Switched-Capacitor Circuits

David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu)

1 of 60

© D. Johns, K. Martin, 1997

Basic Building Blocks

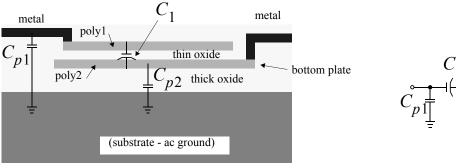
Opamps

- · Ideal opamps usually assumed.
- Important non-idealities
 - dc gain: sets the accuracy of charge transfer, hence, transfer-function accuracy.
 - unity-gain freq, phase margin & slew-rate: sets the max clocking frequency. A general rule is that unity-gain freq should be 5 times (or more) higher than the clock-freq.
 - dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise.

University of Toronto

Basic Building Blocks

Double-Poly Capacitors



cross-section view

equivalent circuit

- Substantial parasitics with large bottom plate capacitance (20 percent of C_1)
- Also, metal-metal capacitors are used but have even larger parasitic capacitances.

University of Toronto

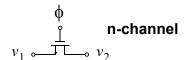
3 of 60

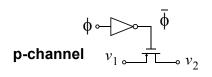
D. Johns, K. Martin, 1997

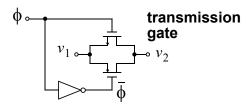
Basic Building Blocks

Switches

Symbol





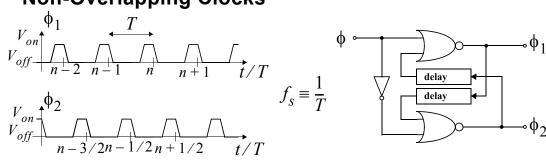


- · Mosfet switches are good switches.
 - off-resistance near $G\Omega$ range
 - on-resistance in 100Ω to $5k\Omega$ range (depends on transistor sizing)
- However, have non-linear parasitic capacitances.

University of Toronto

Basic Building Blocks

Non-Overlapping Clocks



- Non-overlapping clocks both clocks are never on at same time
- · Needed to ensure charge is not inadvertently lost.
- Integer values occur at end of φ₁.
- End of ϕ_2 is 1/2 off integer value.

University of Toronto

5 of 60

D. Johns, K. Martin, 1997

Switched-Capacitor Resistor Equivalent

$$V_{1} \stackrel{\downarrow}{=} V_{2}$$

$$\Delta Q = C_{1}(V_{1} - V_{2}) \text{ every clock period}$$

$$Q_{x} = C_{x}V_{x}$$

$$V_{1} \stackrel{R_{eq}}{=} V_{2}$$

$$R_{eq} = \frac{T}{C_{1}}$$

$$(1)$$

• C_1 charged to V_1 and then V_2 during each clk period.

$$\Delta Q_1 = C_1(V_1 - V_2) \tag{2}$$

Find equivalent average current

$$I_{avg} = \frac{C_1(V_1 - V_2)}{T} \tag{3}$$

where T is the clk period.

University of Toronto

Switched-Capacitor Resistor Equivalent

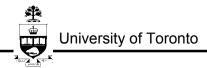
· For equivalent resistor circuit

$$I_{eq} = \frac{V_1 - V_2}{R_{eq}}$$
 (4)

Equating two, we have

$$R_{eq} = \frac{T}{C_1} = \frac{1}{C_1 f_s}$$
 (5)

- This equivalence is useful when looking at low-freq portion of a SC-circuit.
- For higher frequencies, discrete-time analysis is used.



7 of 60

© D. Johns, K. Martin, 1997

Resistor Equivalence Example

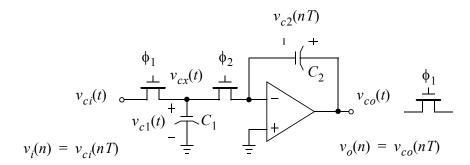
- What is the equivalent resistance of a 5pF capacitance sampled at a clock frequency of 100kHz.
- Using (5), we have

$$R_{eq} = \frac{1}{(5 \times 10^{-12})(100 \times 10^3)} = 2M\Omega$$

- Note that a very large equivalent resistance of $2M\Omega$ can be realized.
- Requires only 2 transistors, a clock and a relatively small capacitance.
- In a typical CMOS process, such a large resistor would normally require a huge amount of silicon area.

University of Toronto

Parasitic-Sensitive Integrator

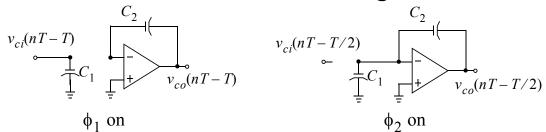


- Start by looking at an integrator which IS affected by parasitic capacitances
- Want to find output voltage at end of ϕ_1 in relation to input sampled at end of ϕ_1 .

9 of 60

C D. Johns, K. Martin, 1997

Parasitic-Sensitive Integrator



• At end of ϕ_2

$$C_2 v_{co}(nT - T/2) = C_2 v_{co}(nT - T) - C_1 v_{ci}(nT - T)$$
 (6)

But would like to know the output at end of φ₁

$$C_2 v_{co}(nT) = C_2 v_{co}(nT - T/2)$$
 (7)

· leading to

$$C_2 v_{co}(nT) = C_2 v_{co}(nT - T) - C_1 v_{ci}(nT - T)$$
 (8)

University of Toronto

Parasitic-Sensitive Integrator

· Modify above to write

$$v_o(n) = v_o(n-1) - \frac{C_1}{C_2} v_i(n-1)$$
 (9)

and taking z-transform and re-arranging, leads to

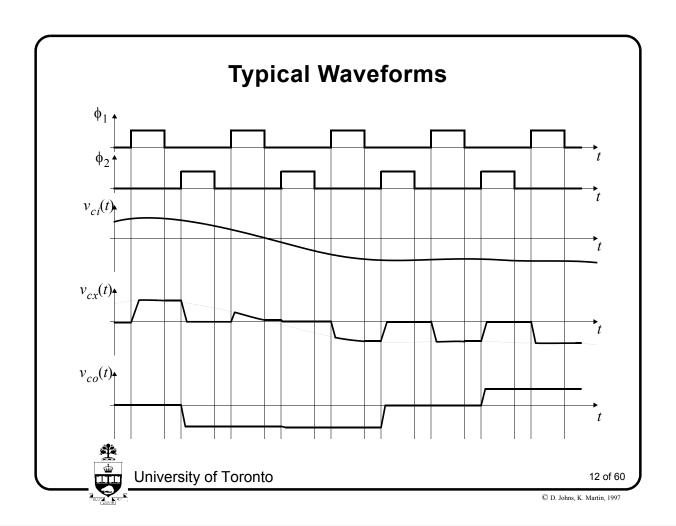
$$H(z) = \frac{V_o(z)}{V_i(z)} = -\left(\frac{C_1}{C_2}\right) \frac{1}{z-1}$$
 (10)

- Note that gain-coefficient is determined by a ratio of two capacitance values.
- Ratios of capacitors can be set VERY accurately on an integrated circuit (within 0.1 percent)
- Leads to very accurate transfer-functions.

University of Toronto

11 of 60

© D. Johns, K. Martin, 1997



Low Frequency Behavior

· Equation (10) can be re-written as

$$H(z) = -\left(\frac{C_1}{C_2}\right) \frac{z^{-1/2}}{z^{1/2} - z^{-1/2}}$$
 (11)

· To find freq response, recall

$$z = e^{j\omega T} = \cos(\omega T) + j\sin(\omega T)$$
 (12)

$$z^{1/2} = \cos\left(\frac{\omega T}{2}\right) + j\sin\left(\frac{\omega T}{2}\right) \tag{13}$$

$$z^{-1/2} = \cos\left(\frac{\omega T}{2}\right) - j\sin\left(\frac{\omega T}{2}\right) \tag{14}$$

$$H(e^{j\omega T}) = -\left(\frac{C_1}{C_2}\right) \frac{\cos\left(\frac{\omega T}{2}\right) - j\sin\left(\frac{\omega T}{2}\right)}{j2\sin\left(\frac{\omega T}{2}\right)}$$
(15)

University of Toronto

13 of 60

Low Frequency Behavior

• Above is exact but when $\omega T \ll 1$ (i.e., at low freq)

$$H(e^{j\omega T}) \cong -\left(\frac{C_1}{C_2}\right) \frac{1}{j\omega T} \tag{16}$$

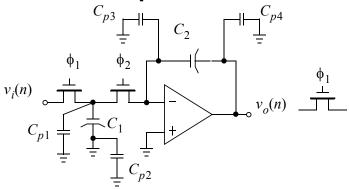
 Thus, the transfer function is same as a continuoustime integrator having a gain constant of

$$K_I \cong \frac{C_1}{C_2} \frac{1}{T} \tag{17}$$

which is a function of the integrator capacitor ratio and clock frequency only.

University of Toronto

Parasitic Capacitance Effects



Accounting for parasitic capacitances, we have

$$H(z) = -\left(\frac{C_1 + C_{p1}}{C_2}\right) \frac{1}{z - 1} \tag{18}$$

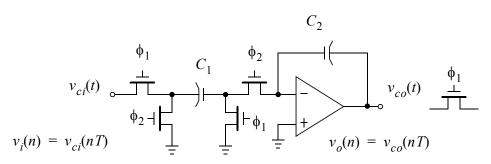
• Thus, gain coefficient is not well controlled and partially non-linear (due to C_{p1} being non-linear).

University of Toronto

15 of 60

© D. Johns, K. Martin, 1997

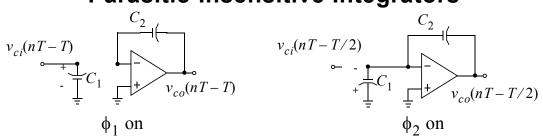
Parasitic-Insensitive Integrators



- By using 2 extra switches, integrator can be made insensitive to parasitic capacitances
 - more accurate transfer-functions
 - better linearity (since non-linear capacitances unimportant)

University of Toronto

Parasitic-Insensitive Integrators



• Same analysis as before except that C_1 is switched in polarity before discharging into C_2 .

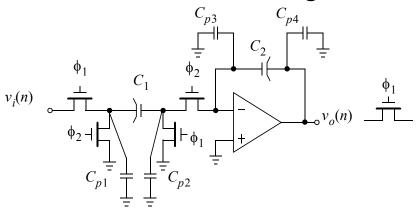
$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = \left(\frac{C_1}{C_2}\right) \frac{1}{z-1}$$
 (19)

A positive integrator (rather than negative as before)

17 of 60

C D. Johns, K. Martin, 1997

Parasitic-Insensitive Integrators



- C_{p3} has little effect since it is connected to virtual gnd
- C_{p4} has little effect since it is driven by output
- C_{p2} has little effect since it is either connected to virtual gnd or physical gnd.

University of Toronto

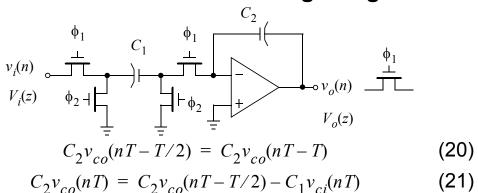
Parasitic-Insensitive Integrators

- C_{p1} is continuously being charged to $v_i(n)$ and discharged to ground.
- ϕ_1 on the fact that C_{p1} is also charged to $v_i(n-1)$ does not affect C_1 charge.
- ϕ_2 on C_{p1} is discharged through the ϕ_2 switch attached to its node and does not affect the charge accumulating on C_2 .
- While the parasitic capacitances may slow down settling time behavior, they do not affect the discretetime difference equation

19 of 60

© D. Johns, K. Martin, 1997

Parasitic-Insensitive Inverting Integrator



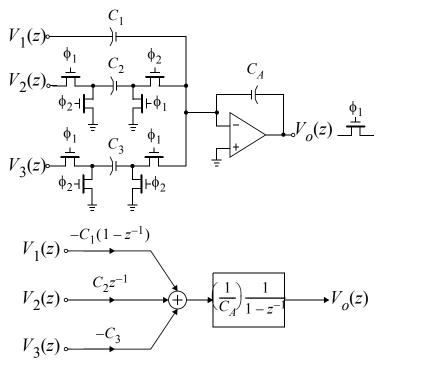
Present output depends on present input(delay-free)

$$H(z) = \frac{V_o(z)}{V_i(z)} = -\left(\frac{C_1}{C_2}\right) \frac{z}{z-1}$$
 (22)

 Delay-free integrator has negative gain while delaying integrator has positive gain.

University of Toronto

Signal-Flow-Graph Analysis

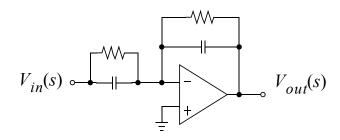


University of Toronto

21 of 60

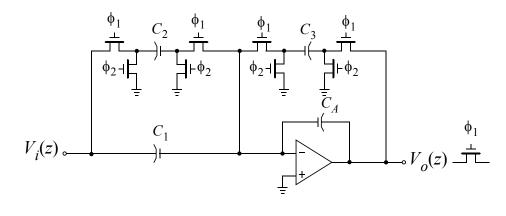
© D. Johns, K. Martin, 1997

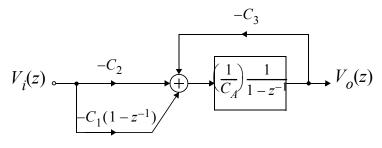
First-Order Filter



- Start with an active-RC structure and replace resistors with SC equivalents.
- · Analyze using discrete-time analysis.

First-Order Filter





University of Toronto

23 of 60

D. Johns, K. Martin, 1997

First-Order Filter

$$C_A(1-z^{-1})V_o(z) = -C_3V_o(z) - C_2V_i(z) - C_1(1-z^{-1})V_i(z)$$
 (23)

$$H(z) = \frac{V_o(z)}{V_i(z)} = \frac{\left(\frac{C_1}{C_A}\right)(1 - z^{-1}) + \left(\frac{C_2}{C_A}\right)}{1 - z^{-1} + \frac{C_3}{C_A}}$$

$$= \frac{\left(\frac{C_1 + C_2}{C_A}\right)z - \frac{C_1}{C_A}}{\left(1 + \frac{C_3}{C_A}\right)z - 1}$$
(24)

University of Toronto

First-Order Filter

 The pole of (24) is found by equating the denominator to zero

$$z_p = \frac{C_A}{C_A + C_3} \tag{25}$$

- For positive capacitance values, this pole is restricted to the real axis between 0 and 1

 circuit is always stable.
- The zero of (24) is found to be given by

$$z_z = \frac{C_1}{C_1 + C_2} \tag{26}$$

Also restricted to real axis between 0 and 1.

University of Toronto

25 of 60

D. Johns, K. Martin, 1997

First-Order Filter

The dc gain is found by setting z = 1 which results in

$$H(1) = \frac{-C_2}{C_3} \tag{27}$$

- Note that in a fully-differential implementation, effective negative capacitances for C_1 , C_2 and C_3 can be achieved by simply interchanging the input wires.
- In this way, a zero at z = -1 could be realized by setting

$$C_1 = -0.5C_2 \tag{28}$$

Jniversity of Toronto

First-Order Example

- Find the capacitance values needed for a first-order SC-circuit such that its 3dB point is at 10kHz when a clock frequency of 100kHz is used.
- It is also desired that the filter have zero gain at 50kHz (i.e. z = -1) and the dc gain be unity.
- Assume $C_A = 10pF$.

Solution

- Making use of the bilinear transform p = (z-1)/(z+1) the zero at -1 is mapped to $\Omega = \infty$.
- The frequency warping maps the -3dB frequency of 10kHz (or 0.2π rad/sample) to

27 of 60

© D. Johns, K. Martin, 1997

First-Order Example

$$\Omega = \tan\left(\frac{0.2\pi}{2}\right) = 0.3249 \tag{29}$$

• in the continuous-time domain leading to the continuous-time pole, $p_{\it p}$, required being

$$p_p = -0.3249 (30)$$

• This pole is mapped back to \boldsymbol{z}_p given by

$$z_p = \frac{1 + p_p}{1 - p_p} = 0.5095 \tag{31}$$

• Therefore, H(z) is given by

$$H(z) = \frac{k(z+1)}{z - 0.5095} \tag{32}$$

University of Toronto

First-Order Example

• where k is determined by setting the dc gain to one (i.e. H(1) = 1) resulting

$$H(z) = \frac{0.24525(z+1)}{z-0.5095} \tag{33}$$

· or equivalently,

$$H(z) = \frac{0.4814z + 0.4814}{1.9627z - 1} \tag{34}$$

• Equating these coefficients with those of (24) (and assuming $C_A = 10 pF$) results in

$$C_1 = 4.814pF (35)$$

$$C_2 = -9.628pF (36)$$

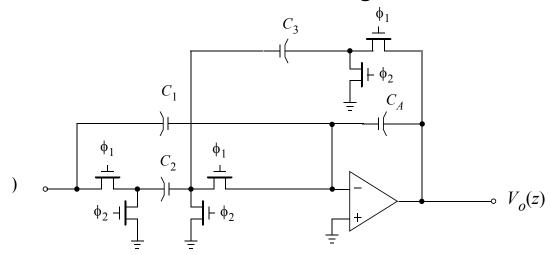
$$C_3 = 9.628pF (37)$$

University of Toronto

29 of 60

© D. Johns, K. Martin, 1997

Switch Sharing

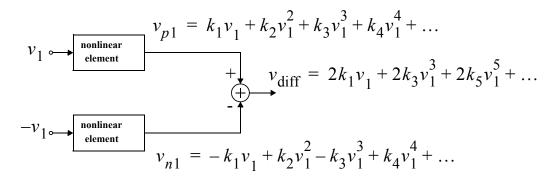


 Share switches that are always connected to the same potentials.

University of Toronto

Fully-Differential Filters

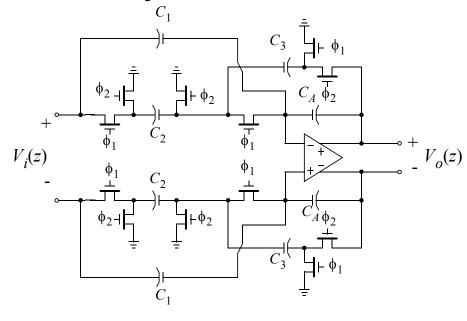
- · Most modern SC filters are fully-differential
- Difference between two voltages represents signal (also balanced around a common-mode voltage).
- · Common-mode noise is rejected.
- · Even order distortion terms cancel



31 of 60

© D. Johns, K. Martin, 1997

Fully-Differential Filters

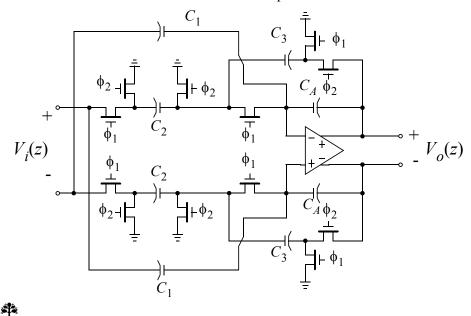


University of Toronto

Fully-Differential Filters

Negative continuous-time input
 equivalent to a negative C₁

University of Toronto



© D. Johns, K. Martin, 1997

33 of 60

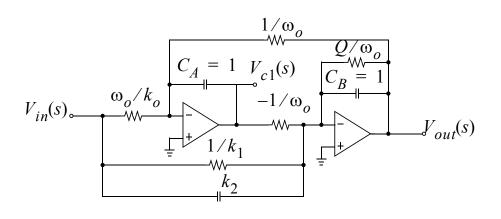
Fully-Differential Filters

- Note that fully-differential version is essentially two copies of single-ended version, however ... area penalty not twice.
- Only one opamp needed (though common-mode circuit also needed)
- Input and output signal swings have been doubled so that same dynamic range can be achieved with half capacitor sizes (from kT/C analysis)
- Switches can be reduced in size since small caps used.
- However, there is more wiring in fully-differ version but better noise and distortion performance.

University of Toronto

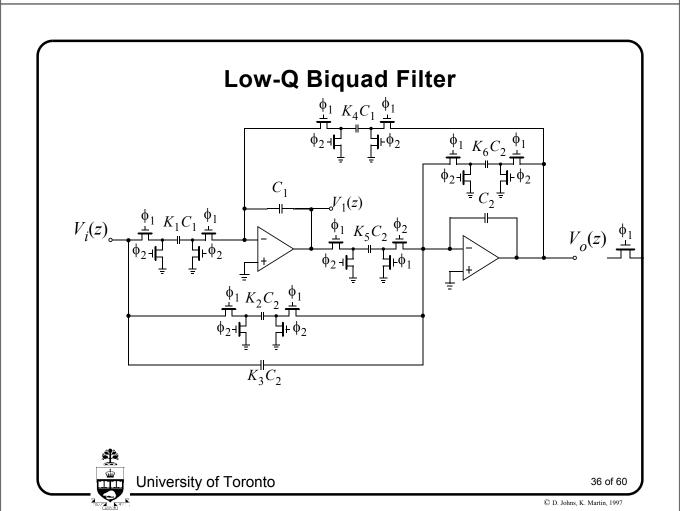
Low-Q Biquad Filter

$$H_{a}(s) = \frac{V_{out}(s)}{V_{in}(s)} = -\frac{k_{2}s^{2} + k_{1}s + k_{o}}{s^{2} + \left(\frac{\omega_{o}}{Q}\right)s + \omega_{o}^{2}}$$
(38)

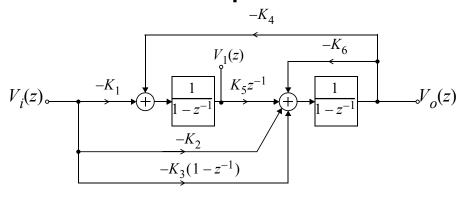


35 of 60

© D. Johns, K. Martin, 1997



Low-Q Biquad Filter



$$H(z) = \frac{V_o(z)}{V_i(z)} = -\frac{(K_2 + K_3)z^2 + (K_1K_5 - K_2 - 2K_3)z + K_3}{(1 + K_6)z^2 + (K_4K_5 - K_6 - 2)z + 1}$$
(39)

University of Toronto

37 of 60

D. Johns, K. Martin, 1997

Low-Q Biquad Filter Design

$$H(z) = -\frac{a_2 z^2 + a_1 z + a_0}{b_2 z^2 + b_1 z + 1}$$
 (40)

 we can equate the individual coefficients of "z" in (39) and (40), resulting in:

$$K_3 = a_0 \tag{41}$$

$$K_2 = a_2 - a_0 (42)$$

$$K_1 K_5 = a_0 + a_1 + a_2 (43)$$

$$K_6 = b_2 - 1 (44)$$

$$K_4 K_5 = b_1 + b_2 + 1 (45)$$

• A degree of freedom is available here in setting internal $V_1(z)$ output

University of Toronto

Low-Q Biquad Filter Design

- Can do proper dynamic range scaling
- Or let the time-constants of 2 integrators be equal by

$$K_4 = K_5 = \sqrt{b_1 + b_2 + 1} \tag{46}$$

Low-Q Biquad Capacitance Ratio

· Comparing resistor circuit to SC circuit, we have

$$K_4 \approx K_5 \approx \omega_o T$$
 (47)

$$K_6 \approx \frac{\omega_o T}{O} \tag{48}$$

• However, the sampling-rate, 1/T, is typically much larger that the approximated pole-frequency, ω_o ,

$$\omega_o T \ll 1$$
 (49)

University of Toronto

39 of 60

D. Johns, K. Martin, 1997

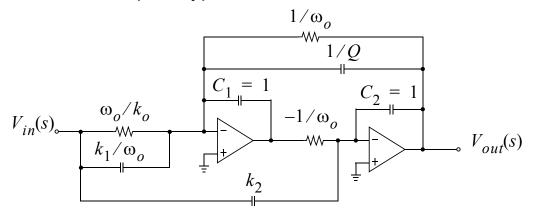
Low-Q Biquad Capacitance Ratio

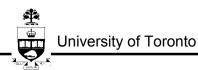
- Thus, the largest capacitors determining pole positions are the integrating capacitors, C_1 and C_2 .
- If Q < 1, the smallest capacitors are K_4C_1 and K_5C_2 resulting in an approximate capacitance spread of $1/(\omega_a T)$.
- If Q > 1, then from (48) the smallest capacitor would be K_6C_2 resulting in an approximate capacitance spread of $Q/(\omega_o T)$ can be quite large for $Q \gg 1$

University of Toronto

High-Q Biquad Filter

- Use a high-Q biquad filter circuit when Q » 1
- · Q-damping done with a cap around both integrators
- Active-RC prototype filter

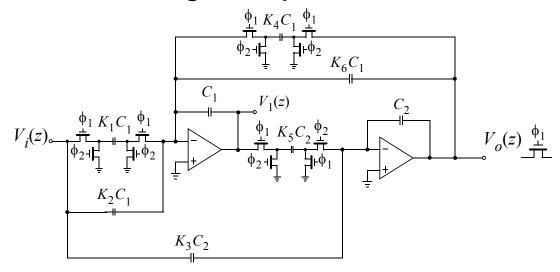




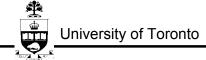
41 of 60

C D. Johns, K. Martin, 1997

High-Q Biquad Filter



• Q-damping now performed by K_6C_1



High-Q Biquad Filter

- Input K_1C_1 : major path for lowpass
- Input K₂C₁: major path for band-pass filters
- Input K₃C₂: major path for high-pass filters
- · General transfer-function is:

$$H(z) = \frac{V_o(z)}{V_i(z)} = -\frac{K_3 z^2 + (K_1 K_5 + K_2 K_5 - 2K_3)z + (K_3 - K_2 K_5)}{z^2 + (K_4 K_5 + K_5 K_6 - 2)z + (1 - K_5 K_6)} (50)$$

· If matched to the following general form

$$H(z) = -\frac{a_2 z^2 + a_1 z + a_0}{z^2 + b_1 z + b_0}$$
 (51)

University of Toronto

43 of 60

D Johns K Martin 1997

High-Q Biquad Filter

$$K_1 K_5 = a_0 + a_1 + a_2 (52)$$

$$K_2 K_5 = a_2 - a_0 (53)$$

$$K_3 = a_2 \tag{54}$$

$$K_4 K_5 = 1 + b_0 + b_1 \tag{55}$$

$$K_5 K_6 = 1 - b_0 (56)$$

· And, as in lowpass case, can set

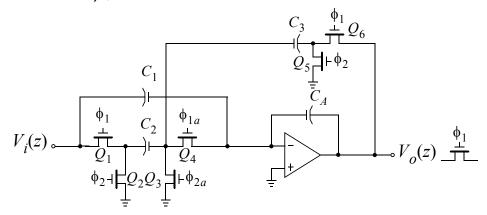
$$K_4 = K_5 = \sqrt{1 + b_0 + b_1} \tag{57}$$

• As before, K_4 and K_5 approx $\omega_o T \ll 1$ but $K_6 \cong 1/Q$

University of Toronto

Charge Injection

• To reduce charge injection (thereby improving distortion), turn off certain switches first.



• Advance ϕ_{1a} and ϕ_{2a} so that only their charge injection affect circuit (result is a dc offset)

45 of 60

© D. Johns, K. Martin, 1997

Charge Injection

- Note: ϕ_{2a} connected to ground while ϕ_{1a} connected to virtual ground, therefore ...
 - can use single n-channel transistors
 - charge injection NOT signal dependent

$$Q_{CH} = -WLC_{ox}V_{eff} = -WLC_{ox}(V_{GS} - V_t)$$
 (58)

- Charge related to V_{GS} and V_t and V_t related to substrate-source voltage.
- Source of Q_3 and Q_4 remains at 0 volts amount of charge injected by Q_3 , Q_4 is not signal dependent and can be considered as a dc offset.

University of Toronto

Charge Injection Example

- Estimate dc offset due to channel-charge injection when $C_1 = 0$ and $C_2 = C_A = 10C_3 = 10pF$.
- Assume switches Q_3 , Q_4 have $V_{tn} = 0.8 V$, $W = 30 \mu m$, $L = 0.8 \mu m$, $C_{ox} = 1.9 \times 10^{-3} \ pF/\mu m^2$, and power supplies are $\pm 2.5 V$.
- Channel-charge of Q_3 , Q_4 (when on) is

$$Q_{CH3} = Q_{CH4} = -(30)(0.8)(0.0019)(2.5 - 0.8)$$
 (59)
= $-77.5 \times 10^{-3} pC$

· dc feedback keeps virtual opamp input at zero volts.

47 of 60

© D. Johns, K. Martin, 1997

Charge Injection Example

Charge transfer into C₃ given by

$$Q_{C_3} = -C_3 v_{out} {(60)}$$

• We estimate half channel-charges of Q_3 , Q_4 are injected to the virtual ground leading to

$$\frac{1}{2}(Q_{CH3} + Q_{CH4}) = Q_{C_3} \tag{61}$$

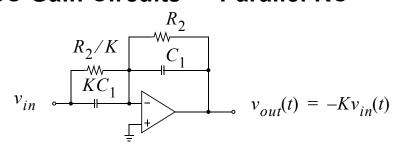
which leads to

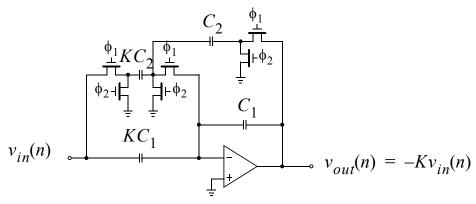
$$v_{out} = \frac{77.5 \times 10^{-3} pC}{1pF} = 78 \text{ mV}$$
 (62)

 dc offset affected by the capacitor sizes, switch sizes and power supply voltage.

University of Toronto

SC Gain Circuits — Parallel RC



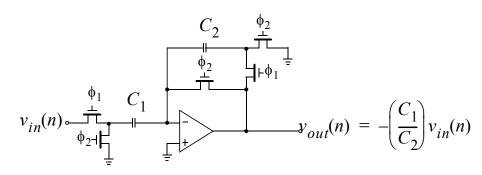


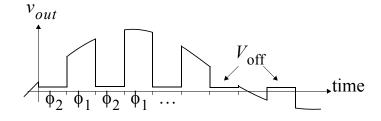
University of Toronto

49 of 60

D. Johns, K. Martin, 1997

SC Gain Circuits — Resettable Gain





University of Toronto

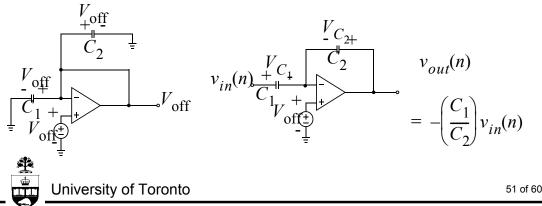
SC Gain Circuits

Parallel RC Gain Circuit

 circuit amplifies 1/f noise as well as opamp offset voltage

Resettable Gain Circuit

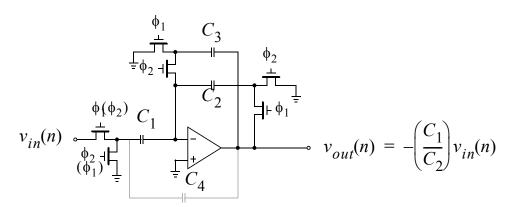
- · performs offset cancellation
- also highpass filters 1/f noise of opamp
- However, requires a high slew-rate from opamp



© D. Johns, K. Martin, 1997

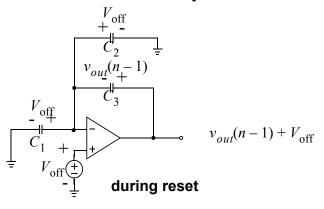
SC Gain Circuits — Capacitive-Reset

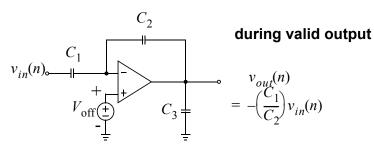
 Eliminate slew problem and still cancel offset by coupling opamp's output to invertering input



• C_4 is optional de-glitching capacitor

SC Gain Circuits — Capacitive-Reset



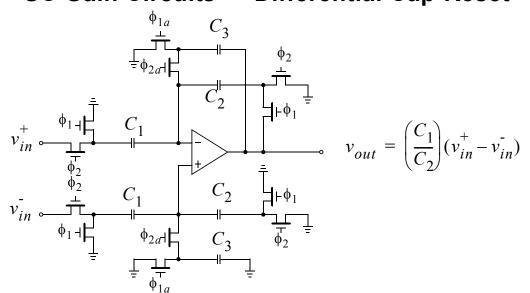


University of Toronto

53 of 60

D Johns K Martin 1997

SC Gain Circuits — Differential Cap-Reset



 Accepts differential inputs and partially cancels switch clock-feedthrough

University of Toronto

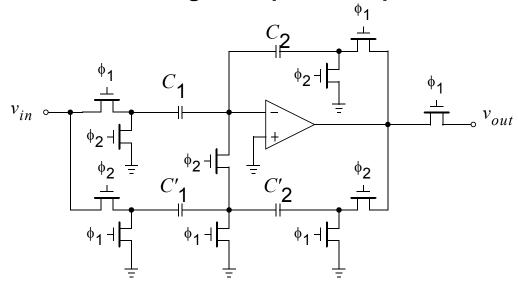
Correlated Double-Sampling (CDS)

- Preceeding SC gain amp is an example of CDS
- Minimizes errors due to opamp offset and 1/f noise
- When CDS used, opamps should have low thermal noise (often use n-channel input transistors)
- Often use CDS in only a few stages
 - input stage for oversampling converter
 - some stages in a filter (where low-freq gain high)
- · Basic approach:
 - Calibration phase: store input offset voltage
 - Operation phase: error subtracted from signal

55 of 60

© D. Johns, K. Martin, 1997

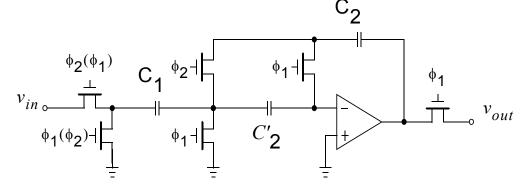
Better High-Freq CDS Amplifier



- $\phi_2 C_1', C_2'$ used but include errors
- $\phi_1 C_1, C_2$ used but here no offset errors

University of Toronto

CDS Integrator



- ϕ_1 sample opamp offset on C_2
- $\phi_2 C_2$ placed in series with opamp to reduce error
- · Offset errors reduced by opamp gain
- · Can also apply this technique to gain amps

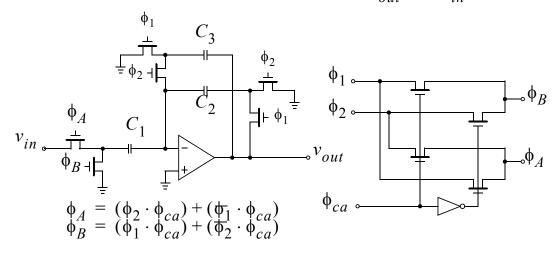
University of Toronto

57 of 60

© D. Johns, K. Martin, 1997

SC Amplitude Modulator

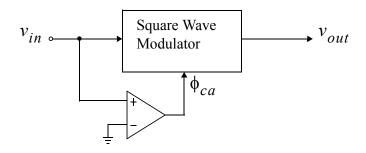
• Square wave modulate by ± 1 (i.e. $V_{out} = \pm V_{in}$)



- · Makes use of cap-reset gain circuit.
- ϕ_{ca} is the modulating signal

University of Toronto

SC Full-Wave Rectifier

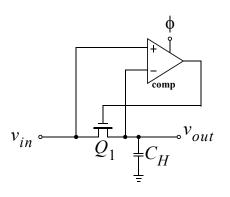


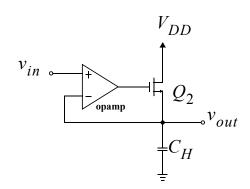
- Use square wave modulator and comparator to make
- For proper operation, comparator output should changes synchronously with the sampling instances.

59 of 60

C D. Johns, K. Martin, 1997

SC Peak Detector





- · Left circuit can be fast but less accurate
- Right circuit is more accurate due to feedback but slower due to need for compensation (circuit might also slew so opamp's output should be clamped)

