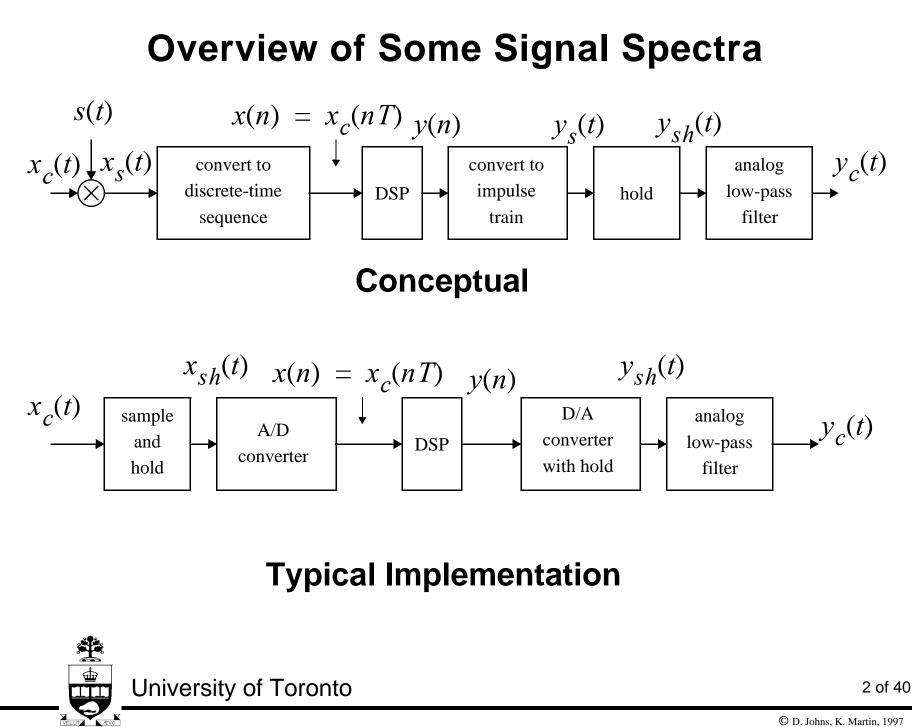
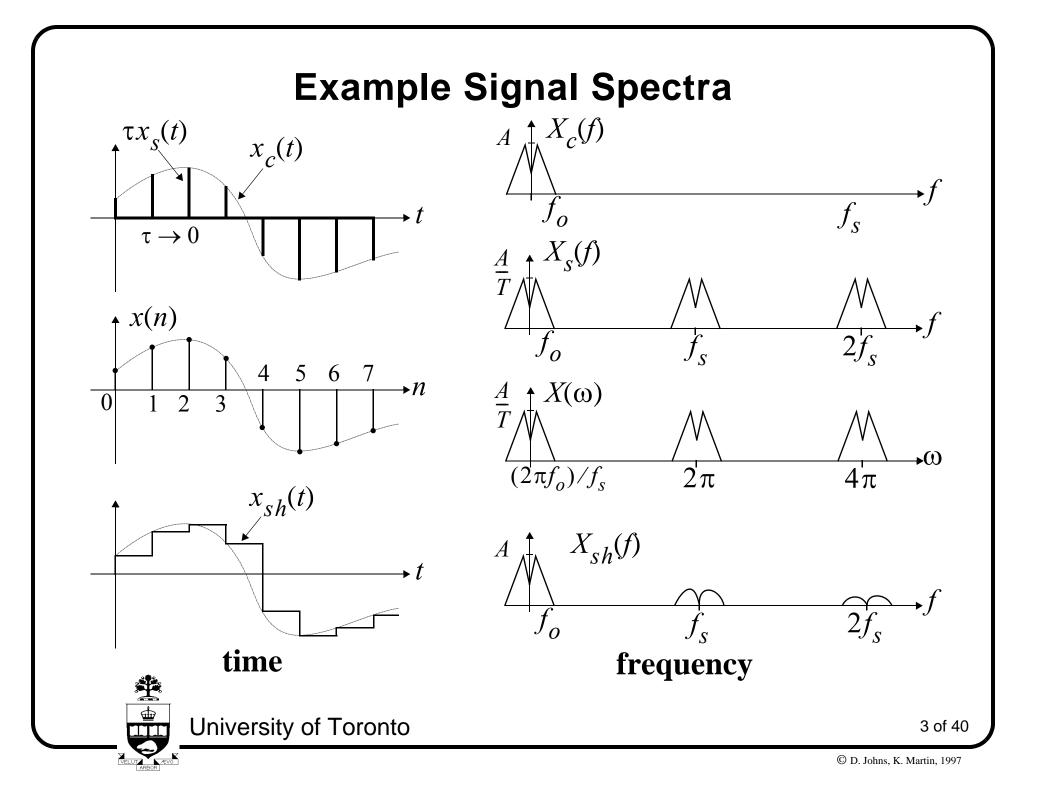
Discrete-Time

David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu)

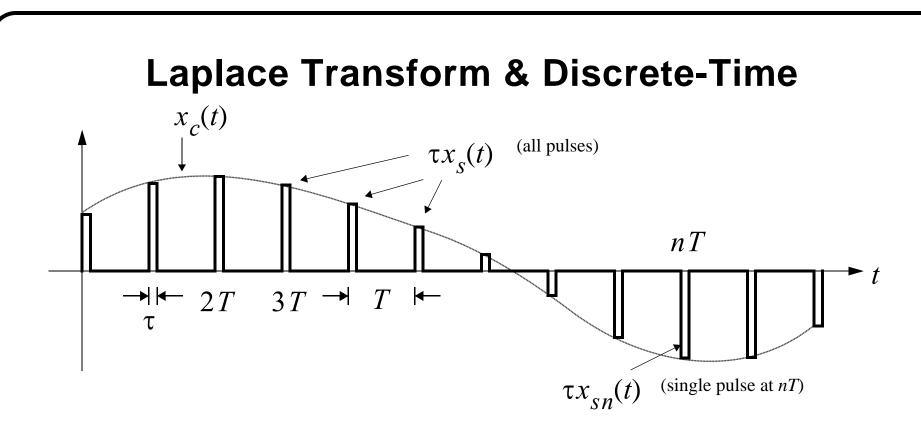




Example Signal Spectra

- $X_s(f)$ has same spectra as $X_c(f)$ but repeats every f_s (assuming no aliasing occurs).
- $X(\omega)$ has same spectra as $X_s(f)$ freq axis normalized.

• Spectra for $X_{sh}(f)$ equals $X_s(f)$ multiplied by $\frac{\sin x}{x}$ response — in effect, filtering out high frequency images.



- $x_s(t)$ scaled by τ such that the area under the pulse at nT equals the value of $x_c(nT)$.
- In other words, at t = nT, we have

$$x_{s}(nT) = \frac{x_{c}(nT)}{\tau}$$
(1)

5 of 40

VELUT ÆVO

Laplace Transform & Discrete-Time

- Thus as $\tau \to 0$, height of $x_s(t)$ at time nT goes to ∞ and so we plot $\tau x_s(t)$ instead.
- Define $\vartheta(t)$ to be the step function,

$$\vartheta(t) \equiv \begin{cases} 1 & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$
(2)

• then single-pulse signal, $x_{sn}(t)$, can be written as

$$x_{sn}(t) = \frac{x_c(nT)}{\tau} [\vartheta(t - nT) - \vartheta(t - nT - \tau)]$$
(3)

and the entire signal $x_s(t)$ as

$$x_{s}(t) = \sum_{sn}^{\infty} x_{sn}(t)$$
 (4)

University of Toronto

Laplace Transform & Discrete-Time

- Above signals are defined for *all time* we can find Laplace transforms of these signals.
- The Laplace transform $X_{sn}(s)$ for $x_{sn}(t)$ is

$$X_{sn}(s) = \frac{1}{\tau} \left(\frac{1 - e^{-s\tau}}{s} \right) x_c(nT) e^{-snT}$$
(5)

and X(s) is simply a linear combination of $x_{sn}(t)$, which results in

$$X_{s}(s) = \frac{1}{\tau} \left(\frac{1 - e^{-s\tau}}{s} \right) \sum_{n = -\infty}^{\infty} x_{c}(nT) e^{-snT}$$
(6)

Laplace Transform & Discrete-Time

• Using the expansion $e^x = 1 + x + \frac{x^2}{2!} + \dots$, when $\tau \to 0$, the term before the summation in (6) goes to unity.

• Therefore, as
$$\tau \to 0$$
,

$$X_{s}(s) = \sum_{n=1}^{\infty} x_{c}(nT)e^{-snT}$$

 $n \equiv -\infty$

(/)

Spectra of Discrete-Time Signals

• $x_s(t)$ spectra can be found by replacing $s = j\omega$ in (7)

 \mathbf{u}

- However, a more intuitive approach is ...
- Define a periodic pulse train, *s*(*t*) as

$$s(t) = \sum \delta(t - nT)$$
 (8)

where $\delta(t)$ is the unit impulse function.

• Then $x_s(t)$ can be written as

$$x_s(t) = x_c(t)s(t)$$
(9)

$$X_{s}(j\omega) = \frac{1}{2\pi} X_{c}(j\omega) \otimes S(j\omega)$$
(10)

where \otimes denotes convolution.

University of Toronto

Spectra of Discrete-Time Signals

• Since the Fourier transform of a periodic impulse train is another periodic impulse train we have

$$S(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\frac{2\pi}{T})$$
(11)

• Thus, the spectra $X_{s}(j\omega)$ is found to be

$$X_{s}(j\omega) = \frac{1}{T} \sum_{k = -\infty}^{\infty} X_{c}(j\omega - \frac{jk2\pi}{T})$$
(12)

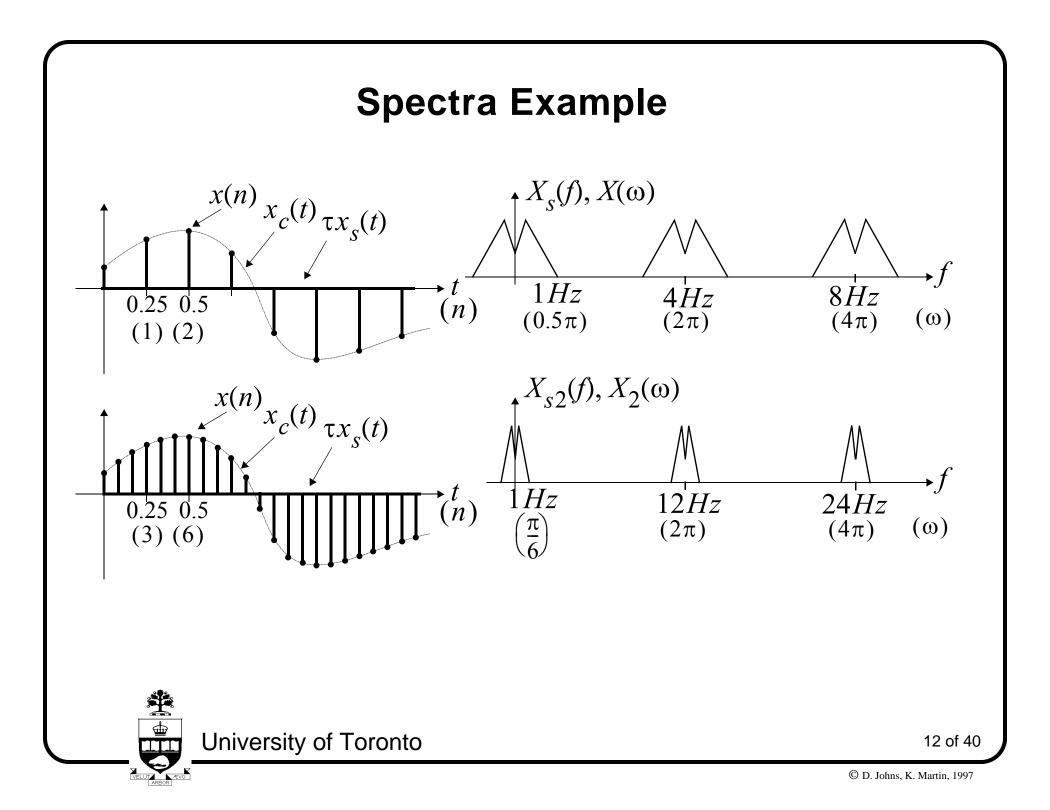
• or equivalently,

$$X_{s}(f) = \frac{1}{T} \sum_{k = -\infty}^{\infty} X_{c}(j2\pi f - jk2\pi f_{s})$$
(13)

University of Toronto

Spectra for Discrete-Time Signals

- The spectra for the sampled signal $x_s(t)$ equals a sum of shifted spectra of $x_c(t)$.
- **No aliasing** will occur if $X_c(j\omega)$ is bandlimited to $f_s/2$.
- Note that x_s(t) can not exist is practice as it would require an infinite amount of power (seen by integrating X_s(f) over all frequencies).



Z-Transform

- The z-transform is merely a shorthand notation for (7).
- Specifically, defining

$$z \equiv e^{sT}$$
(14)

• we can write

$$X(z) \equiv \sum x_c(nT) z^{-n}$$
 (15)

 $n = -\infty$

 ∞

• where X(z) is called the z-transform of the samples $x_c(nT)$.

Z-Transform

• 2 properties of the z-transform are:

— If $x(n) \leftrightarrow X(z)$, then $x(n-k) \leftrightarrow z^{-k}X(z)$

— Convolution in the time domain is equivalent to multiplication in the frequency domain.

X(*z*) is not a function of the sampling-rate!

- A 1Hz signal sampled at 10Hz has the same transform as a similar 1kHz signal sampled at 10kHz
- X(z) is only related to the numbers, $x_c(nT)$ while $X_s(s)$ is the Laplace transform of the signal $x_s(t)$ as $\tau \to 0$.
- Think of the series of numbers as having a samplerate normalized to T = 1 (i.e. $f_s = 1Hz$).

University of Toronto

Z-Transform

Such a normalization results in

$$X_{s}(f) = X(\frac{2\pi f}{f_{s}})$$
(16)

or equivalently, a frequency scaling of

$$\omega = \frac{2\pi f}{f_s} \tag{17}$$

- Thus, discrete-time signals have ω in units of radians/sample.
- Continuous-time signals have frequency units of cycles/ second (hertz) or radians/second.

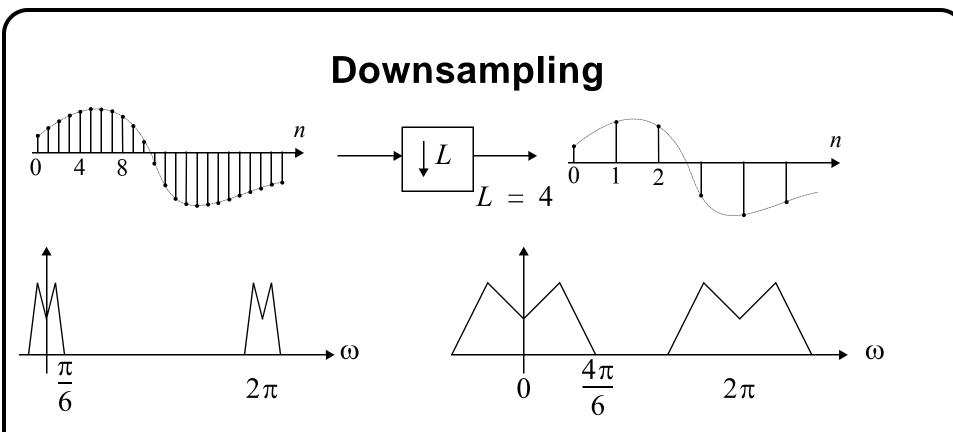


[©] D. Johns, K. Martin, 1997

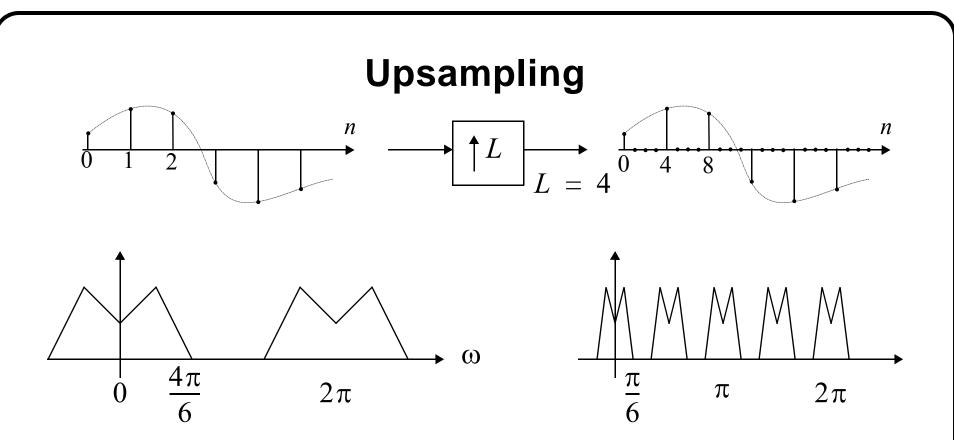
Example Sinusoidal Signals

- A continuous-time sinusoidal signal of 1kHz when sampled at 4kHz will change by $\pi/2$ radians between each sample.
- Such a discrete-time signal is defined to have a frequency of $\pi/2$ rad/sample.
- Note that discrete-time signals are not unique since the addition of 2π will result in the same signal.
- For example, a discrete-time signal having a frequency of $\pi/4$ rad/sample is identical to that of $9\pi/4$ rad/sample.
- Normally discrete-time signals are defined to have frequency components only between $-\pi$ and π rad/sample.

University of Toronto



- Keep every L'th sample and throw away L-1 samples.
- It expands the original spectra by L.
- For aliasing not to occur, original signal must be bandlimited to π/L .



- Insert L-1 zero values between samples
- The frequency axis is scaled by L such that 2π now occurs where $L2\pi$ occurred in the original signal.
- No worry about aliasing here.

Discrete-Time Filters

$$u(n) \longrightarrow H(z) \longrightarrow y(n)$$
(discrete-time filter) $y(n)$ equals $h(n)$ if $u(n)$ is an impulse)

- An input series of numbers is applied to a discretetime filter to create an output series of numbers.
- This filtering of discrete-time signals is most easily visualized with the shorthand notation of *z*-transforms.

Transfer-Functions

• Similar to those for continuous-time filters except instead of polynomials in "s", polynomials in "z" are obtained.

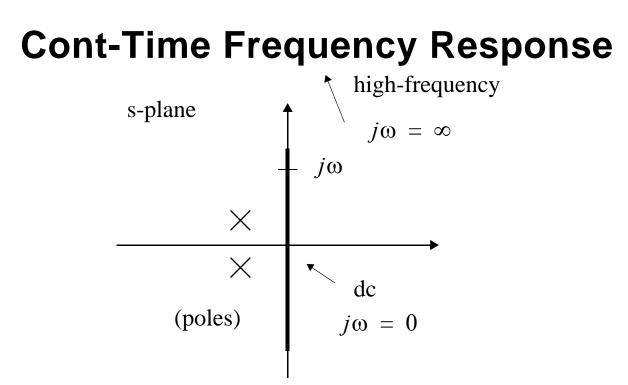
University of Toronto

Cont-Time Transfer-Function

• Low-pass continuous-time filter, $H_c(s)$,

$$H_c(s) = \frac{4}{s^2 + 2s + 4}$$
(18)

- The poles are the roots of the denominator polynomial
- Poles: $-1.0 \pm 1.7321j$ for this example.
- Zeros: Defined to have two zeros at ∞ since the den poly is two orders higher than the numerator poly.



- Poles and zeros plotted in the *s*-plane.
- Substitution $s = j\omega$ is equivalent to finding the magnitude and phase of vectors from a point along the $j\omega$ axis to all the poles and zeros.

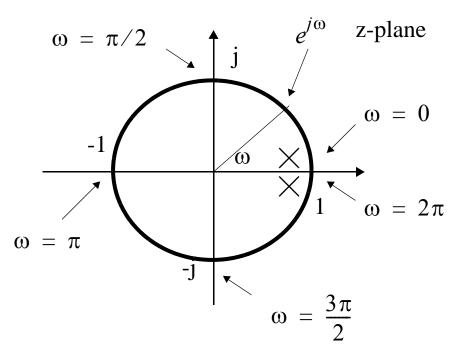
Discrete-Time Transfer-Function

$$H(z) = \frac{0.05}{z^2 - 1.6z + 0.65}$$
(19)

- Poles: 0.8 ± 0.1*j* in the *z*-plane and two zeros are again at ∞.
- To find the frequency response of H(z), the poles and zeros can be plotted in the *z*-plane, and the unit

circle contour is used, $z = e^{j\omega}$

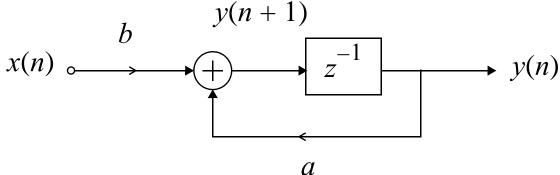
Discrete-Time Frequency Response



• Note that poles or zeros occurring at z = 0 do not affect the magnitude response of H(z) since a vector from the origin to the unit circle always has a length of unity. However, they would affect the phase response.

Discrete-Time Frequency Response

- z = 1 corresponds to the frequency response at both dc (i.e. $\omega = 0$) and for $\omega = 2\pi$.
- The time normalization of setting T = 1 implies that $\omega = 2\pi$ is equivalent to the sampling-rate speed (i.e. $f = f_s$) for $X_s(f)$.
- As with cont-time filter, if filter coefficients are real, poles and zeros occur in complex-conjugate pairs magnitude is symmetric, phase is anti-symmetric.
- Going around the circle again would give the same result as the first time implying that the frequency response repeats every 2π .



- To realize rational polynomials in "z", discrete-time filters use delay elements (i.e. " z^{-1} " building blocks) much the same way that analog filters can be formed using integrators (i.e. " s^{-1} " building blocks).
- The result is finite difference equations describing discrete-time filters

• A finite difference equation can be written for above system

$$y(n+1) = bx(n) + ay(n)$$
 (20)

• In the *z*-domain, this equation is written as

$$zY(z) = bX(z) + aY(z)$$
(21)

• We find H(z) given by

$$H(z) \equiv \frac{Y(z)}{X(z)} = \frac{b}{z-a}$$
(22)

which has a pole on the real axis at z = a.

• To test for stability, let the input x(n) be an impulse

y(0) = k

where k is some arbitrary initial state value for y.

$$y(1) = b + ak$$

$$y(2) = ab + a^{2}k$$

$$y(3) = a^{2}b + a^{3}k$$

$$y(4) = a^{3}b + a^{4}k$$

:

• The response, h(n), is seen to be given by

1

$$h(n) = \begin{cases} 0 \ (n < 1) \\ (a^{n-1}b + a^n k) \ (n \ge 1) \end{cases}$$
(23)

- This response remains bounded only when |*a*| ≤ 1 for this first-order filter and is unbounded otherwise.
- In general, a linear time-invariant discrete-time filter, *H*(*z*), is stable if and only if all its poles are located within the unit circle.

IIR Filters

- Infinite-Impulse-Response (IIR) filters are those discrete-time filters that when excited by an impulse, their outputs remain non-zero assuming infinite precision arithmetic.
- The above example is IIR when $a \neq 0$
- IIR filters can be more efficient when long impulse responses are needed.
- They have some unusual behaviors due to finiteprecision effects such as limit-cycles.

FIR Filters

- Finite-Impulse-Response (FIR) filters are those discrete-time filters that when excited by an impulse, their outputs go precisely to zero (and remain zero) after a finite value of *n*.
- Example running average of 3

$$y(n) = \frac{1}{3}(x(n) + x(n-1) + x(n-2))$$

$$H(z) = \frac{1}{3}\sum_{i=0}^{2} z^{-i}$$
(24)
(25)

- Has poles but they all occur at z = 0.
- FIR filters are always stable and exact linear phase filters can be realized.

Bilinear Transform

• Consider $H_c(p)$ as a continuous-time transfer-function (where "p" is the complex variable equal to $\sigma_p + j\Omega$), the bilinear transform is defined to be given by,

$$p = \frac{z-1}{z+1}$$
(26)

• The inverse transformation is given by,

$$z = \frac{1+p}{1-p} \tag{27}$$

The *z*-plane locations of 1 and -1 (i.e. dc and *f_s*/2) are mapped to *p*-plane locations of 0 and ∞, respectively.

Bilinear Transform

• The unit circle, $z = e^{j\omega}$, in the *z*-plane is mapped to the entire $j\Omega$ axis in the *p*-plane.

$$p = \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \frac{e^{j(\omega/2)}(e^{j(\omega/2)} - e^{-j(\omega/2)})}{e^{j(\omega/2)}(e^{j(\omega/2)} + e^{-j(\omega/2)})}$$
(28)
$$= \frac{2j\sin(\omega/2)}{2\cos(\omega/2)} = j\tan(\omega/2)$$
(29)

• Results in the following frequency "warping".

$$\Omega = \tan(\omega/2) \tag{30}$$

Bilinear Transform Filter Design

• Design a continuous-time transfer-function, $H_c(p)$, and choose the discrete-time transfer-function, H(z), such that

$$H(z) \equiv H_c((z-1)/(z+1))$$
 (31)

so that

$$H(e^{j\omega}) = H_c(j\tan(\omega/2))$$
 (32)

- The response of *H*(*z*) is seen to be equal to the response of *H*_c(*p*) except with a frequency "warping"
- Order of the cont-time and discrete-time also same.

Bilinear Design Example

- Find a first-order H(z) that has a 3db frequency at $f_s/20$, a zero at -1 and a dc gain of one.
- Using (30), the frequency value, $f_s/20$, or equivalently, $\omega = (2\pi)/20 = 0.314159$ is mapped to $\Omega = 0.1584$.
- Thus, $H_c(p)$ should have a 3dB frequency value of 0.1584 rad/s.
- Such a 3db frequency value is obtained by having a p-plane zero equal to ∞ and pole equal to -0.1584.

Bilinear Design Example

- Transforming these continuous-time pole and zero back using (27) results in a *z*-plane zero at -1 and a pole at 0.7265.
- Therefore, H(z) appears as

$$H(z) = \frac{k(z+1)}{z-0.7265}$$
(33)

• The constant k can be determined by setting the dc gain to one, or equivalently, |H(1)| = 1 which results in k = 0.1368.

Sample-and-Hold Response

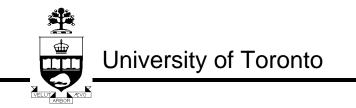
• A sample-and-held signal, $x_{sh}(t)$, is related to its sampled signal by the mathematical relationship,

 ∞

$$x_{sh}(t) = \sum_{n = -\infty} x_c(nT) [\vartheta(t - nT) - \vartheta(t - nT - T)]$$
(34)

 x_{sh}(t) is well-defined for all time and thus the Laplace transform can be found to be equal to

$$X_{sh}(s) = \frac{1 - e^{-sT}}{s} \sum_{\substack{n = -\infty \\ s = \frac{1 - e^{sT}}{s}} X_s(s)}^{\infty} x_c(nT) e^{-snT}$$



(35)

Sample-and-Hold Response

• The hold transfer-function, $H_{sh}(s)$, is equal to

$$H_{sh}(s) = \frac{1 - e^{-sT}}{s}$$
 (36)

• The spectra for $H_{sh}(s)$ is found by substituting $s = j\omega$

$$H_{sh}(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = T \times e^{\frac{-j\omega T}{2}} \times \frac{\sin\left(\frac{\omega T}{2}\right)}{\left(\frac{\omega T}{2}\right)}$$
(37)

Sample-and-Hold Response

• The magnitude of this response is given by

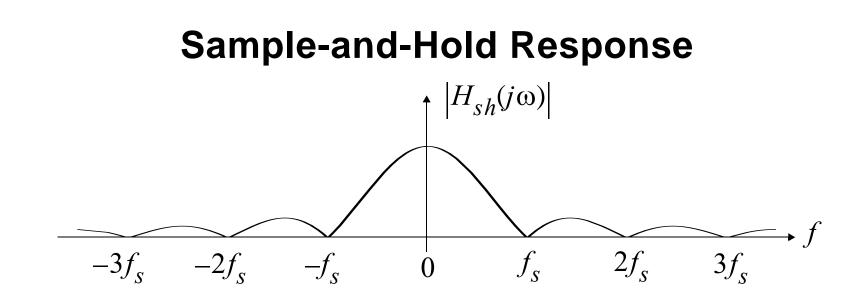
$$|H_{sh}(j\omega)| = T \frac{\left|\sin\left(\frac{\omega T}{2}\right)\right|}{\left|\frac{\omega T}{2}\right|}$$

or
$$|H_{sh}(f)| = T \frac{\left| \sin\left(\frac{\pi f}{f_s}\right) - \frac{\pi f}{f_s}\right|}{\left|\frac{\pi f}{f_s}\right|}$$

(38)

• and is often referred to as the " $\frac{\sin x}{x}$ " or "sinc" response.

University of Toronto



- This frequency shaping of a sample-and-hold only occurs for a continuous-time signal.
- Specifically, a sample-and-hold before an A/D converter does not aid in any anti-aliasing requirement since the A/D converter has a true discrete-time output.

