Continuous-Time Filters

David Johns and Ken Martin
University of Toronto (johns@eecg.toronto.edu)
(martin@eecg.toronto.edu)

Switched-capacitor filters

+ Accurate transfer-functions
+ High linearity, good noise performance
- Limited in speed
- Requires anti-aliasing filters

Continuous-time filters

- Moderate transfer-function accuracy (requires tuning circuitry)
- Moderate linearity
+ High-speed
+ Good noise performance

\mathbf{G}_{m}-C Integrators

$$
\begin{aligned}
& \text { transconductor } \\
& V_{o}=\frac{I_{o}}{s C_{1}}=\frac{G_{m} V_{i}}{s C_{1}} \equiv\left(\frac{\omega_{t i}}{s}\right) V_{i} \\
& i_{o}=G_{m} v_{i} \\
& \omega_{t i}=\frac{G_{m}}{C_{1}}
\end{aligned}
$$

- Use a transconductor to build an integrator
- Output current is linearly related to input voltage
- Output impedance is ideally infinite
- Note - an OTA (operational transconductance amplifier) has a high G_{m} value but not usually linear.

Multiple-Input $\mathbf{G}_{\mathbf{m}} \mathbf{- C}$ Integrator

$$
\begin{aligned}
& \begin{aligned}
& V_{3} \\
& V_{o} \\
&=\frac{1}{s C_{1}}\left(G_{m 1} V_{1}-G_{m 2} V_{2}+G_{m 3} V_{3}\right)
\end{aligned}
\end{aligned}
$$

Example

- What G_{m} is needed for an integrator having a unitygain frequency of $\omega_{t i}=20 \mathrm{MHz}$ when $C=2 \mathrm{pF}$?

$$
\begin{align*}
G_{m} & =2 \pi \times 20 \mathrm{MHz} \times 2 p F \\
& =0.251 \mathrm{~mA} / V \tag{1}
\end{align*}
$$

or equivalently,

$$
\begin{equation*}
G_{m}=1 / 3.98 k \Omega \tag{2}
\end{equation*}
$$

- which is related to unity-gain frequency by

$$
\begin{equation*}
2 \pi \times 20 M H z=\frac{1}{3.98 k \Omega \times 2 p F} \tag{3}
\end{equation*}
$$

Fully-Differential Integrators

- Better noise and linearity than single-ended.

$$
\begin{aligned}
& V_{o}=\frac{I_{o}}{s C_{1}}=\frac{G_{m} V_{i}}{s C_{1}} \quad \omega_{t i}=\frac{G_{m}}{C_{1}}
\end{aligned}
$$

- Use a single capacitor between differential outputs
- Requires some sort of common-mode feedback to set output common-mode voltage
- Needs some extra caps for compensating commonmode feedback loop.

Fully-Differential Integrators

$$
\begin{aligned}
& V_{o}=\frac{2 I_{o}}{s\left(2 C_{1}\right)}=\frac{G_{m} V_{i}}{s C_{1}} \\
& \omega_{t i}=\frac{G_{m}}{C_{1}} \\
& v_{o}=v_{o}^{+}-v_{o}^{-} \\
& i_{o}=G_{m} v_{i}
\end{aligned}
$$

- Use 2 grounded capacitors
- Still requires common-mode feedback but compensation caps for common-mode feedback can be the same grounded capacitors

Fully-Differential Integrators

- Integrated capacitors have top and bottom plate parasitic capacitances.
- To maintain symmetry, usually 2 parallel caps used as shown above
- Note that parasitic capacitance affects time-constant

$G_{m}-C$ Opamp Integrator

- Use an extra opamp to improve linearity and noise performance
- Also known as a "Miller Integrator"

\mathbf{G}_{m}-C Opamp Integrator

Advantages

- Effect of parasitic caps reduced by opamp gain more accurate time-constant and better linearity.
- Less sensitive to noise since transconductor output is low impedance (due to opamp feedback).
- G_{m} cell drives virtual gnd - output-impedance of G_{m} cell can be lower and smaller voltage swing needed.

Disadvantages

- Lower operating speed because it now relies on feedback
- Larger power dissipation
- Larger silicon area

Example \mathbf{G}_{m}-C Opamp Integrator

- A low input impedance on the order of $2 /\left(g_{m 2}^{2} r_{d s}\right)$ due to common-gate input impedance and feedback.

First-Order Filter

- General first-order transfer-function

$$
\begin{equation*}
\frac{V_{o u t}(s)}{V_{i n}(s)}=\frac{k_{1} s+k_{0}}{s+\omega_{0}} \tag{4}
\end{equation*}
$$

- Built with a single integrator and two feedins branches.
- ω_{0} sets the pole frequency

First-Order Filter

$$
C_{X}=\left(\frac{k_{1}}{1-k_{1}}\right) C_{A} \text { where }\left(0 \leq k_{1}<1\right) \quad \begin{aligned}
G_{m 1} & =k_{0}\left(C_{A}+C_{X}\right) \\
G_{m 2} & =\omega_{o}\left(C_{A}+C_{X}\right)
\end{aligned}
$$

- Can show that the transfer function is given by

$$
\begin{equation*}
\frac{V_{o u t}(s)}{V_{\text {in }}(s)}=\frac{s C_{X}+G_{m 1}}{s\left(C_{A}+C_{X}\right)+G_{m 2}}=\frac{s\left(\frac{C_{X}}{C_{A}+C_{X}}\right)+\left(\frac{G_{m 1}}{C_{A}+C_{X}}\right)}{s+\left(\frac{G_{m 2}}{C_{A}+C_{X}}\right)} \tag{5}
\end{equation*}
$$

Fully-Differential First-Order Filter

- Same eqns as single-ended case but cap sizes doubled
- Can realize $k_{1}<0$ by cross-coupling wires at C_{x}.

Example

- Find fully-diff values when dc gain $=0.5$, a pole at 20 MHz and a zero at 40 MHz . Assume $C_{A}=2 p F$.

$$
\begin{gather*}
H(s)=\frac{0.25(s+2 \pi \times 40 \mathrm{MHz})}{(s+2 \pi \times 20 \mathrm{MHz})}=\frac{0.25 s+2 \pi \times 10 \mathrm{MHz}}{s+2 \pi \times 20 \mathrm{MHz}} \tag{6}\\
k_{1}=0.25, k_{0}=2 \pi \times 10^{7}, \omega_{o}=4 \pi \times 10^{7} \tag{7}
\end{gather*}
$$

- We find

$$
\begin{gather*}
C_{X}=2 p F \times \frac{0.25}{1-0.25}=0.667 p F \tag{8}\\
G_{m 1}=2 \pi \times 10^{7} \times 2.667 p F=0.168 \mathrm{~mA} / \mathrm{V} \tag{9}\\
G_{m 2}=4 \pi \times 10^{7} \times 2.667 p F=0.335 \mathrm{~mA} / \mathrm{V} \tag{10}
\end{gather*}
$$

Second-Order Filter

Second-Order Filter

Second-Order Filter

$$
\begin{equation*}
H(s) \equiv \frac{V_{o u t}(s)}{V_{i n}(s)}=\frac{s^{2}\left(\frac{C_{X}}{C_{X}+C_{B}}\right)+s\left(\frac{G_{m 5}}{C_{X}+C_{B}}\right)+\left(\frac{G_{m 2} G_{m 4}}{C_{A}\left(C_{X}+C_{B}\right)}\right)}{s^{2}+s\left(\frac{G_{m 3}}{C_{X}+C_{b}}\right)+\left(\frac{G_{m 1} G_{m 2}}{C_{A}\left(C_{X}+C_{B}\right)}\right)} \tag{12}
\end{equation*}
$$

- Note that there is a restriction on the high-frequency gain coeff k_{2} as in the first-order case.
- Note that $G_{m 3}$ sets the damping of this biquad
- $G_{m 1}$ and $G_{m 2}$ form two integrators with unity-gain frequencies of ω_{0} / s.

Example

- Find values for a bandpass filter with a center frequency of 20 MHz , a Q value of 5 , and a center frequency gain of 1.
- Assume $C_{A}=C_{B}=2 p F$

$$
\begin{equation*}
H(s) \equiv \frac{V_{o u t}(s)}{V_{\text {in }}(s)}=\frac{G s \frac{\omega_{o}}{Q}}{s^{2}+s \frac{\omega_{o}}{Q}+\omega_{o}^{2}} \tag{13}
\end{equation*}
$$

where $G=1$ is the gain at the center frequency.

Example

- Since, $\omega_{o}=2 \pi \times 20 \mathrm{MHz}$ and $Q=5$, we find

$$
\begin{equation*}
k_{1}=G \frac{\omega_{o}}{Q}=2.513 \times 10^{7} \mathrm{rad} / \mathrm{s} \tag{14}
\end{equation*}
$$

- Since k_{0} and k_{2} are zero, we have $C_{x}=G_{m 4}=0$
- The transconductance values are:

$$
\begin{gather*}
G_{m 1}=\omega_{o} C_{A}=0.2513 \mathrm{~mA} / \mathrm{V} \tag{15}\\
G_{m 2}=\omega_{o}\left(C_{B}+C_{X}\right)=0.2513 \mathrm{~mA} / \mathrm{V} \tag{16}\\
G_{m 3}=G_{m 5}=k_{1} C_{B}=50.27 \mu \mathrm{~A} / \mathrm{V} \tag{17}
\end{gather*}
$$

Bipolar Transconductors

- 2 main methods

Fixed Transconductor with Gain Cell

- Larger input range, lower transconductance
- Create a transconductor with a fixed G_{m} value using a resistor
- Tune the transconductance using a gain cell

Multiple Differential Pairs

- Smaller input range, higher transconductance
- Use 2 diff pairs to extend linear input range
- Tuning done by adjusting bias current

Fixed Transconductors using Resistors

- Left circuit needs higher common-mode voltage

Max Differential Input Range

- Determine when one of diff transistors turns off
- For example, find when Q_{2} turns off in right circuit
- If Q_{2} off, then all of I_{1} flows through R_{E} resulting in

$$
\begin{equation*}
V_{i, \max }=I_{1} R_{E} \tag{18}
\end{equation*}
$$

- However, there is significant distortion at this point since $V_{b e}$ is not constant
- Maximum input range might be half that resulting in

$$
\begin{equation*}
V_{i, \max }=\left(I_{1} / 2\right) R_{E} \tag{19}
\end{equation*}
$$

Distortion

- So far, have assumed $V_{b e}$ voltages remain constant which is reasonable if $r_{e} \ll R_{E}$

$$
\begin{equation*}
r_{e} \equiv \frac{V_{T}}{I_{E}} \tag{20}
\end{equation*}
$$

implying

$$
\begin{equation*}
r_{e, \max }=\frac{V_{T}}{I_{E, \min }}<R_{E} \tag{21}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
I_{E, \min } » \frac{V_{T}}{R_{E}} \tag{22}
\end{equation*}
$$

Distortion

Example

- If $R_{E}=20 \mathrm{k} \Omega$ and $V_{T}=25 \mathrm{mV}$, then $I_{E, \text { min }}>1.25 \mu \mathrm{~A}$

How much is "much greater than"?

- Depends on how much distortion can be tolerated
- If $r_{e, \text { max }}=0.1 R_{E}$ when $V_{i, \max }=\left(I_{1} / 2\right) R_{E}$, the actual output current is 3% from ideal linear response.
- Results in about a 1\% THD (3 times better than peak linearity error)
- Can use smaller input signals but then noise might dominate

Transconductance

- Use small-signal T-model for bipolar transistors

$$
\begin{equation*}
i_{o 1}=\frac{v_{i}}{r_{e 1}+R_{E}+r_{e 2}}=\frac{v_{i}}{2 r_{e}+R_{E}} \tag{23}
\end{equation*}
$$

where r_{e} is small-signal emitter resist $\left(r_{e}=\alpha / g_{m}\right)$

$$
\begin{equation*}
r_{e}=\frac{V_{T}}{I_{E}}=\frac{V_{T}}{I_{1}} \tag{24}
\end{equation*}
$$

- Leading to

$$
\begin{equation*}
G_{m}=\frac{i_{o 1}}{v_{i}}=\frac{1}{2 r_{e}+R_{E}} \tag{25}
\end{equation*}
$$

Example

- Given $R_{E}=3 k \Omega$ (i.e. $G_{m} \approx 0.333 \mathrm{~mA} / V$), $V_{i, \max }= \pm 500 \mathrm{mV}$, find I_{1} so $r_{\mathrm{e}, \max }<0.1 R_{E}$
- We have $r_{\mathrm{e}, \max }<0.1 R_{E}=300 \Omega$ which occurs when

$$
\begin{equation*}
I_{\mathrm{E} 2, \min }=\frac{V_{T}}{r_{\mathrm{e}, \max }}=\frac{26 \mathrm{mV}}{300 \Omega}=86.7 \mu \mathrm{~A} \tag{26}
\end{equation*}
$$

- For this same input voltage of 500 mV

$$
\begin{equation*}
I_{R E} \approx \frac{500 \mathrm{mV}}{3 k \Omega}=167 \mu \mathrm{~A} \tag{27}
\end{equation*}
$$

Example

- Since $I_{1}=I_{R E}+I_{E 2}$

$$
\begin{equation*}
I_{1}=167+86.7=253 \mu \mathrm{~A} \tag{28}
\end{equation*}
$$

- Thus, a minimum bias current of $253 \mu A$ should be chosen resulting in a nominal r_{e} and G_{m} given by

$$
\begin{gather*}
r_{e}=\frac{V_{T}}{I_{1}}=103 \Omega \tag{29}\\
G_{m}=\frac{1}{\left(2 r_{e}+R_{E}\right)}=0.312 \mathrm{~mA} / \mathrm{V} \tag{30}
\end{gather*}
$$

- A 4 times increase in I_{1} would improve distortion by about 10 times but use more power.

Linear Transconductor - Opamps

- Feedback keeps input voltage across R_{E}
- Simple opamps used (typically single stage) 4

Linear Transconductor - Constant Current

- Fix collector currents through diff pair using feedback

Gain-Cell Transconductor

- Use a gain-cell to adjust output current
- Output current of gain-cell is a scaled version of input current determined by ratio of two currents
- Gain-cell is a translinear circuit and is closely related to translinear multiplier (also known as a Gilbert multiplier)
- Gain-cell is highly linear
- Often requires the use of voltage level-shifters

- Relatively linear near $v_{i}=0$

$$
\begin{equation*}
G_{m}=\frac{1}{2 r_{e}}=\frac{I_{1}}{4 V_{T}} \tag{32}
\end{equation*}
$$

Differential Pair

- G_{m} proportional to I_{1}
- However, limited input range - when $v_{i}>32 \mathrm{mVpp}$, THD $>1 \%$.
- Use multiple diff pairs to increase linear input range
- Conceptual - use 2 diff pairs with dc offset
- Actual - replace dc offsets by resizing transistors in differential pairs
- Increases input range to $v_{i}>96 \mathrm{mVpp}$ for 1% THD

Multiple Diff-Pairs

Choose $v_{1}=1.317 V_{T}$

Multiple Diff-Pairs

Multiple Diff-Pair

- When $v_{i}=0, I$ through Q_{1} and Q_{2} are $0.8 I_{1}$ and $0.2 I_{1}$.

$$
\begin{gather*}
G_{m}=\frac{1}{r_{e 1}+r_{e 2}}+\frac{1}{r_{e 3}+r_{e 4}} \tag{33}\\
r_{e 1}=r_{e 4}=\frac{V_{T}}{0.8 I_{1}} \tag{34}\\
r_{e 2}=r_{e 3}=\frac{V_{T}}{0.2 I_{1}} \tag{35}\\
G_{m}=\frac{8 I_{1}}{25 V_{T}} \tag{36}
\end{gather*}
$$

- which is 28% larger than diff pair but uses twice the current - same current results in 36% less G_{m}

CMOS Transconductors

- A large variety of methods
- Best approach depends on application
- 2 main classifications - triode or active transistor based

Triode vs. Active

- Triode based tends to have better linearity
- Active tend to have faster speed for the same operating current

Triode Transconductors

- Recall n-channel triode equation

$$
\begin{equation*}
I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) \tag{37}
\end{equation*}
$$

where to remain in triode

$$
\begin{equation*}
V_{D S}<V_{e f f} \text { where } V_{e f f}=V_{G S}-V_{t n} \tag{38}
\end{equation*}
$$

or equivalently, $V_{G S}>V_{D S}+V_{t n}$

- Above models are only reasonably accurate (
- Not nearly as accurate as exponential model in BJTs
- Use fully-differential architectures to reduce evenorder distortion terms - also improves commonmode noise rejection

Fixed-Bias Triode Transconductor

- Use a small $V_{D S}$ voltage so $V_{D S}^{2}$ term goes to zero

$$
\begin{equation*}
\left.r_{D S} \equiv\left(\frac{\partial i_{D}}{\partial v_{D S}}\right)^{-1}\right|_{v_{D S}=0} \tag{39}
\end{equation*}
$$

which results in

$$
\begin{equation*}
r_{D S}=\left(\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t n}\right)\right)^{-1} \tag{40}
\end{equation*}
$$

- Can use a triode transistor where a resistor would normally be used - resistance value is tunable

Fixed-Bias Triode Transconductor

Biquad using Multiple Outputs

- Can make use of multiple outputs to build a biquad filter - scale extra outputs to desired ratio
- Reduces the number of transconductors - saves power and die area
- Above makes use of Miller integrators

Varying-Bias Transconductor

- gates of Q_{3}, Q_{4} connected to the differential input
- Q_{3} and Q_{4} undergo varying bias conditions to improve linearity
- Can show

$$
\begin{equation*}
G_{m}=\frac{4 k_{1} k_{3} \sqrt{I_{1}}}{\left(k_{1}+4 k_{3}\right) \sqrt{k_{1}}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{i}=\frac{\mu_{n} C_{o x}}{2}\left(\frac{W}{L}\right)_{i} \tag{42}
\end{equation*}
$$

- Note, G_{m} proportional to square-root of I_{1} as opposed to linear relation for a BJT transconductor.

Drain-Source Fixed-Bias Transconductor

$$
\begin{equation*}
i_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right) \tag{43}
\end{equation*}
$$

- If $V_{D S}$ kept constant, then i_{D} linear wrt $V_{G S}$

Drain-Source Fixed-Bias Transconductor

- Can realize around 50 dB linearity (not much better since model is not that accurate)
- Requires a fully-differential structure to cancel evenorder terms
- V_{C} sets $V_{D S}$ voltage - rather than opamp with feedback can use BJTs in a BiCMOS technology
- Requires a non-zero common-mode voltage on input
- Transconductance given by

$$
\begin{equation*}
G_{m}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1} V_{D S} \tag{44}
\end{equation*}
$$

- Note that G_{m} roughly proportional to bias current since current roughly proportional to $V_{D S}$

Example

- $\mu_{n} C_{o x}=96 \mu A / V^{2},(W / L)_{1}=(W / L)_{2}=10, V_{t n}=0.8 V$, and $V_{C M}=2 V$
$-V_{C}=0.2 V$ Case

$$
\begin{gather*}
G_{m}=96 \mu A / V^{2} \times 10 \times 0.2 V=0.192 \mathrm{~mA} / \mathrm{V} \tag{45}\\
I_{1}=96 \mu \mathrm{~A} / V^{2} \times 10\left((2-0.8) 0.2-\frac{0.2^{2}}{2}\right)=0.211 \mathrm{~mA} \tag{46}
\end{gather*}
$$

- Max $v_{i}-V_{\mathrm{eff} 1}>V_{D S}=0.2 \mathrm{~V}$ or $V_{G 1}>V_{D S}+V_{t n}=1.0 \mathrm{~V}$. Since $V_{C M}=2 \mathrm{~V}$, max $v_{i}=2 \mathrm{~V}$.

- $V_{C}=0.4 V$ Case

- $G_{m}=0.384 m A / V, I_{1}=0.384 m A$ and max input signal swing is $v_{i}=1.6 \mathrm{~V}$ (loss of signal swing)

Active-Based Transconductors

- Active transistors are those operating in the active region
- Active region also referred to as pinch-off or saturation region
- In active region

$$
\begin{equation*}
I_{D}=K_{i}\left(V_{G S}-V_{t n}\right)^{2} \tag{47}
\end{equation*}
$$

when $V_{D S} \geq V_{G S}-V_{t n}=V_{e f f}$ and $V_{G S} \geq V_{t n}$

- Here, $K_{i} \equiv\left(\mu_{n} C_{o x} / 2\right)(W / L)_{i}$
- Above circuit acts as a single transistor with threshold $V_{\text {teq }}$ and parameter $K_{e q}$

Constant Sum of Gate-Source Voltages

$$
\begin{align*}
& \text { (matched devices) } \\
& \left(i_{D 1}-i_{D 2}\right)=K\left(v_{G S 1}+v_{G S 2}-2 V_{t n}\right)\left(v_{G S 1}-v_{G S 2}\right) \tag{48}\\
& K=\left(\mu_{n} / 2\right) C_{o x}\left(\frac{W}{L}\right) \tag{49}
\end{align*}
$$

- If $V_{G S 1}+V_{G S 2}=$ constant then linear transconductor
- Note - Differential output current linear but singleended currents have large second-order distortion.

Source-Connected Differential Pair

$$
\begin{gathered}
\left(i_{D 1}-i_{D 2}\right)=2 K\left(V_{C M}-V_{S S}-V_{t n}\right)\left(v_{i}\right) \\
G_{m}=2 K\left(V_{C M}-V_{S S}-V_{t n}\right)
\end{gathered}
$$

Source-Connected Differential Pair

- Input signal varies symmetrically around a commonmode voltage
- Linearity limited due to square-law model being inaccurate
- In addition, even-order harmonics occur if the difference between two drain currents not exact.
- Limited to less than 50 dB linearity
- Adjust G_{m} by varying $V_{C M}$
- In a short channel process, velocity saturation limits transconductance variation

Inverter-Based

Diff-Pair with Floating Voltage Sources

- Writing a voltage equation around the loop

$$
\begin{equation*}
v_{G S 1}-\left(V_{x}+V_{t n}\right)+v_{G S 2}-\left(V_{x}+V_{t n}\right)=0 \tag{50}
\end{equation*}
$$

implying

$$
\begin{equation*}
v_{G S 1}+v_{G S 2}=2\left(v_{x}+v_{t n}\right) \tag{51}
\end{equation*}
$$

- Thus, a constant sum of gate-source voltages occurs - even if input signal is not balanced

Diff-Pair with Floating Voltage Sources

$$
\begin{align*}
& v_{1}-v_{G S 1}+V_{x}+V_{t n}=v_{2} \tag{52}\\
& v_{2}-v_{G S 2}+V_{x}+V_{t n}=v_{1} \tag{53}
\end{align*}
$$

- Subtracting (52) from (53), we obtain

$$
\begin{equation*}
v_{G S 1}-v_{G S 2}=2\left(v_{1}-v_{2}\right) \tag{54}
\end{equation*}
$$

- Finally, output diff current found from (48)

$$
\begin{equation*}
\left(i_{D 1}-i_{D 2}\right)=4 K V_{x}\left(v_{1}-v_{2}\right) \tag{55}
\end{equation*}
$$

Approach \#1

$$
\left(i_{D 1}-i_{D 2}\right)=\left(\frac{n}{n+1}\right) 4 \sqrt{K I_{B}}\left(v_{1}-v_{2}\right) \quad G_{m}=\left(\frac{n}{n+1}\right) 4 \sqrt{K I_{B}}
$$

- Floating voltage sources built using large transistors (n times larger with n typically greater than 5)
- Disadvantage - large bias current and moderate linearity

Approach \#2

- Replace diff-pair transistors with CMOS pairs
- Now replace floating voltage sources with CMOS pairs

Approach \#2

$$
\left(i_{D 1}-i_{D 2}\right)=4 \sqrt{K_{\mathrm{eq}} I_{B}}\left(v_{1}-v_{2}\right) \quad G_{m}=4 \sqrt{K_{\mathrm{eq}} I_{B}}
$$

- G_{m} proportional to $\sqrt{I_{B}}$
- Requires a large power supply

Bias-Offset Cross-Coupled Diff-Pairs

Bias-Offset Cross-Coupled Diff-Pairs

$$
\begin{gather*}
i_{1}=K\left(v_{1}-V_{x}-V_{t n}\right)^{2}+K\left(v_{2}-V_{B}-V_{x}-V_{t n}\right)^{2} \tag{56}\\
i_{2}=K\left(v_{2}-V_{x}-V_{t n}\right)^{2}+K\left(v_{1}-V_{B}-V_{x}-V_{t n}\right)^{2} \tag{57}\\
\left(i_{1}-i_{2}\right)=2 K V_{B}\left(v_{1}-v_{2}\right) \tag{58}
\end{gather*}
$$

- The output diff current is linear wrt diff input voltage
- G_{m} proportion to V_{B} which is proportional to $\sqrt{I_{B}}$
- Bias current, $I_{S S}$, does not affect G_{m} but does set maximum (or minimum) output current available

BiCMOS Transconductors

Tunable MOS in Triode

BiCMOS Transconductors

Fixed-Transconductor with Translinear Multiplier

- Translinear multiplier used to tune transconductance
- Miller integrator used to maintain high linearity

BiCMOS Transconductors
 Circuit GM Implementation

conceptual
$\left(I_{B 2}-i_{x}\right)$ and $\left(I_{B 2}+i_{x}\right)$
go to the translinear multiplier

BiCMOS Transconductors

Fixed MOS Gm with a Translinear Multiplier

MOSFET-C Filters

- Gm-C filters are most common but MOSFET-C show promise in BiCMOS where power is important
- MOSFET-C filters similar to active-RC filters but resistors replaced with MOS transistors in triode
- Generally slower than Gm-C filters since opamps capable of driving resistive loads required
- Also rely on Miller integrators
- 2 main types -2 transistor and 4 transistor

Two-Transistor Integrators

Two-Transistor Integrators

- For resistor integrator

$$
\begin{equation*}
v_{\mathrm{diff}}=\frac{1}{s R_{1} C_{I}}\left(v_{p 1}-v_{n 1}\right)+\frac{1}{s R_{2} C_{I}}\left(v_{p 2}-v_{n 2}\right) \tag{59}
\end{equation*}
$$

- Negative integration - cross-couple wires
- For MOSFET-C integrator

$$
\begin{equation*}
r_{D S}=\left(\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(v_{G S}-V_{t n}\right)\right)^{-1} \tag{60}
\end{equation*}
$$

leading to

$$
\begin{gather*}
v_{\mathrm{diff}}=\frac{1}{s r_{D S 1} C_{I}}\left(v_{p 1}-v_{n 1}\right)+\frac{1}{s r_{D S 2} C_{I}}\left(v_{p 2}-v_{n 2}\right) \tag{61}\\
r_{D S i}=\left(\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{i}\left(V_{C}-V_{x}-V_{t n}\right)\right)^{-1} \tag{62}
\end{gather*}
$$

MOSFET-C Biquad Filter

Four-Transistor Integrator

- Can improve linearity of MOSFET-C integrators by using 4 transistors rather than 2

- Analyzed by treating it as a two-input integrator with inputs $\left(v_{p i}-v_{n i}\right)$ and $\left(v_{n i}-v_{p i}\right)$.

Four-Transistor Integrator

- If all four transistor matched,

$$
\begin{gather*}
v_{\text {diff }}=v_{p o}-v_{n o}=\frac{1}{s r_{D S} C_{I}}\left(v_{p i}-v_{n i}\right) \tag{63}\\
r_{D S}=\left(\mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(V_{C 1}-V_{C 2}\right)\right)^{-1} \tag{64}
\end{gather*}
$$

Distortion

- Model for drain-source current shows non-linear terms not dependent on controlling gate-voltage
- All even and odd distortion products will cancel
- Model only valid for older long-channel length technologies
- In practice, about a 10 dB linearity improvement

Tuning Circuitry

- Tuning can often be the MOST difficult part of a continuous-time integrated filter design
- Tuning required for cont-time integrated filters to account for capacitance and transconductance variations - 30 percent time-constant variations
- Must account for process, temperature, aging, etc.
- While absolute tolerances high, ratio of two like components can be matched to under 1 percent
- Note that SC filters do not need tuning as their transfer-function accuracy set by ratio of capacitors and a clock-frequency

Indirect Tuning

transconductance-C filter
extra transconductor plus tuning circuitry

- Most common method - build an extra transconductor and tune it
- Same control signal is sent to filter's transconductors which are scaled versions of tuned extra
- Indirect since actual filter's output not measured

- Can tune Gm to off-chip resistance and rely on capacitor absolute tolerance to be around 10 percent

Frequency Tuning

- A precise G_{m} / C ratio set - time period needed
- External resistance replaced by SC equivalent

Frequency Tuning

- Use a PLL to tune 2 integrators which realize a VCO
- Once VCO set to external freq, then G_{m} / C of VCO is set to correct value
- Choice of external clock freq is difficult.
- Leaks into filter if within passband
- Poor matching if too far from passband

Q-Factor Tuning

- Most industrial applications do not presently use Qtuning and rely on matching
- For very high-performance circuits, may have to also tune Q-factor as well as G_{m} / C ratio
- Can use a magnitude locked-loop
- Can use adaptive filtering techniques where filter output is directly observed
- Example: look at step response for a square-wave type input (i.e. digital transmission signal)
- slope determined by time-constant
- peak determined by Q-factor

Dynamic Range Performance

- Linearity limits the value of the largest useful signals
- Noise limits the value of the smallest useful signals
- Linearity and noise together determine dynamic range of a filter
- Integrated continuous-time filters are often seriously impaired by their dynamic range performance

Measures

- Total Harmonic Distortion (THD)
- Third-order intercept point (IP3)
- Spurious-Free Dynamic Range (SFDR)

Total-Harmonic-Distortion (THD)

$$
\begin{equation*}
\mathrm{THD}=10 \log \left(\frac{V_{h 2}^{2}+V_{h 3}^{2}+V_{h 4}^{2}+\ldots}{V_{f}^{2}}\right) \text { in } \mathrm{dB} \tag{65}
\end{equation*}
$$

- V_{f} - amplitude of the fundamental
- $V_{h i}$ - amplitude of the i'th harmonic component.

$$
\begin{equation*}
T H D=\frac{\sqrt{V_{h 2}^{2}+V_{h 3}^{2}+V_{h 4}^{2}+\ldots}}{V_{f}} \times 100 \text { in } \% \tag{66}
\end{equation*}
$$

- Typically, only power of first few harmonics used since distortion components usually fall off quickly

THD Limits

- THD will give be optimistic if harmonics fall in stopband
- However, if a lower fundamental frequency is used, then THD is optimistic as distortion often degrades with high input frequencies
- Would like to measure distortion with input signals near the upper passband edge.
- Need an intermodulation test!

Example

- A 21 MHz lowpass filter is being tested
- A 5 MHz input signal has harmonics at 10,15 and 20 but then fall in the stopband
- Want to test the filter with a 20 MHz input

Third-Order Intercept Point (IP3)

- Here IP3 is described as third-order distortion often dominates in fully-diff circuits - can also define IP2
- Consider

$$
\begin{equation*}
v_{o}(t)=a_{1} v_{i n}(t)+a_{2} v_{i n}^{2}(t)+a_{3} v_{i n}^{3}(t)+a_{4} v_{i n}^{4}(t)+\ldots \tag{67}
\end{equation*}
$$

- The linear term is a_{1}
- a_{2}, a_{3}, and a_{4} determine second, third and fourth order distortion terms.
- In fully-differential circuits, all even terms small and typically a_{3} dominates

$$
\begin{equation*}
v_{o}(t) \approx a_{1} v_{i n}(t)+a_{3} v_{i n}^{3}(t) \tag{68}
\end{equation*}
$$

Third-Order Intercept Point (IP3)

- If $v_{i n}(t)$ is a sinusoidal

$$
\begin{gather*}
v_{i n}(t)=A \cos (\omega t) \tag{69}\\
v_{o}(t) \approx a_{1} A \cos (\omega t)+\frac{a_{3}}{4} A^{3}(3 \cos (\omega t)+\cos (3 \omega t)) \tag{70}
\end{gather*}
$$

- Define $H_{D 1}$ and $H_{D 3}$ to be the amplitudes of the fundamental and third-harmonic terms

$$
\begin{equation*}
v_{o}(t) \equiv H_{D 1} \cos (\omega t)+H_{D 3} \cos (3 \omega t) \tag{71}
\end{equation*}
$$

- Since typically, $(3 / 4) a_{3} A^{3}<a_{1} A$, then approximate

$$
\begin{equation*}
H_{D 1}=a_{1} A \tag{72}
\end{equation*}
$$

Third-Order Intercept Point (IP3)

- Amplitude of third-order term is

$$
\begin{equation*}
H_{D 3}=\frac{a_{3}}{4} A^{3} \tag{73}
\end{equation*}
$$

- Unfortunately, distortion term lies at $3 \omega t$ for a single sinusoidal input and thus we resort to an intermodulation test
- Consider now

$$
\begin{equation*}
v_{i n}(t)=A \cos \left(\omega_{1} t\right)+A \cos \left(\omega_{2} t\right) \tag{74}
\end{equation*}
$$

- Can show that

$$
\begin{gather*}
I_{D 1}=a_{1} A \tag{75}\\
I_{D 3}=\frac{3 a_{3}}{4} A^{3} \tag{76}
\end{gather*}
$$

Third-Order Intercept Point (IP3)

- The fundamental appears at ω_{1} and ω_{2}
- The third-order term appears at $2 \omega_{2}-\omega_{1}$ and $2 \omega_{1}-\omega_{2}$
- As A increased, fundamental rises linearly while third-order term rises as a cubic.
- Every 1 dB increase in signal level increases the fundamental by 1 dB but the intermod term by 3 dB .
- There is a 2 dB worse intermod ratio for every 1 dB increase in signal level.
- Third-order intercept defined to be the point where third-order term will equal fundamental term
- Not physically possible (but an extrapolation) since other distortion terms will start to become important

Third-Order Intercept Point (IP3)

Third-Order Intercept Point (IP3)

- Knowing IP3 is useful to determine what signal level should be used for a certain intermodulation-ratio

Example

- If $\mathrm{OIP}_{3}=20 \mathrm{dBm}$, what output signal level should be used such that the third-order intermodulation products are $60 d B$ below the fundamental?
- Since we obtain a 2 dB improvement for every dB drop in output signal level and we want a 60 dB improvement from the intercept point, we need to lower the output by $60 / 2=30 \mathrm{~dB}$
- The output level should be -10 dBm

Spurious-Free Dynamic Range (SFDR)

SFDR

- Spurious-free dynamic range (SFDR) is the SNR when the power of the third-order intermodulation products equals the noise power.
- If the signal is larger, the distortion dominates
- If the signal is smaller, the noise dominates
- Actual dynamic range is 3 dB lower since noise and distortion are equal

Example

- At an input signal level of 0dBm, an intermodulation ratio $-40 d B$ was measured in an filter with a gain of 2 dB .
- Since performance worsens by 2 dB for each 1 dB increase in signal level, the intermodulation ratio will be 0 dB at an input level of 20 dBm . Therefore, $I I P 3=20 \mathrm{dBm}$ and $\mathrm{OIP} 3=22 \mathrm{dBm}$
- If one desires an intermodulation ratio of $-45 d B$ then the input should be lowered by 2.5 dB or equivalently, it should be at a level of -2.5 dBm
- If the noise power at the output is measured to be -50 dBm , the expected SFDR is found by

$$
\begin{equation*}
S F D R=\frac{2}{3}(22+50)=48 d B \tag{77}
\end{equation*}
$$

Example

- In other words, the intermod ratio should be 48 dB for the distortion power to equal the noise power.
- In intermod of 48 dB is obtained for an input signal value of -4 dBm and an output signal value of -2 dBm
- A higher level implies that the distortion dominates while a lower signal level implies that the noise dominates.
- Signal-to-noise+distortion (SNDR) equals 45 dB .

