Nyquist-Rate D/A Converters

David Johns and Ken Martin
 University of Toronto
 (johns@eecg.toronto.edu)
 (martin@eecg.toronto.edu)

D/A Converter Basics.

- $B_{i n}$ is a digital signal (or word),

$$
\begin{equation*}
B_{i n}=b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots+b_{N} 2^{-N} \tag{1}
\end{equation*}
$$

- b_{i} equals a " 1 " or a "0" (i.e. a binary digit).
- $V_{\text {ref }}$ - an analog reference; $V_{\text {out }}$ — output .

$$
\begin{equation*}
V_{\text {out }}=V_{\text {ref }}\left(b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots+b_{N} 2^{-N}\right) \tag{2}
\end{equation*}
$$

- Define $V_{L S B}$ to be LSB signal change, $V_{L S B} \equiv V_{r e f} / 2^{N}$

D/A Converter Basics

- For errors, define "units" of LSB 1 LSB $=1 / 2^{N}$
- A multiplying D/A allows $V_{\text {ref }}$ to be a varying input - $V_{\text {out }}$ proportional to multiplication of $V_{\text {ref }}$ and $B_{\text {in }}$.
- For ideal D/A , output signal is a well defined value - no quantization error!

D/A Resistor-String (Hamadé, JSSC, Dec. 1978)

D/A Resistor-String - Digital Decoding

- Higher speed implementation (less resistance thru transistors)
- Large cap load on buffer input
- Can pipeline digital decoding for faster speed
- Requires 2^{N} resistors

Folded-resistor-string D/A

- (Abrial, JSSC, Dec. 1988)

Binary-Weighted Resistor D/A's.

$$
\begin{equation*}
V_{\text {out }}=-R_{F} V_{r e f}\left(-\frac{b_{1}}{2 R}-\frac{b_{2}}{4 R}-\frac{b_{3}}{8 R}-\ldots\right) \tag{3}
\end{equation*}
$$

- Only N resistors
- Resistor and current ratios are on the order of 2^{N}
- No guarantee of monotonicity.
- Prone to glitches (more later).

Reduced Spread Binary Resistor D/A

- Reduced resistor spread
- Keep repeating this procedure $->$ R-2R ladder

R-2R Based D/A Converters

- Small size, good matching (only R and 2R)

R-2R Based Resistor Ladders

- Example D/A converter

- Currents through the switches are scaled
- Should scale switch sizes for good accuracy
- No node voltage changes except for output —> fast

R-2R Based Resistor Ladders

- Slower circuit having equal current through switches

- Node voltages change - slower circuit
- No need to scale switch sizes (smaller size)

Glitches

- Different delays for switching the different currents
- MSB change often worst case

- Glitches can be minimized by limiting the bandwidth but that slows down circuit
- Use thermometer code to reduce glitches

Charge-Redistribution SC D/A's

- Programmable SC gain amplifier.

- Sign bit realized by interchanging input phases
- Carefully clock-waveforms required to minimize voltage dependency of clock-feed-through.
- Digital codes should be changed when input side of capacitors are connected to ground. Requires extra digital complexity.

Thermometer D/A Converters

Thermometer Code D/A Converter

University of Toronto

Current-Mode D/A's

- Thermometer-code
- High-speed, output feeds directly to resistor
- Important that delay to all the switches are equal.
- Overlapped clocks much better than having nonoverlapped clocks.

Current-Steered D/A [Colles, 88]

- Operates as cascode current sources.
- For max speed, keep voltage swing at source of Q1 small (just turned off)
- Switching feed-through from the digital input enhances switching speed.

Segmented D/A

- Schoeff, 79; Saul, 85; Grebene, 84

Dynamically-Matched Current Sources

- Schouwenaar, 88

- Each current source is calibrated with a single reference
- 64 used so D/A can continue operating
- Achieved 92 dB SNDR, and 20 mW with 3 V .
- Used for audio application
- Dynamic technique with current switching for realizing very well-matched current sources
- Up to 16 bit accuracy

Dynamically-Matched Current Sources

Calibration

Regular Usage

- Current source 0.9I added so a low gm device used (W/L equal to $10 / 75$)
-Re-calibrate before leakage causes 0.5 LSB error
- Minimize clock-feedthrough and charge-injection by having capacitance C_{gs} and bias voltage $V_{G S}$ large
- Implies voltage error causes less current deviation.

