Noise in Switched-Capacitor Circuits

17 March 2014

Trevor Caldwell trevor.caldwell@analog.com

> ANALOG DEVICES

What you will learn...

- How to analyze noise in switched-capacitor circuits
- Significance of switch noise vs. OTA noise
 Power efficient solution
 Impact of OTA architecture
- Design example for $\Delta\Sigma$ modulator

Review

Previous analysis of kT/C noise (ignoring OTA/opamp noise)

Phase 1: kT/C₁ noise (on each side) Phase 2: kT/C₁ added to previous noise (on each side) Total Noise (input referred): 2kT/C₁ Differentially: 4kT/C₁

3

ANALOG DEVICES

Review

SNR (differential)

Total noise power: 4kT/C₁ Signal power: (2V)²/2 SNR: V²C₁/2kT

SNR (single-ended)

Total noise power: $2kT/C_1$ (sampling capacitor C_1) Signal power: $V^2/2$ (signal from -V to V) SNR: $V^2C_1/4kT$

• Two noise sources V_{C1} and V_{OUT}

 $V_{\mbox{C1}}$: Represents input-referred sampled noise on input switching transistors + OTA

 \mathbf{V}_{OUT} : Represents output-referred (non-sampled) noise from OTA

ANALOG DEVICES

Thermal Noise in OTAs

Single-Ended Example

Noise current from each transistor is $\overline{I_n^2} = 4kT\gamma g_m$ Assume $\gamma = 2/3$

Thermal Noise in OTAs

Single-Ended Example

Thermal noise in single-ended OTA

Assuming paths match, tail current source M_5 does not contribute noise to output

PSD of noise voltage in M₁ (and M₂): $\frac{8}{3} \frac{kT}{g_{m1}}$

PSD of noise voltage in M₃ (and M₄): $\frac{8}{3} \frac{kTg_{m3}}{g_{m1}^2}$

Total input referred noise from M₁ - M₄

$$S_{n,eq} = \frac{16}{3} \frac{kT}{g_{m1}} \left(1 + \frac{g_{m3}}{g_{m1}} \right) = \frac{16}{3} \frac{kT}{g_{m1}} n_f$$

Noise factor n_f depends on architecture

ANALOG DEVICES

OTA with capacitive feedback

Analyze output noise in single-stage OTA

Use capacitive feedback in the amplification / integration phase of a switched-capacitor circuit

OTA with capacitive feedback

Transfer function of closed loop OTA

$$H(s) = \frac{V_{OUT}}{V_{n,eq}} = \frac{G}{1 + s / \omega_o}$$

where the DC Gain and 1st-pole frequency are

$$\mathbf{G} \approx \frac{1}{\beta} = \mathbf{1} + \mathbf{C}_1 / \mathbf{C}_2 \qquad \qquad \boldsymbol{\omega}_o = \frac{\beta \mathbf{g}_{m1}}{\mathbf{C}_o}$$

Load capacitance C_0 depends on the type of OTA – for a single-stage, it is $C_L+C_1C_2/(C_1+C_2)$, while for a twostage, it is the compensation capacitor C_C

OTA with capacitive feedback

Integrate total noise at output

$$\overline{V_{OUT}^2} = \int_0^\infty S_{n,eq}(f) |H(j2\pi f)|^2 df$$
$$= \frac{16}{3} \frac{kT}{g_{m1}} n_f \frac{\omega_o}{4} G^2$$
$$= \frac{4kT}{3\beta C_o} n_f$$
Minimum output noise for β =1 is $\frac{4kT}{3C_o} n_f$

Not a function of g_{m1} since bandwidth is proportional to g_{m1} while PSD is inversely proportional to g_{m1}

9

OTA with capacitive feedback

• Graphically...

Noise is effectively filtered by equivalent brick wall response with cut-off frequency $\pi f_o/2$ (or $\omega_o/4$ or $1/4\tau$) Total noise at V_{OUT} is the integral of the noise within the brick wall filter (area is simply $\pi f_o/2 \ge 1/\beta^2$)

Sampled Thermal Noise

Same total area, but PSD is larger from 0 to f_s/2

$$S_{Vout}(f) = \frac{G^2 S_{n,eq}}{4\tau f_s / 2} = \frac{\overline{V_{OUT}^2}}{f_s / 2} = \frac{4kT}{3\beta C_o} n_f \frac{1}{f_s / 2}$$

Low frequency PSD $G^2 S_{n,eq}$ is increased by $\frac{1}{2\tau f_s} = \frac{\pi f_{3dB}}{f_s}$

13

ANALOG DEVICES

Sampled Thermal Noise

 1/f_{3dB} is the settling time of the system, while 1/2f_s is the settling period for a two-phase clock

$$e^{-\frac{1/2f_{S}}{\tau}} < 2^{-(N+1)}$$

 $\frac{\pi f_{3dB}}{f_{S}} > (N+1)\ln 2$

PSD is increased by at least $(N + 1) \ln 2$ If N = 10 bits, PSD is increased by 7.6, or 8.8dB

 This is an inherent disadvantage of sampleddata compared to continuous-time systems

But noise is reduced by oversampling ratio after digital filtering

Using the parasitic-insensitive SC integrator

- Two phases to consider
 - 1) Sampling Phase
 - Includes noise from both ϕ_1 switches
 - 2) Integrating Phase Includes noise from both ϕ_2 switches and OTA

15

ANALOG DEVICES

Noise in a SC Integrator

Phase 1: Sampling

Noise PSD from two switches: $S_{Ron}(f) = 8kTR_{ON}$ Time constant of R-C filter: $\tau = 2R_{ON}C_1$ PSD of noise voltage across C_1

$$S_{C1}(f) = \frac{8kTR_{ON}}{1+(2\pi f\tau)^2}$$

Phase 1: Sampling

Integrated across entire spectrum, total noise power in C_1 is

$$\overline{V_{C1,sw1}^2} = \frac{8kTR_{ON}}{4\tau} = \frac{kT}{C_1}$$

Independent of R_{ON} (PSD is proportional to R_{ON} , bandwidth is inversely proportional to R_{ON})

After sampling, charge is trapped in C₁

ANALOG DEVICES

17

What is the time-constant?

Analysis shows that $Z_{IN} = \frac{1/sC_2 + R_L}{1 + g_{m1}R_L}$ For large R_L, assume that $Z_{IN} \approx \frac{1}{g_{m1}}$

Resulting time constant $\tau = (2R_{ON} + 1/g_{m1})C_1$

19

ANALOG DEVICES

Noise in a SC Integrator

 Total noise power with both switches and OTA on integrating phase

$$\overline{V_{C1,op}^{2}} = \frac{S_{vn,eq}(f)}{4\tau} \qquad \overline{V_{C1,sw2}^{2}} = \frac{S_{Ron}(f)}{4\tau}$$

$$= \frac{16kT}{3g_{m1}} \frac{n_{f}}{4(2R_{ON} + 1/g_{m1})C_{1}} \qquad = \frac{8kTR_{ON}}{4(2R_{ON} + 1/g_{m1})C_{1}}$$

$$= \frac{4kT}{3C_{1}} \frac{n_{f}}{(1+x)} \qquad = \frac{kT}{C_{1}} \frac{x}{(1+x)}$$

Introduced extra parameter $x = 2R_{ON}g_{m1}$

ANALOG DEVICES

Total noise power on C1 from both phases

$$\overline{V_{C1}^{2}} = \overline{V_{C1,op}^{2}} + \overline{V_{C1,sw1}^{2}} + \overline{V_{C1,sw2}^{2}}$$
$$= \frac{4kT}{3C_{1}} \frac{n_{f}}{(1+x)} + \frac{kT}{C_{1}} \frac{x}{(1+x)} + \frac{kT}{C_{1}}$$
$$= \frac{kT}{C_{1}} \left(\frac{4n_{f}/3 + 1 + 2x}{1+x}\right)$$

Lowest possible noise achieved if $x \to \infty$

In this case, $\overline{V_{C1}^2} = \frac{2kT}{C_1}$

What was assumed to be the total noise was actually the least possible noise!

21	ANALOG DEVICES

 Percentage noise contribution from switches and OTA (assume n_f=1.5)

Noise Contributions

When g_{m1} >> 1/R_{ON} (x >> 1)...
 Switch dominates both bandwidth and noise

Total noise power is minimized

• When g_{m1} << 1/R_{ON} (x << 1)...

OTA dominates both bandwidth and noise Power-efficient solution

Minimize g_{m1} (and power) for a given settling time and noise

$$\boldsymbol{g}_{m1} = \frac{kT}{\tau V_{C1}^2} \left(\frac{4}{3} n_f + 1 + 2x\right)$$

Minimized for x=0

23

ANALOG DEVICES

Maximum Noise

How much larger can the noise get?
 Depends on n_f... (table excludes cascode noise)

Architecture	Relative V _{EFF} 's	n _f	Maximum Noise (x=0)	+dB
Telescopic/ Diff.Pair	V _{EFF,1} =V _{EFF,n} /2	1.5	3·kT/C ₁	1.76
Telescopic/ Diff.Pair	V _{EFF,1} =V _{EFF,n}	2	3.67·kT/C ₁	2.63
Folded Cascode	V _{EFF,1} =V _{EFF,n} /2	2.5	4.33 kT/C₁	3.36
Folded Cascode	V _{EFF,1} =V _{EFF,n}	4	6.33 [.] kT/C ₁	5.01

Separate Input Capacitors

Using separate input caps increases noise

Each additional input capacitor adds to the total noise Separate caps help reduce signal dependent disturbances in the DAC reference voltages

25

ANALOG DEVICES

Differential vs. Single-Ended

 All previous calculations assumed single-ended operation

For same settling time, $g_{m1,2}$ is the same, resulting in the same total power $[\mbox{OdB}]$

Differential input signal is twice as large [gain 6dB]

Differential operation has twice as many caps and therefore twice as much capacitor noise (assume same size per side – C_1 and C_2) [lose ~1.2dB for n_f =1.5, x=0... less for larger n_f]

Net Improvement: ~4.8dB

Differential vs. Single-Ended

Single-Ended Noise

$$\overline{V_{C1,se}^{2}} = \frac{kT}{C_{1}} \left(\frac{4n_{f}/3 + 1 + 2x}{1 + x}\right)$$

Differential Noise

$$\overline{V_{C1,diff}^{2}} = \overline{V_{C1,op}^{2}} + \overline{V_{C1,sw1}^{2}} + \overline{V_{C1,sw2}^{2}}$$
$$= \frac{4kT}{3C_{1}} \frac{n_{f}}{(1+x)} + \frac{2kT}{C_{1}} \frac{x}{(1+x)} + \frac{2kT}{C_{1}}$$
$$= \frac{kT}{C_{1}} \left(\frac{4n_{f}/3 + 2 + 4x}{1+x}\right)$$

• Relative Noise (for n_f=1.5, x=0)

$$\frac{V_{C1,diff}^2}{V_{C1,se}^2} = \frac{4n_f/3 + 2 + 4x}{4n_f/3 + 1 + 2x} = \frac{4}{3}$$

27

ANALOG DEVICES

Noise in an Integrator

What is the total output-referred noise in an integrator?

Assume an integrator transfer function

$$H(z) = \frac{kz^{-1}}{1 + \mu(1 + k) - (1 + \mu)z^{-1}} \approx \frac{kz^{-1}}{1 - z^{-1}}$$

where $k = \frac{C_1}{C_2}$ and $\mu = \frac{1}{A}$
 $V_1 \rightarrow \bigoplus_{v_{c_1}} \bigoplus_{\phi_2} \bigoplus_{\phi_2} \bigoplus_{\phi_2} \bigoplus_{\phi_2} \bigoplus_{\phi_2} \bigoplus_{\phi_1} \bigoplus_{\phi_2} \bigoplus_{v_{OUT}} \bigoplus_{v_{OUT}} \bigoplus_{\phi_2} \bigoplus_{v_{OUT}} \bigoplus_{v_$

Total output-referred noise PSD

 $S_{INT}(f) = S_{C1}(f) |H(z)|^2 + S_{OUT}(f)$ where $\overline{V_{OUT}^2} = \frac{4kT}{3\beta C_o} n_f$ and $\overline{V_{C1}^2} = \frac{kT}{C_1} \left(\frac{4n_f/3 + 1 + 2x}{1 + x}\right)$

Since all noise sources are sampled, white PSDs

$$\mathbf{S}_{\mathbf{x}} = \frac{\overline{V_{\mathbf{x}}^2}}{f_{\mathrm{S}}/2}$$

To find output-referred noise for a given OSR in a $\Delta\Sigma$ modulator: _____ $f_{S}/(2 \cdot OSR)$

$$\overline{V_{INT}^2} = \int_0^{S_{INT}} S_{INT}(f) df$$

29

ANALOG DEVICES

Noise in a $\Delta\Sigma$ Modulator

- How do we find the total input-referred noise in a $\Delta\Sigma$ modulator?
 - 1) Find all thermal noise sources
 - 2) Find PSDs of the thermal noise sources
 - 3) Find transfer functions from each noise source to the output
 - 4) Using the transfer functions, integrate all PSDs from DC to the signal band edge f_s/2·OSR
 - 5) Sum the noise powers to determine the total output thermal noise
 - Input noise = output noise (assuming STF is ~1 in the signal band)

Noise in a $\Delta\Sigma$ Modulator

Example

f_s = 100MHz, T = 10ns, OSR = 32 SNR = 80dB (13-bit resolution) Input Signal Power = 0.25V² (-6dB from 1V²) Noise Budget: 75% thermal noise Total input referred thermal noise:

31

ANALOG DEVICES

Noise in a $\Delta \Sigma$ Modulator

1) Find all thermal noise sources

ANALOG DEVICES

Noise in a $\Delta \Sigma$ Modulator

2) Find PSDs of the thermal noise sources

For each of the mean square voltage sources,

$$\mathbf{S}_{x} = \frac{V_{x}^{2}}{\mathbf{f}_{s} / \mathbf{2}}$$

 Find transfer functions from each noise source to the output

Assume ideal integrators

$$H_{A}(z) = H_{B}(z) = \frac{z^{-1}}{1 - z^{-1}}$$

STF(z) = 1
NTF(z) = $(1 - z^{-1})^{2} = \frac{1}{1 + 2H(z) + H(z)^{2}}$

33

ANALOG DEVICES

Noise in a $\Delta \Sigma$ Modulator

3) Find transfer functions from each noise source to the output

From input of $H_A(z)$ to output...

$$NTF_{i1}(z) = (2H(z) + H(z)^{2})NTF(z)$$
$$= \frac{2H(z) + H(z)^{2}}{1 + 2H(z) + H(z)^{2}} = 2z^{-1} - z^{-2}$$

From output of $H_A(z)$ to output...

$$NTF_{o1}(z) = (2 + H(z))NTF(z)$$
$$= \frac{2 + H(z)}{1 + 2H(z) + H(z)^2} = (1 - z^{-1})(2 - z^{-1})$$

Noise in a $\Delta\Sigma$ Modulator

Find transfer functions from each noise source to the output

From input of $H_B(z)$ to output...

$$NTF_{i2}(z) = H(z)NTF(z)$$

= $\frac{H(z)}{1+2H(z)+H(z)^2} = z^{-1}(1-z^{-1})$

From output of $H_B(z)$ to output (equal to transfer function at input of summer to output)...

$$NTF_{o2}(z) = NTF(z) = (1 - z^{-1})^2$$

 Find transfer functions from each noise source to the output

Most significant is NTF_{i1}

Noise in a $\Delta \Sigma$ Modulator

Using the transfer functions, integrate all PSDs from DC to the signal band edge f_s/2·OSR

Use MATLAB/Maple to solve the integrals...

$$\overline{N_{i1}^{2}} = \frac{\overline{V_{ni1}^{2}}}{\int_{0}^{f_{s}/(2\cdot OSR)}} |NTF_{i1}(f)|^{2} df$$

$$= \frac{\overline{V_{ni1}^{2}}}{f_{s}/2} \left[\frac{5f_{s}}{2\cdot OSR} - \frac{2f_{s}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

$$\overline{N_{o1}^{2}} = \frac{\overline{V_{no1}^{2}}}{f_{s}/2} \int_{0}^{f_{s}/(2\cdot OSR)} |NTF_{o1}(f)|^{2} df$$

$$= \frac{\overline{V_{no1}^{2}}}{f_{s}/2} \left[\frac{7f_{s}}{OSR} + \frac{2f_{s}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \cos\left(\frac{\pi}{OSR}\right) - \frac{9f_{s}}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

37

ANALOG DEVICES

Noise in a $\Delta \Sigma$ Modulator

 Using the transfer functions, integrate all PSDs from DC to the signal band edge f_s/2·OSR

$$\overline{N_{i2}^2} = \frac{\overline{V_{ni2}^2}}{f_s/2} \left[\frac{f_s}{OSR} - \frac{f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$
$$\overline{N_{o2}^2} = \frac{\overline{V_{no2}^2} + \overline{V_{n3}^2}}{f_s/2} \left[\frac{3f_s}{OSR} + \frac{f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \cos\left(\frac{\pi}{OSR}\right) - \frac{4f_s}{\pi} \sin\left(\frac{\pi}{OSR}\right) \right]$$

(Some simplifications can be made for large OSR)

Noise in a $\Delta \Sigma$ Modulator

Sum the noise powers to determine the total output thermal noise

Assume $x_A = x_B = 0.1$ and $n_{fA} = n_{fB} = 1.5$

$$\overline{V_{TH}^{2}} \approx \frac{2.9kT}{C_{1A}} \frac{1}{OSR} + \frac{2kT}{\beta_{A}C_{OA}} \frac{\pi^{2}}{3OSR^{3}} + \frac{2.9kT}{C_{1B}} \frac{\pi^{2}}{3OSR^{3}} + \frac{2kT}{\beta_{B}C_{OB}} \frac{\pi^{4}}{5OSR^{5}} + \frac{8kT}{C_{f1}} \frac{\pi^{4}}{5OSR^{5}}$$

With an OSR of 32, first term is most significant (assume $\beta_A = \beta_B = 1/3$)

$$\overline{V_{TH}^2} \approx 9.1 \times 10^{-2} \frac{kT}{C_{1A}} + 6.0 \times 10^{-4} \frac{kT}{C_{OA}} + 2.9 \times 10^{-4} \frac{kT}{C_{1B}} + \dots$$

39

ANALOG DEVICES

Noise in a $\Delta \Sigma$ Modulator

6) Input noise = output noise (assuming STF is ~1 in the signal band)

$$\overline{V_{TH}^2} \approx 9.1 \times 10^{-2} \frac{kT}{C_{1A}} = (43.4 \,\mu V)^2$$

=> C1A = 200fF

Assuming other capacitors are smaller than C_{1A}, then subsequent terms are insignificant and the approximation is valid

If lower oversampling ratios are used, other terms may become more significant in the calculation

Noise in a Pipeline ADC

- Similar procedure to $\Delta\Sigma$ modulator, except transfer functions are much easier to compute
- Differences...

Input refer all noise sources Gain from each stage to the input is a scalar Noise from later stages will be more significant since typical stage gains are as low as 2 Sample-and-Hold adds extra noise which is input referred with a gain of 1 Entire noise power is added since the signal band is from 0 to $f_s/2$ (OSR=1)

Noise in a Pipeline ADC

Example

If each stage has a gain $G_1, G_2, \dots G_N$

$$\overline{N_{i}^{2}} = \overline{V_{ni1}^{2}} + \frac{\overline{V_{no1}^{2}} + \overline{V_{ni2}^{2}}}{G_{1}^{2}} + \frac{\overline{V_{no2}^{2}} + \overline{V_{ni3}^{2}}}{G_{1}^{2}G_{2}^{2}} + \dots + \frac{\overline{V_{noN}^{2}}}{G_{1}^{2}G_{2}^{2}} \dots + \frac{\overline{V_{nON}^{2}}}{G_{1}^{2}} \dots + \frac{\overline{V_{nON}^{2}}}{G$$

S/H stage noise will add directly to V_{ni1}

- Appendix C of Understanding Delta-Sigma Data Converters, Schreier and Temes
- Schreier et al., Design-Oriented Estimation of Thermal Noise in Switched-Capacitor Circuits, TCAS-I, Nov. 2005

ANALOG DEVICES