and only for inode
objects. The evaluation is done for transitive detach policy.
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Figure 3.9: Throughput in MB/sec of common file system operations and the watchpoint statistics
when watchpoints are added selectively and only on inode objects.
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Number of basic blocks 2259 1171
Number of basic blocks with watched memory operations 179 189
Number of executed basic blocks 238740476 105345884
Number of dynamic memory operations 568556578 221904835
Number of watched memory operators 45649624 45637811
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Figure 3.10: Throughput in MB/sec of common file I/O operations and the statistics of the watch-
point framework when watchpoints are added to the objects selectively which are not getting ac-
cessed by the kernel. This removes the effect of hardware traps from the code-centric instrumen-
tations.
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Figure 3.11: The changes in the number of hardware traps and the number of executed basic blocks
with the changes in number of added watchpoints.
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Figure 3.12: Throughput in file system operations/sec for the filebench workload personalities
shown in Table 3.7.
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Chapter 4

Applications

In this chapter, we describe several prototype applications that we have developed using the behav-
ioral watchpoint framework. These applications provide debugging facilities for kernel modules
and demonstrate the effectiveness of the behavioral watchpoint framework. This chapter uses the
term object to refer to a range of memory locations that are allocated together as a unit.

4.1 Buffer Overflows

A buffer overflow occurs when a program—in an attempt to write to some object’s memory—
actually writes to adjacent memory cells. A low-level programming language like C provides raw
memory pointers, permits pointer arithmetic, and does not check bounds when accessing arrays.
This can result in very efficient code, but the unfortunate side-effect is that accidentally accessing
wrong memory is a very common programming error.

The most obvious example in this class of errors is exceeding the bounds of an array. However
the bounds of non-array data objects such as heap blocks, C structs, and stack frames, can also be
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FUNC_WRAPPER(__kmalloc, (size, flags), {
void *addr = __kmalloc(size, flags);
ADD_WATCHPOINT(addr, size);
return addr;

})

Figure 4.1: Definition of the kmalloc function wrapper in Granary. The above code expands
into a function for wrapping the kmalloc allocator. Calls to kmalloc are transparently
substituted with calls to the generated wrapper. The wrapper invokes the original kmalloc
function and returns a watched version of the allocated address.

violated. We consider any memory access that falls outside its intended memory range as bound
errors. These errors are not difficult to introduce, and they can cause several bugs, some of which
can be extremely subtle and lurk undetected for years. Because of this, tools for preventing and
identifying them are extremely useful.

Existing solutions such as Memcheck [28] and fat pointers [19], provide a powerful facility
for detecting bounds errors. fat pointers hold meta-data for each pointer with the pointer. This
metadata describes the memory ranges the pointer can legitimately access and any access via a
pointer that is outside its legitimate range is flagged as an error. Another method of detecting
buffer overflows relies on the compiler to allocate “poisoned” regions of memory around each
object [40]. Small overflows (e.g., off-by-one errors) are detected by this approach because they
access poisoned memory. Large overflows that “skip” over poisoned memory and access nearby
memory objects are not detected.

Our implementation of a buffer-overflow detector takes an approach similar to fat pointers but
we store the meta-information for each object in its watchpoint descriptor. Our insight is that
unrelated objects will have different base addresses (i.e., the address of one object will not be
derived from the base address of another), and thus each object can be distinguished and uniquely
identified with a separate watchpoint address, even when objects are adjacent to each other.
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We employ three overflow detection policies: heap-based, type-based and stack-based. All
three policies depend on the same extension to the meta-information associated with watchpoint
descriptors: a limit address. Together, the base address (stored in the descriptor) and the limit
address delineate an object’s boundaries in memory [19].

4.1.1 Heap-based overflow detection
The heap-based detection policy detects buffer overflow errors on all heap-allocated objects. We
use Granary to wrap the kernel’s memory allocators (e.g., kmalloc) and add watchpoints to
the addresses returned by those allocators, as shown in Figure 4.1. The lifetime of an added
watchpoint is tied to the lifetime of the memory it watches. Each watchpoint’s descriptor records
bounds information about the allocated memory in the form of the object’s base and limit address
[19]. A buffer overflow is detected when a dereference of a watched address occurs outside of the
bounds recorded by the watchpoint’s descriptor (Figure 4.2). The memory operand-size-specific
vtable functions help catch corner cases where memory reads or writes access both an object and
its adjacent memory cells, as shown in case (3) of Figure 4.2.

We use Granary to substitute invocations of the kernel’s memory allocators (e.g. kmalloc)
with wrapped versions of the allocators (Figure 4.1). A wrapped allocator invokes the original
allocator but returns a watched version of the allocated address. The lifetime of the watchpoint is
associated with the lifetime of the objects and watchpoint descriptor gets collected when objects
get freed. The watched address returned has its descriptor initialised with the base address as the
allocated address and with the limit address as the base address plus the requested allocation size.
All buffer overflow detecting watchpoints are initialised with the same vtable pointer, which points
to a table of memory operand size-specific functions. The operand size is necessary to detect
dereferences of memory that overlap both the object and its adjacent memory, as illustrated in case
(3) of Figure 4.2. The vtable function corresponding to the memory operand size is invoked when
a watched address is dereferenced. Each vtable function is programmed to check the watched
address against the base and limit addresses stored in watchpoint’s descriptor (Figure 4.2). If a
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buffer underflow or overflow is detected then the vtable function notifies the run-time system.

4.1.2 Type-based overflow detection
Type-based overflow detection is applied when the type of an object is known. It is distinguished
from heap-based overflow detection in that it can apply both to heap and non-heap memory, and it
can be used to inform the run-time system about more accurate bounds information. In all other
respects, the type-based overflow detection policy detects bugs in the same way as the heap-based
policy (as might be encoded within the fields of a vector-like data structure). If the type of an
object is known then it can reveal semantic relationships which can enable further type- or heap-
based overflow detection. For example, the fields within a structure might encode memory bounds
information (as would be the case for a vector-like data structure)

The simplest use case of type information is to infer the limit address of a typed pointer. A more
complex use case arises when the fields within a structure encode memory bounds information. In
both cases, the vtable functions for typed and untyped memory operate in the same way. The
type of an addressable object becomes known to Granary in the context of a wrapped function.
The run-time system performs a type-specific initialisation of a watchpoint’s descriptor when a
watchpoint is added to a pointer/address with a known type. Type-specific descriptor initialisation
is a powerful feature because it allows for new watchpoints to be lazily added (thus propagating our
detection capabilities) to newly discovered objects referenced within an object of a known type. We
automatically propagate type-based watchpoints using type specifications generated from parsing
C header files.

Granary recursively follows argument and return value pointers based on object type specifi-
cations. These specifications tell Granary how to follow pointers and what–if any–pointers should
be converted to watchpoints. To reduce programmer effort, Granary automatically generates type
specifications and wrapper functions for any set of known types and functions. Some manual
post-processing is required if the analysis/debugging application needs to understand semantic re-
lationships between function arguments or structure fields.
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(3)   Alimit < Aunwatched + Sop

Sop

Aunwatched Alimit

Aunwatched

Alimit

(2)   Alimit ≤ Aunwatched

AbaseAunwatched

(1)   Abase > Aunwatched

Watched Object Dereferenced Memory

Figure 4.2: Three common buffer overflow cases are illustrated above: 1) underflow 2) overflow,
and 3) overlap. Beside each illustration is the policy that detects the specific bug. When a watched
address (Awatched) is dereferenced, a vtable function that is specific to the memory operand size
(Sop) is invoked. This function detects a buffer overflow if the intended referenced memory address
(Aunwatched) does not fall within the boundaries delineated by the base and the limit addresses
(Abase and Alimit, respectively).
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4.1.3 Stack-based overflow detection

Detecting stack overflows is important because they are commonly used in remote code execution
and privilege-escalation attacks against operating systems [43]. We detect overflows on stack
allocated objects when memory outside of the bounds of the activation/call frame in which the
object is allocated is accessed. This policy is distinguished from the heap- and type-based policies
in that the watchpoint descriptor is managed separately from the watched memory, and the lifetime
of the descriptor extends beyond the lifetime of the watched memory.

To detect stack overflows, we view the memory occupied by the activation frame of an in-
voked function as a dynamically-sized buffer. Like our other buffer overflow policies, we use a
watchpoint to detect accesses to memory outside of this buffer. Unlike our other policies, we only
associate a descriptor with this buffer, and rely on a different mechanism to add the watchpoint
to stack addresses. We separate adding watchpoints from allocating descriptors for stack overflow
detection. In particular, we associate a descriptor with the buffer represented by the activation
frame of a called function. This descriptor tracks the bounds of the frame over the lifetime of the
function call.

We update the bounds of the frame (in the descriptor) when the frame grows or shrinks. When
a function returns, the descriptor’s bounds shrink to zero, but the descriptor remains allocated. We
detect the two most common sources of stack overflows. First, if we see an instruction that copies
the stack or frame pointers, then we assume that the copied address can escape the function. A
stack address escaping a function is a potential stack-overflow risk. Adding the frame’s watch-
point to this address taints the copied address. Future copies or displacements of the watched
address implicitly propagate its taintedness because offsets of a watched address reference the
same descriptor. A dereference of an escaped pointer—even one happening after the function has
returned—is detected as an overflow because the watchpoint descriptor remains live. Second, if
we see an indexed dereference of the stack or frame pointers that uses a dynamically bound in-
dex, then we assume that the effective memory address accessed is a potential stack-overflow risk.
We instrument the dereferencing instruction to add the frame’s watchpoint to the effective address
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Benchmark Native Watchpoint Null Everything watched Buffer overflow
Microbenchmark 1x 2.7x 3.8x 20x

Table 4.1: The overhead of watchpoint instrumentation for buffer overflow detector on mi-
crobenchmark shown in Figure 3.3. The buffer overflow detector uses instrumentation for bounds
checking on the access of watched objects.

before the address is dereferenced.

4.1.4 Evaluation
We evaluated the performance of our buffer-overflow detector using a the synthetic microbench-
mark shown in Figure 3.3 and measured the performance of common filesystem operations on an
in-memory disk using the iozone filesystem benchmark. We used the same experimental setup as
described in Section 3.4. The overhead of the buffer-overflow detector on synthetic microbench-
mark is shown in Table 4.1. The high overhead of detector is due to the instrumentation needed
for precise bounds checking. Figure 4.3 shows the overhead of the buffer-overflow detector on the
throughput of common filesystem operations issued by the iozone file system benchmark. We saw
~80% drop in the throughput of file system operations. Much of these overhead comes because of
code centric instrumentation and the overflow detector watches all the module allocated objects.
Watching selected objects for buffer overflow detection will improve its performance.

4.2 Selective Memory Shadowing
Shadow memory enables a program analysis tool to track the history of every memory loca-
tion and/or value in memory. Existing tools that use shadow memory such as Memcheck [28],
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TaintCheck [31], TaintTrace [9], and Eraser [39] demonstrate that shadow memory is a powerful
and widely used method for developing program debugging applications.

Memcheck [28] uses shadow memory to track what allocation/deallocation operations have
affected each memory location, and can thus detect accesses to unaddressable memory. It also
tracks the undefined memory locations (uninitialised or derived from undefined locations) and
can therefore detect dangerous uses of undefined memory. TaintCheck [31] and TaintTrace [9] are
security tools. They track which values are from untrusted (tainted) sources and which values were
subsequently derived from them, and can thus detect dangerous uses of tainted values. Eraser [39]
uses shadow memory to track which locks are held when a memory location is accessed, and can
thus detect when a memory location is accessed without a consistent lock-set, which may imply a
data race. In the above applications, shadow memory provides the ability to detect critical errors,
which otherwise could go undetected.

The implementation of shadow memory in these tools is inherently expensive because all mem-
ory needs to be shadowed [29]. The tools need to maintain extra state for each byte of memory
and instrument all loads and stores to keep this state up-to-date. These requirements increase the
total amount of code that is run and the program’s memory footprint, thus significantly affecting
performance. Instead, behavioral watchpoints enable implementing a novel shadowing scheme
that allows tracking objects selectively, which decreases the amount of code that needs to be run
and the program’s memory footprint.

We implement selective shadow memory by maintaining a watchpoint descriptor-specific, variable-
sized bitset. Each byte of allocated memory corresponds to one bit of descriptor-specific shadow
memory. The bits in shadow memory are initialised to zero. Individual bits are flipped to one
by write-specific vtable functions or read-specific vtable functions when a write/read operation
happens to the bytes of memory shadowed by those bits.

We use this shadow memory scheme to detect memory error bugs (e.g., uses of uninitialised
memory, memory freeing bugs for heap-allocated objects) and to characterize the types of objects
accessed by different kernel modules. As described in Section 4.1.1, Granary interposes on the
kernel’s memory allocators and adds watchpoints to the addresses returned by those allocators.
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When memory is allocated, the watchpoint descriptor is initialised with the number of allocated
bytes (available as an argument to the allocator) and with its own shadow memory.

Uninitialised memory is defined as either allocated memory to which no value has been written,
or deallocated memory. We selectively track the initialisation state of each byte of watched memory
using shadow memory [28]. Our implementation represents shadow memory as a bitset, where the
state of each bit tracks the initialisation state of a byte of watched memory. Watchpoint descriptors
are augmented to include the size (in bytes) of a watched object and a pointer to the memory
shadowing the object1.

4.2.1 Read-before-write bugs

Read-specific vtable functions detect read-before-write bugs by checking if the shadow bit cor-
responding to one of the read bytes is zero. However, this method of detection can report false
positives: it is common for larger-than-needed reads to be performed and for compiler-added struc-
ture padding to be read (but never written). A relaxed read-before-write memory checking policy
requires that at least one shadow bit is set for every read operation.

4.2.2 Memory freeing bugs

We detect freeing of non-heap memory when the argument to a kernel memory deallocator is not
a watched address. We detect an invalid free, such as freeing an offset of an allocated object, when
the unwatched address of a watched object being deallocated is different from the watchpoint
descriptor’s base address. We detect use-after-free bugs by marking the descriptor of a watched
address being deallocated as dead. The lifetime of a dead descriptor extends beyond that of the
object so that a later use of any watched address with that descriptor will report a use-after-free

1As an optimisation, shadow memory for small objects can be embedded in the watchpoint descriptor.
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bug. We detect double-free bugs when the descriptor of a watched address being deallocated is
already marked as dead.

Two positive side-effects of our approach is that it detects double-free bugs and freeing of non-
heap memory bugs. A double-free is detected when a watched address for an already deallocated
object is passed as an argument to a deallocator. An attempt to free non-heap memory is detected
when an unwatched address is passed as an argument to a deallocator.

4.2.3 Fine-grained access pattern

Kernel modules execute in the kernel address space with unbounded privileges. These modules are
implicitly trusted and interact with each other and the kernel through well defined interfaces and by
sharing data in an uncontrolled manner. Unfortunately, the assumed trust leaves commodity OSes
vulnerable to malicious and misbehaving kernel extensions[8, 24, 47]. We detect the access pat-
terns of the kernel modules using selective shadowing. Behavioral watchpoints tracks the objects
of interest and any read/write access to these objects by both the kernel or the module code is cap-
tured by the shadow memory. The shadow memory information is logged at every control transfer
from the kernel to the module. This information is useful for characterizing the access patterns of
kernel modules, when may then be used to classify the module to detect module vulnerabilities.

4.3 Memory Leak Detection

A memory leak occurs when a program does not free dynamically allocated memory or when
memory can no longer be referenced. Memory leaks are especially a problem in long running
programs, and in operating systems, where memory is lost until the next boot. Existing tools
such as Purify [38], Valgrind [41] and Dr Memory [5] provide an effective solution for detecting
memory leaks in user-space programs but they are not available for the kernel. Other systems such
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as kmemleak [10] and SystemTap [13] provide support for debugging memory leaks in the kernel
but they operate on the kernel as a whole and not on specific modules of interest.

Implementing a leak detector only for kernel modules is challenging for three reasons.
First, a leak detector for kernel modules should follow all objects allocated in the module

context. Many of these objects should be deallocated by the module. For example, a file system
module may make a call to create workqueue and allocate a work struct that can be used
to schedule the delayed work. It is the responsibility of the module to deallocate the object before
exit. Keeping track of such objects for a leak detector operating on the entire kernel, such as
kmemleak, is easy since they track all the memory allocation and deallocation but it is challenging
for a leak detector operating only on the kernel module.

Second, a leak detector needs to perform reachability analysis on all objects allocated in the
module context to detect the lost references. Existing leak detectors use different garbage collector
algorithm such as reference counting and tracing-based algorithm to detect the live objects. Per-
forming such analysis in only module context is challenging because module regularly lose internal
references to the objects that they allocate. For example, a network module can allocate objects and
pass with the net device structure to the kernel, without retaining references to those objects.
The network module can later indirectly access these objects using the kernel’s netdev priv
interface. A whole kernel leak detector, such as kmemleak, operating on kernel heaps & static data
can detect such lost references by scanning all allocated objects but a module based leak detector,
having limited knowledge of objects allocated in the module context, can not detect the references
of such objects and will report them as a leak.

Third, the existing leak detector in the kernel needs to trace all the memory allocator and deal-
locator functions in order to track the allocated objects. It also needs to trace the container of
macros to get the addresses generated from a pre-allocated objects. kmemleak, being tightly inte-
grated with the kernel source code, performs this by interposing at the memory allocators/ deallo-
cator (e.g, kmalloc, vmalloc, kmem cache alloc and other friend functions) and tracing
the container of operations on pre-allocated objects. Performing such operations by a leak
detector, having no knowledge of the kernel activities and operating only on the module binaries is
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not possible.
We implemented the leak detector for the kernel modules using the watchpoint framework. The

challenges involved in implementing a leak detector only for the kernel modules make behavioral
watchpoints a suitable solution. Behavioral watchpoints solve the challenges involved in three
ways:

i) The watchpoint framework ensures that all objects allocated in the module context are watched.
These watched addresses are easily disambiguated from normal memory addresses and inte-
gers that look like watched addresses. This is done by taking over all kernel memory alloca-
tors and tracking the execution context of the module running under its control. This helps
the framework identify the context of every memory allocation and adds watchpoints on all
these objects. However, in the process the watchpoint framework may add watchpoints on
the objects not related to the module. Adding extra watchpoints on objects does not affect the
correctness of the leak detector. We detect such objects during the collector scan and suppress
the false positive that may get reported due to them.

ii) Behavioral watchpoint solves the problem of losing internal reference of objects allocated
in the module context by providing leak detector complete visibility of the watched objects.
Any read/write accesses performed on these watched objects get detected by the watchpoint
instrumentation or the hardware traps which attaches the instrumentation framework with
running code. The read/ write operations on watched addresses mark these objects live and the
collector scan considers these objects as reachable. The ability to track the accessed objects
is particularly helpful in detecting stale objects that are potentially leaked. The leak detector
based on garbage collector algorithm such as kmemleak can not detect such objects.

iii) Behavioral watchpoints help associate the allocated object with the descriptors. The descrip-
tors hold meta-information for each objects and help identifying the state of a memory block
without much of the effort. This helps leak detector limit the scope of scanning to objects
that are allocated and live. The behavioral watchpoints are also viral and every addresses
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derived from a watched addresses (e.g., through copying or offsetting) is also watched. The
watchpoint framework does not need to trace the pointer arithmetic used to derive addresses
from the allocated objects. kmemleak reports false positive if the program uses other than
container of operations to generate derived addresses.

4.3.1 Object Liveness Analysis

The effectiveness of a leak detector in identifying the object leaks depend on the “accuracy” of the
liveness analysis. An ideal leak detector identifies all heap-allocated objects that are not dynami-
cally live and reports them as leak. A dynamically-live heap object is one that can be reached by
following pointers that may be dereferenced in the future.

Existing leak detector solutions such as kmemleak [10], Purify [38] and Dr Memory [5] use a
garbage collection algorithm to perform object liveness analysis. They use the mark/sweep col-
lector algorithm [3] to detect reachability of the allocated objects starting from a set of “root-set”
objects. Their root-set includes system registers and non-heap addressable memory.

They perform reachability analysis periodically at intermediate position and it involves stop-
ping the client when collector2 is in process. However, the solution is not very efficient when client
operates on a large number of heap-allocated objects, such as is typical in operating systems. It
stops the client for longer time.

One solution for reducing the pause time is to use generational or parallel collection. Genera-
tional collection avoids stop-the-world by running the collector thread occasionally but it doesn’t
remove the problem completely. However the parallel collectors take an orthogonal approach and
reduce the time of pause by running the collector in parallel to the client.

In our implementation of leak detector we used the parallel collector to perform object liveness
analysis. Keeping in view of the challenges involved in performing object liveness analysis, we

2A low priority daemon thread which runs intermittently in the background performing reachability analysis on the
allocated objects
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used three different policies to perform the leak scan.

Scanning of accessed objects: This is an aggressive scanning policy for detecting memory leaks.
The approach is similar to bookmarking collectors [18] and Melt [4] which track the accesses
of allocated memory blocks to detect stale objects at page or object granularity. The approach
considers all objects that are accessed between two consecutive scans as live objects and performs
reachability analysis considering them as “root-sets”. Any object which is not reachable from these
objects is considered as stale or a potentially leaked object.

The leak detector tracks all accesses of the watched objects and updates the meta-information
associated with their descriptors. The scanner thread (collector) periodically scans the descriptors
stored in a global descriptor table and marks the objects that were accessed in the last epoch as
live. The scanner thread later performs reachability analysis considering these objects as “root-
sets”. The leak detector also tracks the sources of memory allocation in the descriptors and a
constant increase in the stale objects from one source is reported a possible leak.

This approach reduces the overhead of leak scan which is performed by the collector periodi-
cally and it is also helpful in finding stale objects (dead but reachable) which the existing garbage
collector algorithm based leak detector can not detect. However, the approach performs limited
reachability analysis, thus resulting in increase in the false positive especially for objects which
does not get accessed for longer interval of time. It also can’t find the objects with live leak i.e
the allocated objects are getting accessed periodically but these accesses are nonetheless useless.
Detecting such leaks with any leak detector is challenging.

Scanning of module reachable objects: We define module reachable objects as objects which a
module can access directly or has accessed in the past. It includes static data for both the kernel and
the modules, system registers, threads stack executing module code and all heap-allocated memory
viewed by the module directly or indirectly. Module viewed objects are the objects allocated by
the kernel but passed to the module during its course of execution. We keep track of such objects
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by interposing at the kernel/module interface and collecting all the kernel objects passed to the
modules. The type information about these objects helps us in associating a type-specific scanner
with each object, which performs deep scanning of these objects during a leak scan.

In this leak scan policy, the collector considers all module reachable objects as the “root-set”
and recursively scans them to perform liveness analysis. This scan policy uses the mostly-parallel
collector [3, 2] instead of the parallel collector for updating the “root-set” before performing the
leak scan. This is important to have a consistent snapshot of system registers and thread stack
running the module code. The parallel scanning of kernel objects requires maintaining consistency
and avoid the cyclic dependency of dependencies across data structures. We detect cyclic depen-
dencies by hashing each memory block during a scan and storing them in a data structure. The
scan of a memory block is stopped if its hash is found. We also use the scan depth as a fall back
mechanism to avoid walking a long list of objects in a data structure. In our implementation we
used a scan depth of “6” which we find is appropriate for detecting all watched objects in any ker-
nel data structure. We are also using relaxed consistency policy during the scan. This is because
our leak detector makes a decision about a memory block leak after multiple scans.

This approach reduces false positives compared to the first approach because it includes module-
viewed objects in the root set. However, it has a higher cost because it requires maintaining book-
keeping information for the module-viewed objects and tracking their deallocation. The approach
does not remove false positives completely as it is not able to track references to objects that are
allocated by the module but passed to the kernel, after which the kernel uses internal data structures
to maintain references to the objects.

Scanning of kernel heaps and static data: This is the most conservative policy and used as the
fall back approach for performing a leak scan. This policy scans the static data for both kernel and
the modules and kernel heaps to find any references to watched objects. A watched object that is
not found during the scan is definitely considered a leak.

For scanning kernel pages, we used the kernel page tables and the kernel data structure init level4 pgt
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to access kernel pages. The scanner thread (collector) divides the kernel pages based on the mem-
ory regions and types and scans them based on priority. The scanner thread stops scanning the
kernel pages once it finds at-least one reference to watched objects.

This approach avoids any false positives but scanning the kernel heap memory is expensive.
Also, the scanning of kernel pages can cause false negatives because leaked objects may have
internal pointers containing watched addresses. We reduced the problem by removing the memory
block of watched objects that are not live from the scan list.

Types of Leaks The three scanning policies for performing liveness analysis on watched objects
detect leaks at different levels. Based on the leaks reported by these policies, the detector divides
allocated memory objects into three categories:

i) Live objects: These objects have been accessed between leak scans and are thus live and
reachable from one of the roots. Objects are marked live after the scanning of accessed
objects

ii) Stale objects: These objects have not been accessed for a small number of scans but there
is a possibility that they are live. Objects are marked as stale after the scanning of module
reachable objects. The decision about these objects are made after performing the full system
scan of kernel heaps and static data.

iii) Garbage objects: Objects that are not reachable and are certainly garbage. The decision
about such objects is made after scanning the kernel heaps and static data of the kernel and
its module.

Meta-information The leak detector maintains two kinds of meta-information to track the state
of a memory block and to detect leaked objects. This meta-information is added in the descriptor
of an object.
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Benchmark Native Watchpoint Null Everything watched Leak detector
Microbechmark 1x 2.7x 3.8x 12x

Table 4.2: The overhead of watchpoint instrumentation for the leak detector on our microbechmark
in shown Figure 3.3. The leak detector uses instrumentation to mark live objects between the scans.

• leak state : This includes the state of the memory block. It tracks if the memory is allocated
and is accessed in the last epoch. It also counts the number of epochs since the object not
been accessed. Our current implementation of the leak detector is aggressive and it performs
a full system scan for an object if it does not get accessed in the last two epochs.

• memory info : This includes basic information about a memory blocks such as base address,
size and type and source of allocation.

4.3.2 Evaluation
We evaluated the performance of the leak detector with the synthetic microbenchmark (Figure 3.3)
and the macrobenchmark discussed in Section 3.4. The overhead of the watchpoint instrumenta-
tion for the leak detector is shown in Table 4.2. The leak detector adds extra instrumentation to
mark objects as having been accessed (i.e live) between the two scans. This adds overhead to the
watchpoint instrumentation.

Section 4.3.1 discusses three scan policies for implementing the leak scan. We also evaluated
the cost of each of the scanning policies. Table 4.3 shows the overhead of the three scan policies
in terms of the CPU cycles needed to complete the scan. The cost of scanning module reachable
objects depends on the number and size of objects the collector needs to scan.

We evaluated the effectiveness of each scanning policies in detecting leaks by introducing
memory leak in the kernel module. We removed calls to deallocator functions (kfree and
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Descriptors scan Module reachable objects Kernel heaps & static data
CPU cycles 591822 3000269 18859648171

Table 4.3: The cost of different scanning policies for the collector. The cost of scanning module
reachable objects depends on the number and size of the objects in hash table. At the time of
evaluation the hash table was having “192” objects with the total scan size of ~4Mb.

kmem cache free) from the ext3 file system module and we consider all the objects that
should be deallocated by ext3 module as leaked. We used same experimental setup as discussed
in Section 3.4 and mounted ext3 module on a RAMDisk of size 1 GB. We used the macrobench-
mark with system utilities cp and tar as the workload which was operating on a source tree of
openssh-6.2.

Scanning of accessed objects: This policy performs a leak scan only on the objects that are ac-
cessed in the last epoch. The knowledge of accessed objects in each epoch allows us to implement
two different scanning sub policies. The first sub policy acts as the baseline and considers only the
accessed objects as live. It is aggressive in nature and may lead to many false positives.

The second sub policy considers all accessed object as live and include them in the “root-set”
to perform reachability analysis on watched objects. It reduces the number of false positives by
performing shallow scan on these live objects.

Table 4.4 shows the effect of both these sub policies in detecting leaks. It shows there is an
increase in false positives with sub policy 1. This is because of its aggressive nature in detecting
memory leaks. This reported leak is valid for a kind of workload and may vary with different
workloads.

We also performed the staleness analysis on the allocated objects using this policy. We used an
aggressive policy in which objects that are not accessed between two epochs are considered stale.
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sub-policy 1: Accessed objects are live but are not “root-sets”

scan Allocated objects Accessed objects
Reachable objects Unreachable objects

Not Leaked Leaked Leaked Not Leaked
1 25 24 13 11 0 0
2 305 240 145 95 35 30
3 2053 1545 23 1522 480 28
4 2069 38 23 15 2010 21

sub-policy 2: Accessed objects are live and added into “root-sets” for reachability analysis
1 25 24 13 11 0 0
2 540 370 165 283 88 4
3 2129 1120 40 1221 862 6
4 2314 39 24 318 1968 3

Table 4.4: The profile of the allocated objects and detected memory leaks when the scanner thread
(collector) considers the accessed objects in last epoch as live and performs reachability analysis.
The reachable objects which are not leaked is less than the accessed object in each epoch. This is
because many of the allocated objects were transient and should have deallocated before the next
scan starts.
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scan Allocated objects
Reachable objects Unreachable objects

Not Leaked Leaked Leaked Not Leaked
1 27 19 0 8 0
2 705 65 11 629 8
3 1426 125 11 1290 18
4 1824 221 10 1584 9

Table 4.5: The profile of the allocated objects and detected memory leaks when the scanner thread
(collector) uses module reachable objects as “root-set” and performs reachability analysis.

The stale objects are potentially leaked and there is need to perform full system scans if the number
of stale objects increases constantly. Figure 4.4 shows an increasing number of stale objects with
an increase in the allocated objects. This is because of our aggressive policy of detecting stale
objects. The number of these stale objects also depends on the type of workload used for analysis.
In this case we used workload which compile the source tree of openssh-6.2 and copy the
source tree of gcc-4.8 on RAMDisk mounting ext3 module.

Scanning of module reachable objects: The policy considers all objects which are reachable
from the module as “root-set”. We used the same evaluation strategy for this policy and all memory
deallocator functions from the ext3 file system module are removed. Table 4.5 shows that the
policy detects actual leaks with less false positives and negatives.

Scanning of kernel heaps and static data: This is the fall back policy for scanning and is not
aggressive in nature. Table 4.6 shows that the policy reports a lot of false negative. However, it is
fairly accurate in detecting leaks and an objects not found during this scan is definitely a leak.
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scan Allocated objects
Reachable objects Unreachable objects

Not Leaked Leaked Leaked Not Leaked
1 59 52 28 7 0
2 789 30 734 25 0
3 805 30 305 470 0
4 1623 24 797 802 0

Table 4.6: The profile of the allocated objects and detected memory leaks when the scanner thread
(collector) scans all the kernel allocated pages.

compare with kmemleak We also compared the performance of our leak detector with the over-
head incurred by kmemleak, a leak detector which operates on the whole kernel. We used server
benchmarks from Filebench to evaluate performance. Figure 4.5 shows that the performance of
our leak detector is comparable to kmemleak but our system has overhead only when the module is
used where kmemleak has overhead on the entire kernel. Also our leak scan policies are customiz-
able and use fall back policy only when there is a constant increase in stale objects. kmemleak
always uses the fall back mechanism of scanning which is costly.
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Figure 4.3: Performance overhead (Throughput in MB/sec of common file system operations) of
buffer overflow detector when used to detect the buffer overflow in ext3 file system module. The
buffer overflow detector uses code centric instrumentation for the module code and data centric
instrumentation for the kernel code. The overflow detector watches all the memory allocated by
the ext3 and jdb modules.
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scanner thread was scheduled after every 100ms and the workload ran for 17 scan iterations.
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Figure 4.5: The performance overhead of our leak detector when using the Filebench benchmark.
It also compares the overhead of leak detector with kmemleak, which operates on the entire kernel.
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Chapter 5

Related Work

In this chapter, we discuss research topics that are related to our work. We first focus on the
different solutions of implementing software and hardware watchpoints. We later look into the
existing applications that can be used to detect memory errors.

5.1 Watchpoints

Watchpoints are an important debugging facility that help users identify data corruption bugs.
There have been several proposals in the past on how to implement hardware and software watch-
points.

Greathouse et al. [17] propose a hardware solution that efficiently supports an unlimited num-
ber of watchpoints. Watchpoints are stored in main memory and utilize two different on-chip
cache: a bitmap and a range cache, to accelerate performance. The bitmap lookaside buffer stores
fine-grained watchpoints while the range cache can efficiently hold large contiguous regions of
watchpoints and is useful for setting watchpoints on ranges of memory. Witchel and Asanovic [46]
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describe the implementation of the Mondriaan (also spelled Mondrian) memory protection domain
system for the Linux kernel. Mondriaan was designed with fine-grained inter-process protection
mechanism in mind, and is optimized for applications that do not perform frequent updates. The
protection information is stored in main memory and is cached in a protection lookaside buffer
(PLB). The implementation of protection domains using hardware enables fine- and coarse-grained
memory protection, the mechanism which is similar to hardware watchpoints.

Zhou et al. [49] introduce intelligent Watcher (also known as iWatcher), which provides ar-
chitectural support for monitoring program execution with minimum overhead. iWatcher stores
per-word watchpoints alongside the cache lines that contain the watched data. These bits are
initially set by hardware and are temporarily stored into a victim table on cache evictions. The
hardware falls back to virtual memory watchpoints if this table overflows. iWatcher can watch a
small number of ranges, which must be pinned in physical memory. If this range hardware over-
flows, the system falls back to setting a large number of per-word watchpoints. In general, this
system is inadequate for tools that require more than a small number of large ranges.

Unlike behavioral watchpoints, these approaches depend on specialised hardware and require
that applications using this hardware maintain context-specific information separately.

Suh et al. [43] propose a method of secure program execution by tracking dynamic information
flow. Their method uses a one-bit tag to indicate whether the corresponding data block is authentic
or spurious. The scheme can be extended to use multiple-bit tags if there are many types or
sources of data. Memory tagging at the hardware level allows their system to track tainted data as
it propagates through a running program. Behavioral watchpoints are similar insofar as a watched
address is tagged, and this tag propagates through a program.

Zhao et al. [48] describe a method for implementing an efficient and scalable DBT-based
watchpoint system. It uses on-demand based dynamic instrumentation to accelerate the software
debugger and supports more than a million watchpoints. It uses page protection and indirection
through a hash table to track watched memory. This approach does not supports watching ranges
of memory, or context-specific information.

Lueck et al. [23] introduce semantic watchpoints as part of the PinADX system, an extension
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of the PIN DBT framework. It enables interactive debugging by triggering debugger breakpoints
when semantic conditions are met. While similar in spirit to behavioral watchpoints, semantic
watchpoints do not maintain context-specific, per-watchpoint state.

Wahbe et al. [45] also proposes the implementation of software watchpoint using code patch-
ing and static analysis. Another interesting approach, proposed by Keppel. et al. [20] is to use
checkpoints for memory updates. However all these approaches are valid for userspace programs
only. The latest patches for MemCheck in Valgrind [42] also introduce support of adding watch-
point. They use data structure to maintain the watchlist and track the usage of watchpoints. This
puts a severe restriction on their performance.

5.2 Memory Debugging
There are many software, hardware or hybrid approaches proposed for detecting memory bugs.
Purify [38] and MemCheck [29] are two widely used software tools for detecting memory usage
problems. Purify was one of the first tool to combine detection of memory leaks with detection of
use-after-free errors. Purify uses a technique called object code insertion (OCI) to insert checking
code around every instruction in an application that references, allocates, and deallocates memory.
It uses a memory-coloring scheme to keep track of the state of every byte of memory in the appli-
cation. The link time instrumentation and reporting reads of uninitialized errors immediately result
in false positives. MemCheck [29] is build on the Valgrind dynamic instrumentation framework.
Dr. Memory is another memory checking tool developed using the DynamoRio instrumentation
system. Both Memcheck and Dr Memory use a similar approach for tracking memory usage and
both of them use Purifys basic leak detection approach to detect memory leak errors.

The memory debugging tools developed using behavioral watchpoints also maintain the state
of a memory block in its descriptor. The descriptor information gets encoded with the memory
address and is directly available when the address is accessed.

Parallel Inspector [35] is a commercial tool built on the Pin [7] dynamic instrumentation plat-
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form that combines data race detection with memory checking. But the details about its implemen-
tation are not publicly available. Insure++ [33] is another commercial memory checking tool. It
supports inserting instrumentation at various points, including in the source code prior to compile
time, at link time, and at runtime, but its more advanced features require source code instrumen-
tation. Insure++ also uses DBT-system to insert instrumentation at runtime. Unlike Insure++,
Behavioral watchpoints does not require source code support for detecting memory errors. It uses
a technique called reifying instrumentation to provide the benefits of high-level static analysis
information in specialising instruction level instrumentation.

There have been several proposals to extend current hardware support for debugging memory
related errors. DISE [11] (Dynamic Instruction Steam Editing) is a general hardware mechanism
for interactive debugging. It adds dynamic instructions for checking memory references into the
instruction stream during execution. Other solutions such as SafeMem [37], iWatcher [49], and
MemTracker [44] have also been proposed for detecting inappropriate usage of memory with low
overhead. Unlike behavioral watchpoints, they require specialised hardware to implement their
solutions.
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Chapter 6

Conclusion and Future Work

79



Bibliography

[1] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel, Chi-
Keung Luk, G. Lyons, H. Patil, and A. Tal. Analyzing Parallel Programs with Pin. Computer,
43(3):34–41, March 2010.

[2] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, Yoav
Ossia, Avi Owshanko, and Erez Petrank. A parallel, incremental, mostly concurrent garbage
collector for servers. ACM Trans. Program. Lang. Syst., 27(6):1097–1146, November 2005.

[3] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection. In
Proceedings of the ACM SIGPLAN 1991 conference on Programming language design and
implementation, PLDI ’91, pages 157–164, New York, NY, USA, 1991. ACM.

[4] Michael D. Bond and Kathryn S. McKinley. Tolerating memory leaks. In Proceedings of the
23rd ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, OOPSLA ’08, pages 109–126, New York, NY, USA, 2008. ACM.

[5] Derek Bruening and Qin Zhao. Practical memory checking with dr. memory. In Proceedings
of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO ’11, pages 213–223, Washington, DC, USA, 2011. IEEE Computer Society.

80



[6] Derek L. Bruening. Efficient, transparent, and comprehensive runtime code manipulation.
PhD thesis, Cambridge, MA, USA, 2004.

[7] Prashanth P. Bungale and Chi-Keung Luk. Pinos: a programmable framework for whole-
system dynamic instrumentation. In In VEE, 2007.

[8] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis Akritidis,
Austin Donnelly, Paul Barham, and Richard Black. Fast Byte-Granularity Software Fault
Isolation. In SOSP, 2009.

[9] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Efficient flow tracing with
dynamic binary rewriting. In Proceedings of the 11th IEEE Symposium on Computers and
Communications, ISCC ’06, pages 749–754, Washington, DC, USA, 2006. IEEE Computer
Society.

[10] Corbet. Detecting kernel memory leaks. http://lwn.net/Articles/187979/,
2006.

[11] Marc L. Corliss, E Christopher Lewis, and Amir Roth. Low-overhead interactive debugging
via dynamic instrumentation with dise. In Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, HPCA ’05, pages 303–314, Washington, DC,
USA, 2005. IEEE Computer Society.

[12] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao Zhang,
and Paul Barham. Vigilante: end-to-end containment of internet worms. In Proceedings of
the twentieth ACM symposium on Operating systems principles, SOSP ’05, pages 133–147,
New York, NY, USA, 2005. ACM.

[13] Frank C. EIgler, Vara Prasad, Will Cohen, Hien Nguyen, Martin Hunt, Jim Keniston, and
Brad Chen. Architecture of systemtap: a linux trace/probe tool, 2005.

81



[14] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive Kernel Instrumenta-
tion via Dynamic Binary Translation. In ASPLOS, 2012.

[15] Bryan Ford and Russ Cox. Vx32: lightweight user-level sandboxing on the x86. In USENIX
2008 Annual Technical Conference on Annual Technical Conference, ATC’08, pages 293–
306, Berkeley, CA, USA, 2008. USENIX Association.

[16] Peter Goodman, Akshay Kumar, Angela Demke Brown, and Ashvin Goel. Granary: Com-
prehensive kernel module instrumentation. Poster at OSDI’12, 2012.

[17] Joseph L. Greathouse, Hongyi Xin, Yixin Luo, and Todd M. Austin. A case for unlimited
watchpoints. In ASPLOS, 2012.

[18] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection without paging. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’05, pages 143–153, New York, NY, USA, 2005. ACM.

[19] S.C. Kendall. Bcc: Run-time checking for C programs. In USENIX Toronto 1983 Summer
Conference Proceedings, 1983.

[20] David Keppel. Fast data breakpoints. Technical Report UWCSE 93-04-06, University of
Washington Department of Computer Science and Engineering, April 1993.

[21] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via pro-
gram shepherding. In Proceedings of the 11th USENIX Security Symposium, pages 191–206,
Berkeley, CA, USA, 2002. USENIX Association.

[22] Byeongcheol Lee, Ben Wiedermann, Martin Hirzel, Robert Grimm, and Kathryn S. McKin-
ley. Jinn: synthesizing dynamic bug detectors for foreign language interfaces. In Proceedings
of the 2010 ACM SIGPLAN conference on Programming language design and implementa-
tion, PLDI ’10, pages 36–49, New York, NY, USA, 2010. ACM.

82



[23] Gregory Lueck, Harish Patil, and Cristiano Pereira. PinADX: an interface for customizable
debugging with dynamic instrumentation. In CGO, 2012.

[24] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. Software fault isolation with API integrity and multi-principal modules. In SOSP,
2011.

[25] Barton P. Miller and Andrew R. Bernat. Anywhere, any time binary instrumentation. In
ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and Engineer-
ing (PASTE), Szeged Hungary, September 2011.
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