Equalization

Prof. David Johns University of Toronto

(johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns)

slide 1 of 70

© D.A. Johns, 1997

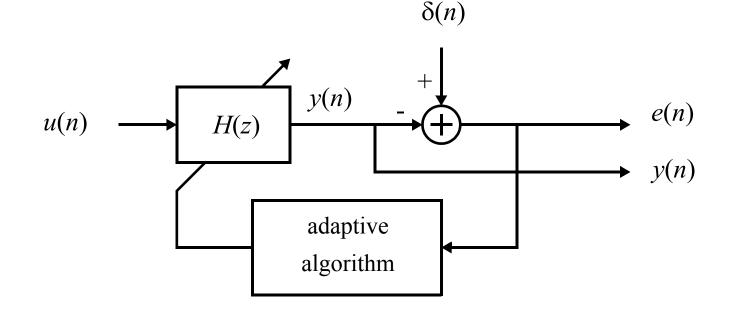
Adaptive Filter Introduction

- Adaptive filters are used in:
 - Noise cancellation
 - Echo cancellation
 - Sinusoidal enhancement (or rejection)
 - Beamforming
 - Equalization
- Adaptive equalization for data communications proposed by R.W. Lucky at Bell Labs in 1965.
- LMS algorithm developed by Widrow and Hoff in 60s for neural network adaptation

slide 2 of 70

Adaptive Filter Introduction

• A typical adaptive system consists of the following two-input, two output system



- *u*(*n*) and *y*(*n*) are the filter's input and output
- $\delta(n)$ and e(n) are the reference and error signals

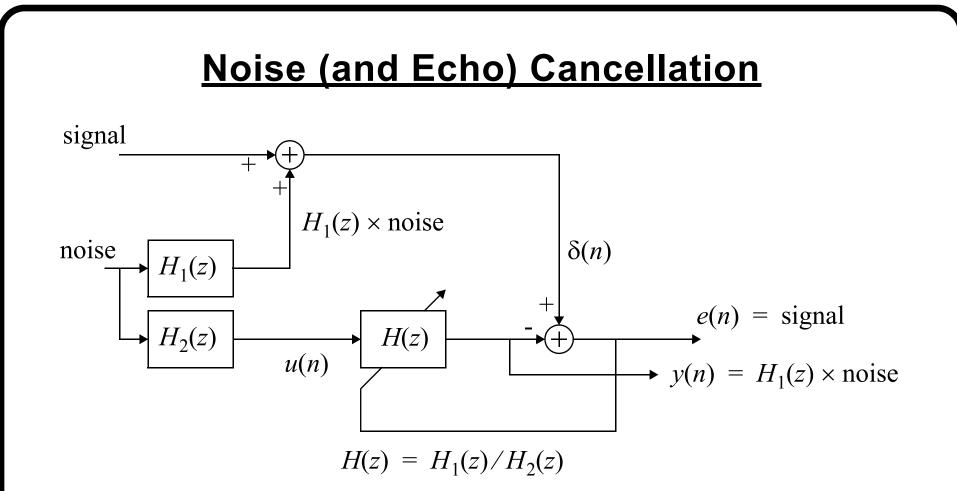
slide 3 of 70

Adaptive Filter Goal

- Find a set of filter coefficients to minimize the power of the error signal, *e*(*n*).
- Normally assume the time-constant of the adaptive algorithm is *much slower* than those of the filter, *H*(*z*).
- If it were instantaneous, it could always set *y*(*n*) equal to δ(*n*) and the error would be zero (this is useless)

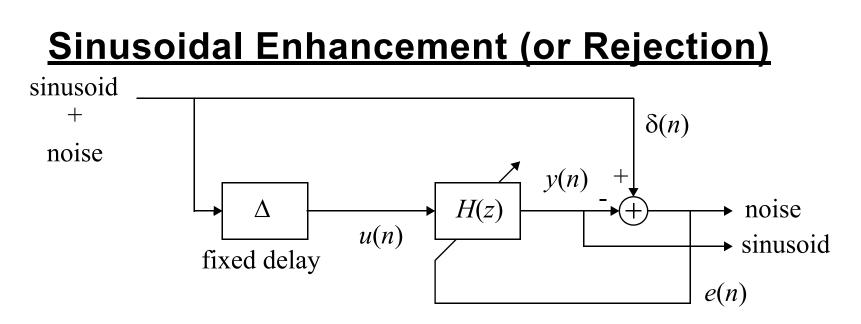
• Think of adaptive algorithm as an optimizer which finds the best set of *fixed* filter coefficients that minimizes the power of the error signal.

slide 4 of 70



 Useful in cockpit noise cancelling, fetal heart monitoring, acoustic noise cancelling, echo cancelling, etc.

slide 5 of 70



- The sinusoid's frequency and amplitude are unknown.
- If H(z) is adjusted such that its phase plus the delay equals 360 degrees at the sinusoid's frequency, the sinusoid is cancelled while the noise is passed.
- The "noise" might be a broadband signal which should be recovered.

University of Toronto

slide 6 of 70

Adaptation Algorithm

- Optimization might be performed by:
 - perturb some coefficient in H(z) and check whether the power of the error signal increased or decreased.
 - If it decreased, go on to the next coefficient.
 - If it increased, switch the sign of the coefficient change and go on to the next coefficient.
 - Repeat this procedure until the error signal is minimized.
- This approach is a steepest-descent algorithm but is slow and not very accurate.
- The LMS (Least-Mean-Square) algorithm is also a steepest-descent algorithm but is more accurate and simpler to realize

slide 7 of 70

Steepest-Descent Algorithm

- Minimize the power of the error signal, $E[e^2(n)]$
- General steepest-descent for filter coefficient *p_i(n)*:

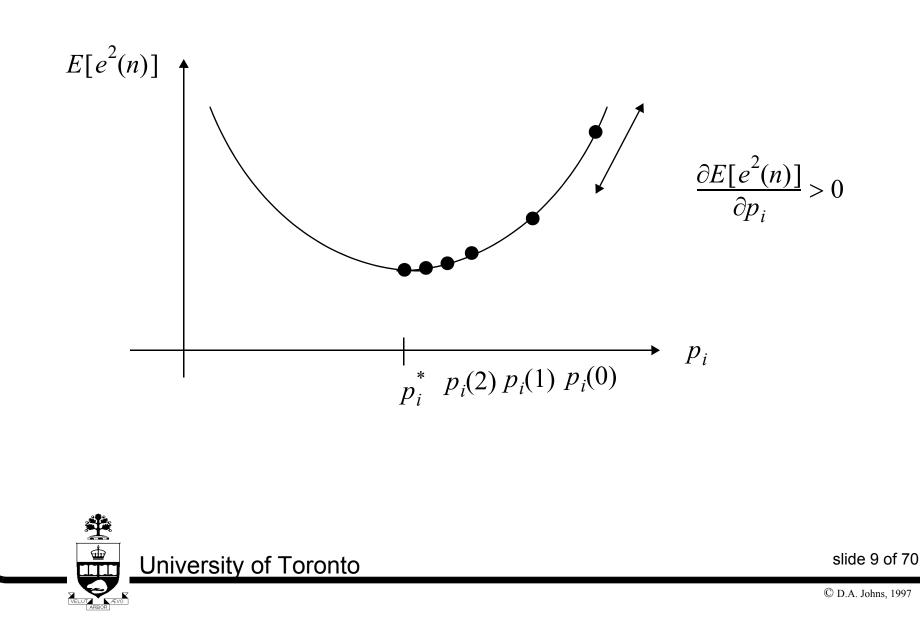
$$p_i(n+1) = p_i(n) - \mu\left(\frac{\partial E[e^2(n)]}{\partial p_i}\right)$$

• Here $\mu > 0$ and controls the adaptation rate

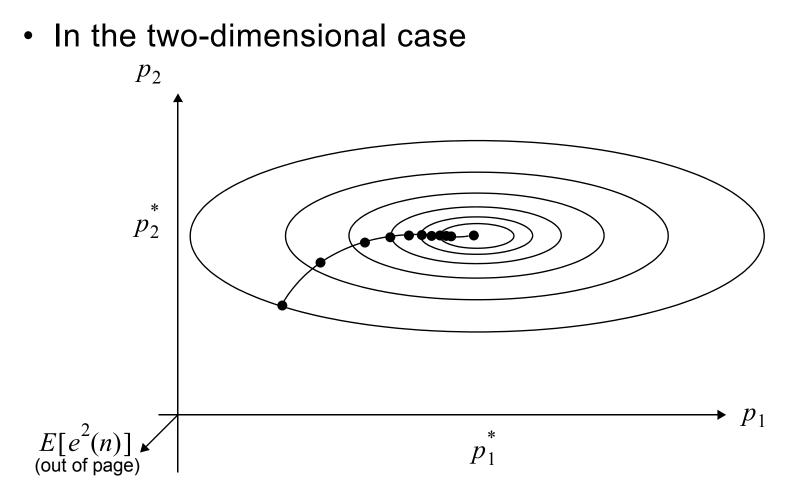
slide 8 of 70

Steepest Descent Algorithm

• In the one-dimensional case



Steepest-Descent Algorithm



• Steepest-descent path follows perpendicular to tangents of the contour lines.

slide 10 of 70

LMS Algorithm

• Replace expected error squared with instantaneous error squared. Let adaptation time smooth out result.

$$p_i(n+1) = p_i(n) - \mu\left(\frac{\partial e^2(n)}{\partial p_i}\right)$$

$$p_i(n+1) = p_i(n) - 2\mu e(n) \left(\frac{\partial e(n)}{\partial p_i}\right)$$

• and since $e(n) = \delta(n) - y(n)$, we have

 $p_i(n+1) = p_i(n) + 2\mu e(n)\phi_i(n)$ where $\phi_i = \partial y(n) / \partial p_i$

• e(n) and $\phi_i(n)$ are uncorrelated after convergence.

University of Toronto

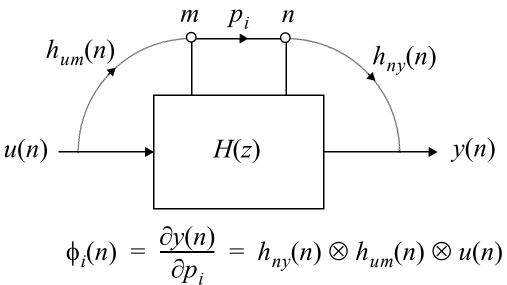
slide 11 of 70

Variants of the LMS Algorithm

- To reduce implementation complexity, variants are taking the sign of *e*(*n*) and/or φ_i(*n*).
- **LMS** $p_i(n+1) = p_i(n) + 2\mu e(n) \times \phi_i(n)$
- Sign-data LMS $p_i(n+1) = p_i(n) + 2\mu e(n) \times \operatorname{sgn}(\phi_i(n))$
- **Sign-error LMS** $p_i(n+1) = p_i(n) + 2\mu \operatorname{sgn}(e(n)) \times \phi_i(n)$
- Sign-sign LMS $_{i}(n+1) = p_{i}(n) + 2\mu \operatorname{sgn}(e(n)) \times \operatorname{sgn}(\phi_{i}(n))$
- However, the sign-data and sign-sign algorithms have gradient misadjustment — may not converge!
- These LMS algorithms have different dc offset implications in analog realizations.

University of Toronto

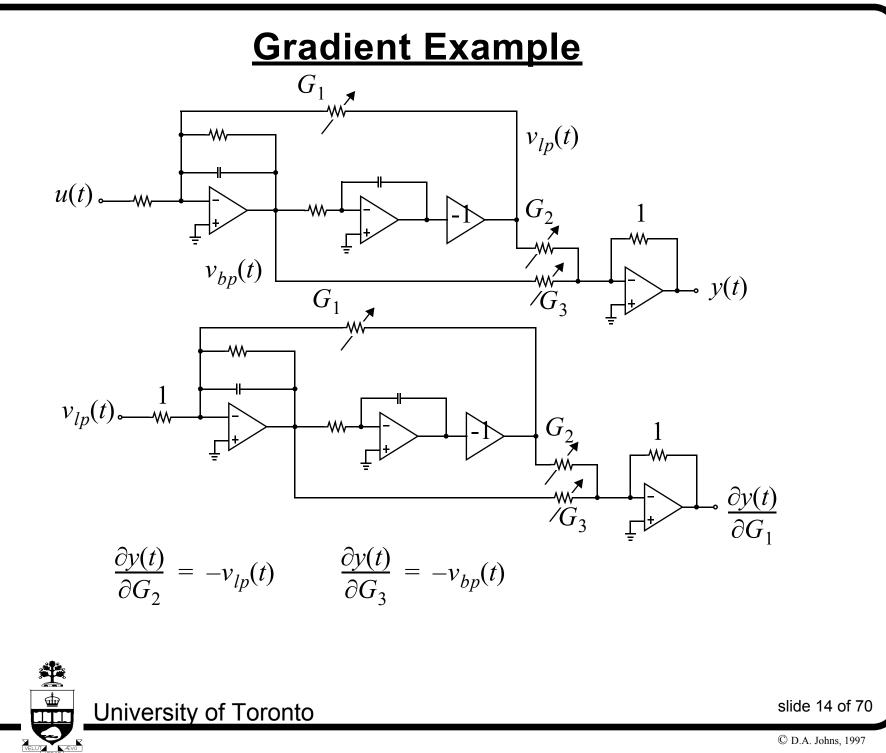
slide 12 of 70

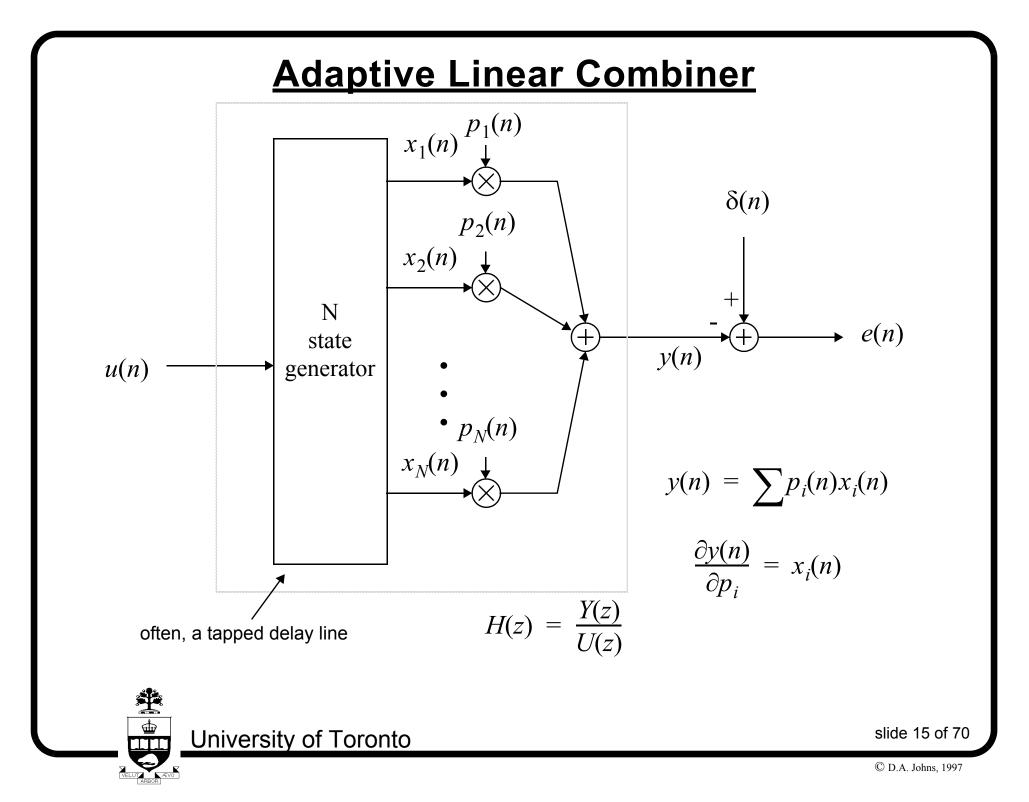


- H(z) is a LTI system where the signal-flow-graph arm corresponding to coefficient p_i is shown explicitly.
- $h_{um}(n)$ is the impulse response of from *u* to *m*
- The gradient signal with respect to element p_i is the convolution of u(n) with $h_{um}(n)$ convolved with $h_{ny}(n)$.

University of Toronto

slide 13 of 70





Adaptive Linear Combiner

- The gradient signals are simply the state signals $p_i(n+1) = p_i(n) + 2\mu e(n)x_i(n)$
- Only the zeros of the filter are being adjusted.
- There is no need to check that for filter stability (though the adaptive algorithm could go unstable if μ is too large).
- The *performance surface is guaranteed unimodal* (i.e. there is only one minimum so no need to worry about being stuck in a local minimum).
- The performance surface becomes ill-conditioned as the state-signals become correlated (or have large power variations).

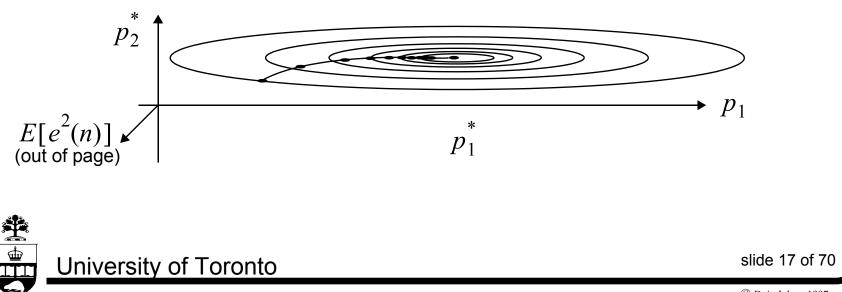
University of Toronto

slide 16 of 70

(1)

Performance Surface

- Correlation of two states is determined by multiplying the two signals together and averaging the output.
- Uncorrelated (and equal power) states result in a "hyper-paraboloid" performance surface — good adaptation rate.
- Highly-correlated states imply an ill-conditioned performance surface — more residual mean-square error and longer adaptation time.



Adaptation Rate

Quantify performance surface — state-correlation matrix

$$R \equiv \begin{bmatrix} E[x_1x_1] & E[x_1x_2] & E[x_1x_3] \\ E[x_2x_1] & E[x_2x_2] & E[x_2x_3] \\ E[x_3x_1] & E[x_3x_2] & E[x_3x_3] \end{bmatrix}$$

- Eigenvalues, λ_i , of *R* are all positive real indicate curvature along the principle axes.
- For adaptation stability, $0 < \mu < \frac{1}{\lambda_{max}}$ but adaptation rate

is determined by least steepest curvature, $\lambda_{\text{min}}.$

University of Toronto

 Eigenvalue spread indicates performance surface conditioning.

slide 18 of 70

Adaptation Rate

- Adaptation rate might be 100 to 1000 times slower than time-constants in programmable filter.
- Typically use same μ for all coefficient parameters since orientation of performance surface not usually known.
- A large value of μ results in a larger coefficient "bounce".
- A small value of μ results in slow adaptation
- Often "gear-shift" μ use a large value at start-up then switch to a smaller value during steady-state.
- Might need to detect if one should "gear-shift" again.

University of Toronto

slide 19 of 70

Adaptive IIR Filtering

- The poles (and often the zeros) are adjusted useful in applications with long impulse responses.
- Stability check needed for the adaptive filter itself to ensure the poles do not go outside the unit circle for too long a time (or perhaps at all).
- In general, a multi-modal performance surface occurs. Can get stuck in local minimum.
- However, if the order of the adaptive filter is greater than the order of the system being matched (and all poles and zeros are being adapted) — the performance surface is unimodal.
- To obtain the gradient signals for poles, extra filters are generally required.

University of Toronto

slide 20 of 70

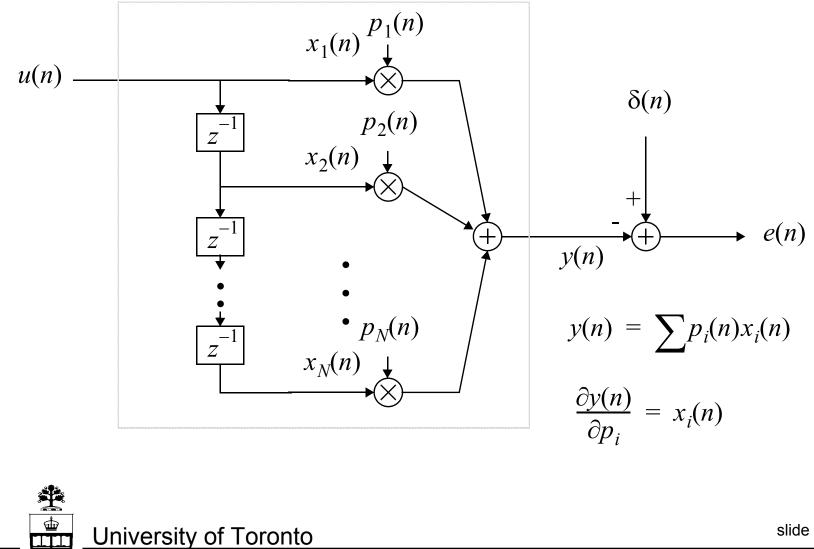
Adaptive IIR Filtering

- Direct-form structure needs only one additional filter to obtain all the gradient signals.
- However, choice of structure for programmable filter is VERY important — sensitive structures tend to have ill-conditioned performance surfaces.
- Equation error structure has unimodal performance surface but has a bias.
- SHARF (simplified hyperstable adaptive recursive filter) — the error signal is filtered to guarantee adaptation — needs to meet a strictly-positive-real condition
- There are few commercial use of adaptive IIR filters

slide 21 of 70

Digital Adaptive Filters

• FIR tapped delay line is the most common



slide 22 of 70

FIR Adaptive Filters

- All poles at z = 0 and zeros only adapted.
- Special case of an adaptive linear combiner
- Unimodal performance surface
- States are uncorrelated and equal power if input signal is white hyper-paraboloid
- If not sure about correlation matrix, can guarantee adaptation stability by choosing

 $0 < \mu < \frac{1}{(\# \text{ of taps})(\text{ input signal power})}$

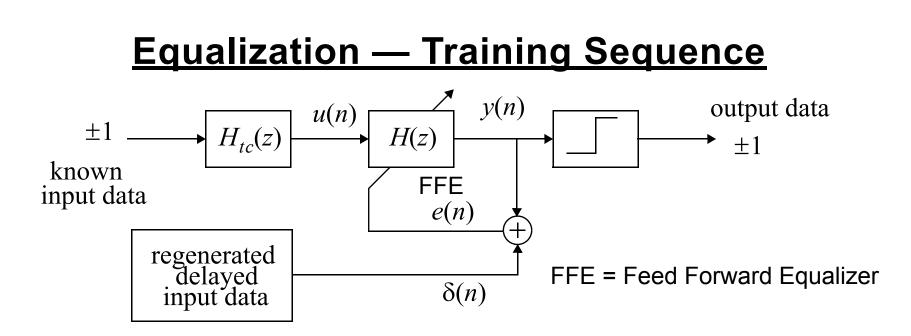
Usually need an AGC so signal power is known.

slide 23 of 70

FIR Adaptive Filter

- Coefficient word length typically 2 + 0.5log₂(# of taps) bits longer than "bit-equivalent" dynamic range
- Example: 6-bit input with 8-tap FIR might have 10-bit coefficient word lengths.
- Example: 12-bit input with 128-tap FIR might have 18-bit coefficient word lengths for 72 dB output SNR.
- Requires multiplies in filter and adaptation algorithm (unless an LMS variant used or slow adaptation rate)
 — twice the complexity of FIR fixed filter.

slide 24 of 70

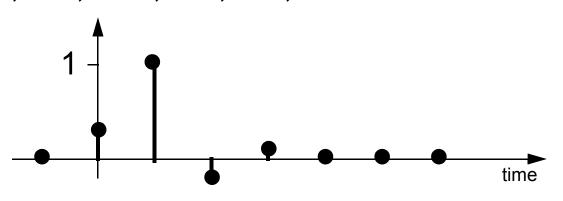


- The reference signal, δ(n) is equal to a delayed version of the transmitted data
- The training pattern should be chosen so as to ease adaptation — pseudorandom is common.
- Above is a feedforward equalizer (FFE) since y(n) is not directly created using derived output data

slide 25 of 70

FFE Example

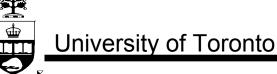
Suppose channel, *H_{tc}(z)*, has impulse response
 0.3, 1.0, -0.2, 0.1, 0.0, 0.0



• If FFE is a 3-tap FIR filter with

$$y(n) = p_1 u(n) + p_2 u(n-1) + p_3 u(n-2)$$
(2)

- Want to force y(1) = 0, y(2) = 1, y(3) = 0
- Not possible to force all other y(n) = 0



slide 26 of 70

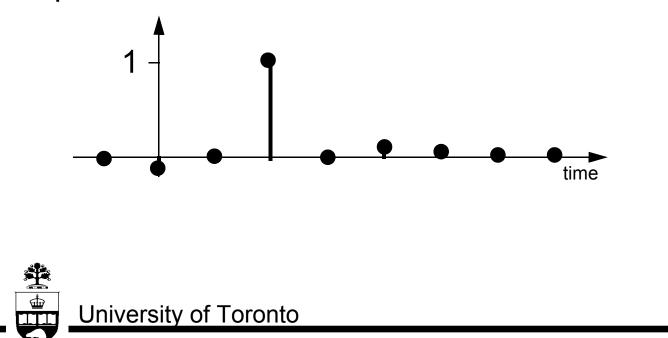
FFE Example

$$y(1) = 0 = 1.0p_1 + 0.3p_2 + 0.0p_3$$

$$y(2) = 1 = -0.2p_1 + 1.0p_2 + 0.3p_3$$

$$y(3) = 0 = 0.1p_1 + (-0.2)p_2 + 1.0p_3$$
(3)

- Solving results in $p_1 = -0.266$, $p_2 = 0.886$, $p_3 = 0.204$
- Now the impulse response through both channel and equalizer is: 0.0, -0.08, 0.0, 1.0, 0.0, 0.05, 0.02, ...

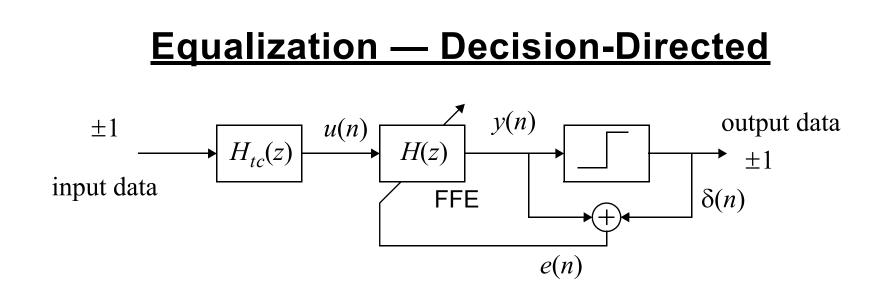


slide 27 of 70

FFE Example

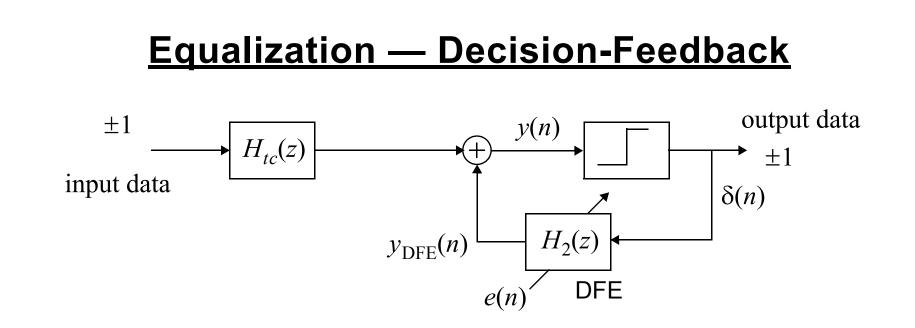
- Although ISI reduced around peak, introduction of slight ISI at other points (better overall)
- Above is a "zero-forcing" equalizer usually boosts noise too much
- An LMS adaptive equalizer minimizes the mean squared error signal (i.e. find low ISI and low noise)
- In other words, do not boost noise at expense of leaving some residual ISI

slide 28 of 70



- After training, the channel might change during data transmission so adaptation should be continued.
- The reference signal is equal to the recovered output data.
- As much as 10% of decisions might be in error but correct adaptation will occur

slide 29 of 70



- **Decision-feedback equalizers** make use of $\delta(n)$ in directly creating y(n).
- They enhance noise less as the *derived* input data is used to cancel ISI
- The error signal can be obtained from either a training sequence or decision-directed.

University of Toronto

slide 30 of 70

DFE Example

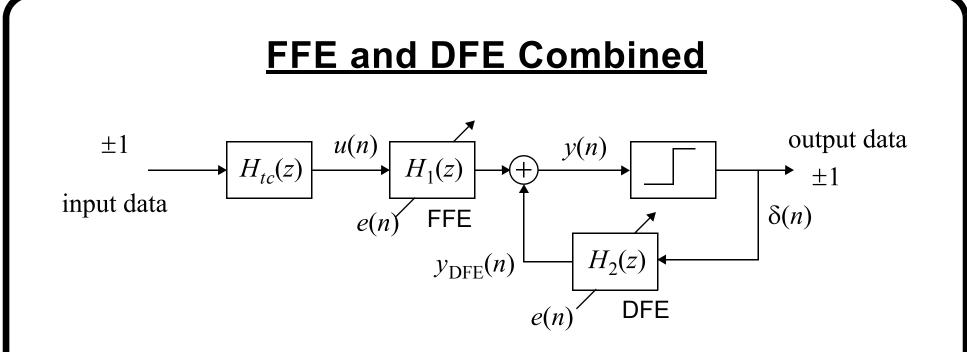
- Assume signals 0 and 1 (rather than -1 and +1) (makes examples easier to explain)
- Suppose channel, $H_{tc}(z)$, has impulse response 0.0, 1.0, -0.2, 0.1, 0.0, 0.0
- If DFE is a 2-tap FIR filter with

$$v_{\rm DFE}(n) = 0.2\delta(n-1) + (-0.1)\delta(n-2)$$
 (4)

• Input to slicer is now 0.0, 1.0, 0.0, 0.0 0.0 0.0



slide 31 of 70



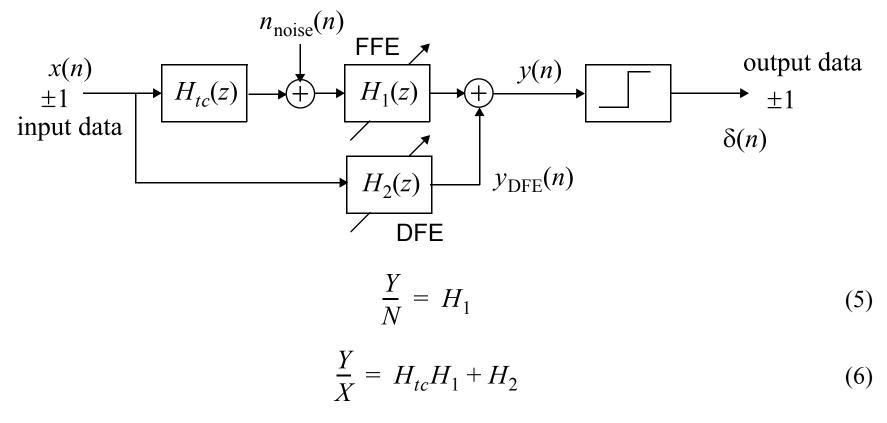
- Assuming correct operation, output data = input data
- *e*(*n*) same for both FFE and DFE
- *e*(*n*) can be either training or decision directed

slide 32 of 70

FFE and DFE Combined

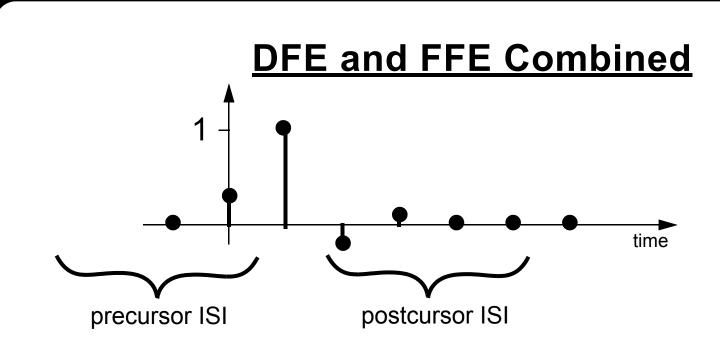
Model as:

University of Toronto



• When H_{tc} small, make $H_2 = 1$ (rather than $H_1 \rightarrow \infty$)

slide 33 of 70



- FFE can deal with precursor ISI and postcursor ISI
- DFE can only deal with postcursor ISI
- However, FFE enhances noise while DFE does not

When both adapt

 FFE trys to add little boost by pushing precursor into postcursor ISI (allpass)

University of Toronto

slide 34 of 70

Equalization — Decision-Feedback

- The multipliers in the decision feedback equalizer can be simple since received data is small number of levels (i.e. +1, 0, -1) — can use more taps if needed.
- An error in the decision will propagate in the ISI cancellation error propagation
- More difficult if Viterbi detection used since output not known until about 16 sample periods later (need early estimates).
- Performance surface might be multi-modal with local minimum if changing DFE affects output data

slide 35 of 70

Fractionally-Spaced FFE

- Feed forward filter is often a FFE sampled at 2 or 3 times symbol-rate — fractionally-spaced (i.e. sampled at T/2 or at T/3)
- Advantages:

 Allows the matched filter to be realized digitally and also adapt for channel variations (not possible in symbol-rate sampling)

 Also allows for simpler timing recovery schemes (FFE can take care of phase recovery)

• Disadvantage

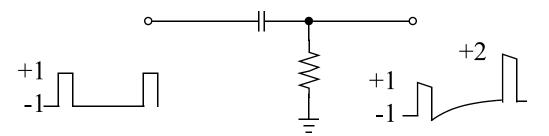
Costly to implement — full and higher speed multiplies, also higher speed A/D needed.

University of Toronto

slide 36 of 70

dc Recovery (Baseline Wander)

- Wired channels often ac coupled
- Reduces dynamic range of front-end circuitry and also requires some correction if not accounted for in transmission line-code



- Front end may have to be able to accomodate twice the input range!
- DFE can restore baseline wander lower frequency pole implies longer DFE
- Can use line codes with no dc content

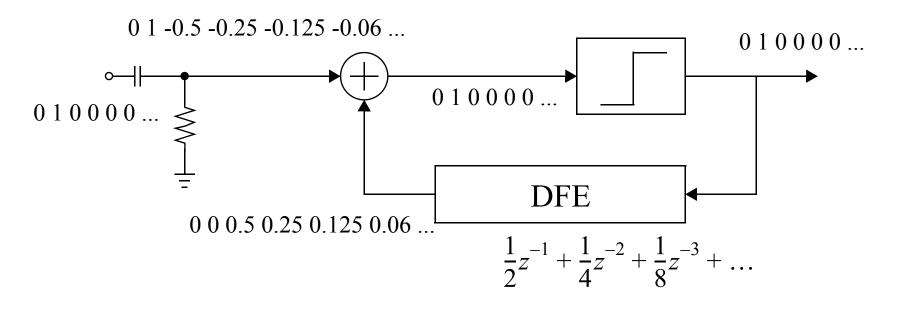
slide 37 of 70

DFE Based

- Treat baseline wander as postcursor interference
- May require a long DFE

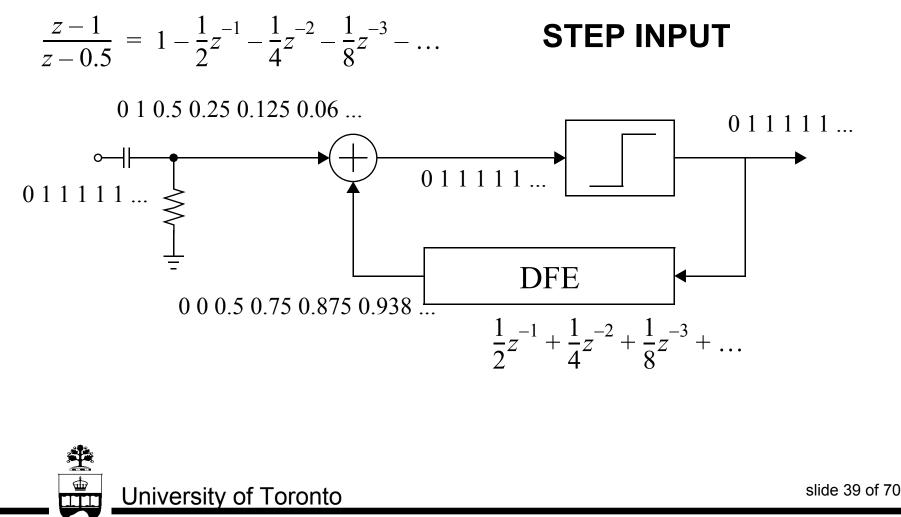
 $\frac{z-1}{z-0.5} = 1 - \frac{1}{2}z^{-1} - \frac{1}{4}z^{-2} - \frac{1}{8}z^{-3} - \dots$

IMPULSE INPUT

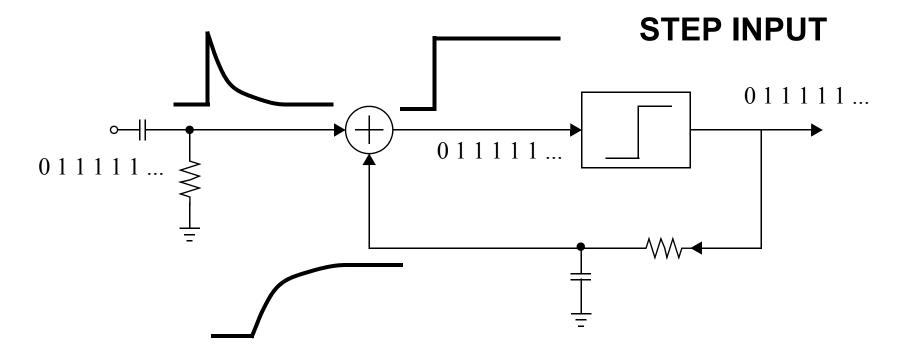


slide 38 of 70

DFE Based



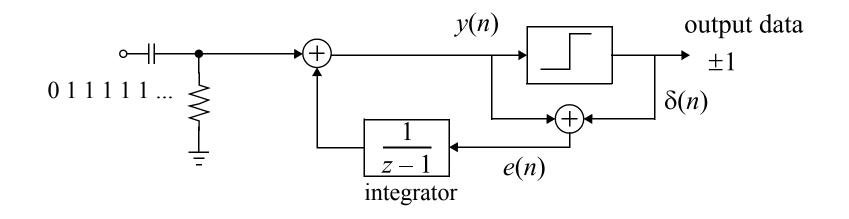
Analog dc restore



- Equivalent to an analog DFE
- Needs to match RC time constants

slide 40 of 70

Error Feedback



- Integrator time-constant should be faster than ac coupling time-constant
- Effectively forces error to zero with feedback
- May be difficult to stablilize if too much in loop (i.e. AGC, A/D, FFE, etc)

University of Toronto

slide 41 of 70

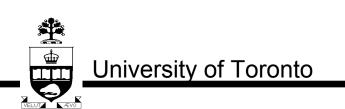
Analog Equalization

1

1

1

1



slide 42 of 70

© D.A. Johns, 1997

Analog Filters

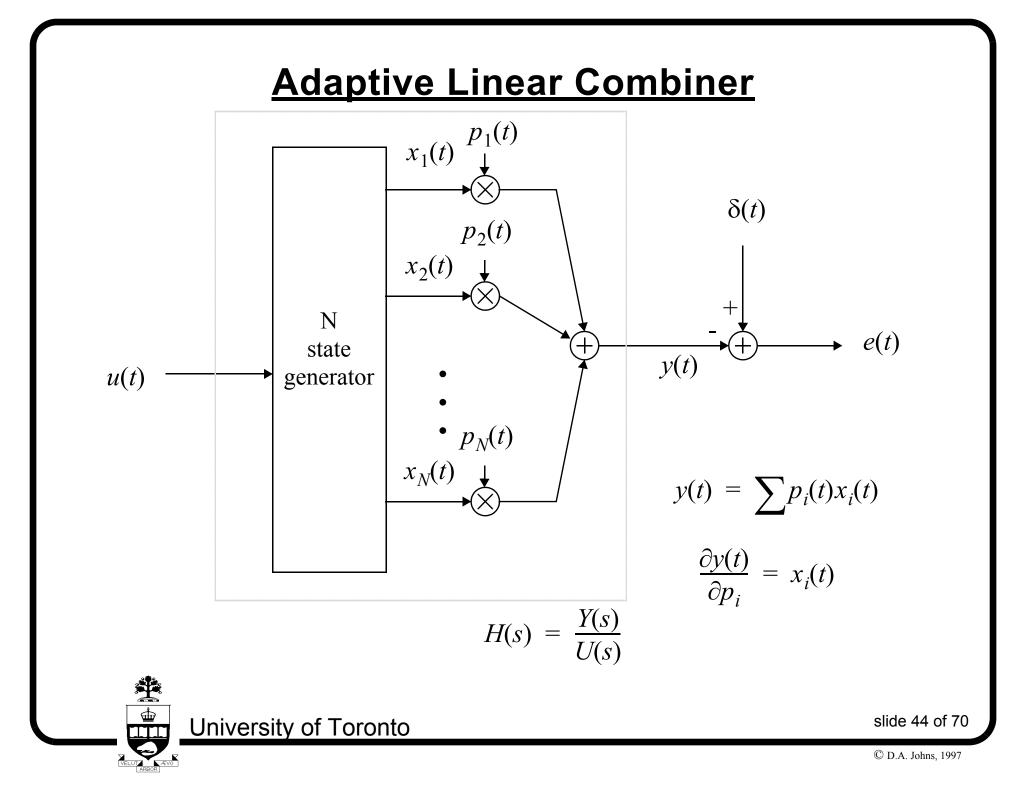
Switched-capacitor filters

- + Accurate transfer-functions
- + High linearity, good noise performance
- Limited in speed
- Requires anti-aliasing filters

Continuous-time filters

- Moderate transfer-function accuracy (requires tuning circuitry)
- Moderate linearity
- + High-speed
- + Good noise performance

slide 43 of 70



Adaptive Linear Combiner

- The gradient signals are simply the state signals
- If coeff are updated in discrete-time

$$p_i(n+1) = p_i(n) + 2\mu e(n)x_i(n)$$
 (7)

• If coeff are updated in cont-time

$$p_i(t) = \int_0^\infty 2\mu e(t) x_i(t) dt$$
(8)

- Only the zeros of the filter are being adjusted.
- There is no need to check that for filter stability (though the adaptive algorithm could go unstable if μ is too large).

slide 45 of 70

Adaptive Linear Combiner

- The *performance surface is guaranteed unimodal* (i.e. there is only one minimum so no need to worry about being stuck in a local minimum).
- The performance surface becomes ill-conditioned as the state-signals become correlated (or have large power variations).

Analog Adaptive Linear Combiner

- Better to use input summing rather than output summing to maintain high speed operation
- Requires extra gradient filter to obtain gradients

slide 46 of 70

Analog Adaptive Filters

Analog Equalization Advantages

- Can eliminate A/D converter
- Reduce A/D specs if partial equalization done first
- If continuous-time, no anti-aliasing filter needed
- Typically consumes less power and silicon for highfrequency low-resolution applications.

Disadvantages

- Long design time (difficult to "shrink" to new process)
- More difficult testing
- DC offsets can result in large MSE (discussed later).

slide 47 of 70

Analog Adaptive Filter Structures

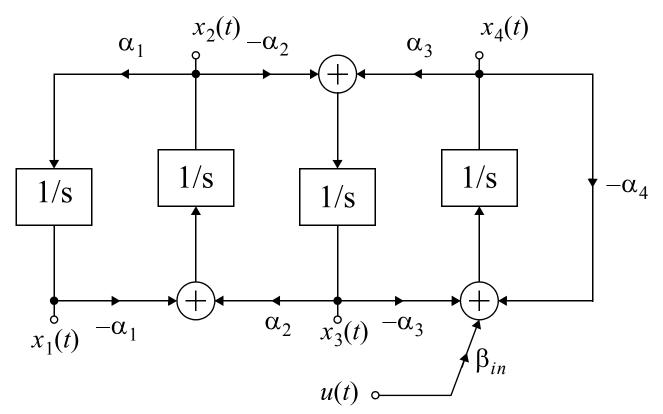
Tapped delay lines are difficult to implement in analog.

To obtain uncorrelated states:

- Can use Laguerre structure cascade of allpass first-order filters — poles all fixed at one location on real axis
- For arbitrary pole locations, can use orthonormal filter structure to obtain uncorrelated filter states [Johns, CAS, 1989].

slide 48 of 70

Orthonormal Ladder Structure



• For white noise input, all states are uncorrelated and have equal power.

slide 49 of 70

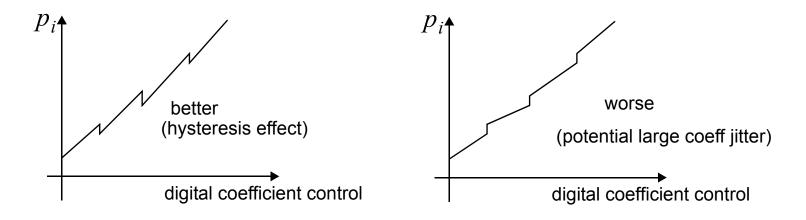
Analog's Big Advantage

- In digital filters, programmable filter has about same complexity as a fixed filter (if not power of 2 coeff).
- In analog, arbitrary fixed coeff come for free (use element sizing) but programming adds complexity.
- In continuous-time filters, frequency adjustment is required to account for process variations — relatively simple to implement.
- If channel has only frequency variation use arbitrary fixed coefficient analog filter and adjust a single control line for frequency adjustment.
- Also possible with switched-C filter by adjusting clock frequency.

slide 50 of 70

Analog Adaptive Filters

- Usually digital control desired can switch in caps and/or transconductance values
- Overlap of digital control is better than missed values



- In switched-C filters, some type of multiplying DAC needed.
- Best fully-programmable filter approach is not clear

slide 51 of 70

<u>Analog Adaptive Filters — DC Offsets</u>

• DC offsets result in partial correlation of data and error signals (opposite to opposite DC offset)

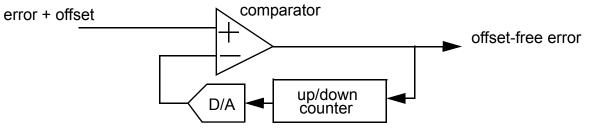


- At high-speeds, offsets might even be larger than signals (say, 100 mV signals and 200mV offsets)
- DC offset effects worse for ill-conditioned performance surfaces

slide 52 of 70

<u>Analog Adaptive Filters — DC Offsets</u>

- Sufficient to zero offsets in either error or statesignals (easier with error since only one error signal)
- For integrator offset, need a high-gain on error signal
- Use *median-offset cancellation* slice error signal and set the median of output to zero
- In most signals, its mean equals its median



 Experimentally verified (low-frequency) analog adaptive with DC offsets more than twice the size of the signal.

slide 53 of 70

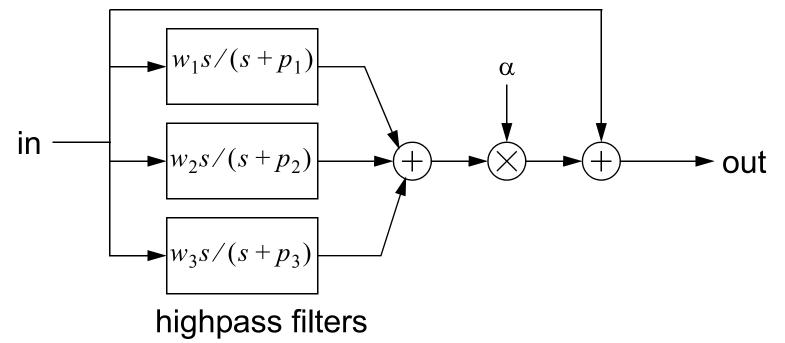
DC Offset Effects for LMS Variants

5

					$\neg \int \sigma_e^2$	
Test Case	LMS	SD-LMS	SE-LMS	SS-LMS	Residual Mean Squared Error	•
input power	$\sigma_e^2 \propto 1/\sigma_x^2$	no effect	$\sigma_e^2 \propto 1/ln[\sigma]$		-10-	-
no offsets	$\sigma_e^2 \to 0$ for $\mu \to 0$	$\begin{array}{c} \sigma_e^2 \to 0 \\ \text{for } \mu \to 0 \end{array}$	$\sigma_e^2 \propto \mu^2 \sigma_x^4$	$\sigma_e^2 \propto \mu^2 \sigma_x^2$	SD-LMS	
	σ_e^2 weakly depends on μ		σ_e^2 strongly depends on μ		-20- LMS	-
algorithm circuit complexity	1 multiplier/tap 1 integrator/tap	1 slicer/tap 1 trivial multiplier/tap 1 integrator/tap	1 trivial multiplier/tap 1 integrator/tap 1 slicer/filter	1 slicer/tap 1 XOR gate/tap 1 counter/tap 1 DAC/tap 1 slicer/filter	-30- -30-	-
convergence	no gradient misalignment	gradients misaligned	no gradient misalignment	gradients misaligned		
					-40 SS-LMS SE-LMS -50	
					10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2}	10
					μ Step Size	
		ty of Toront	slide 54 of 7	0		
VELUT	R R				© D.A. Johns, 199	7

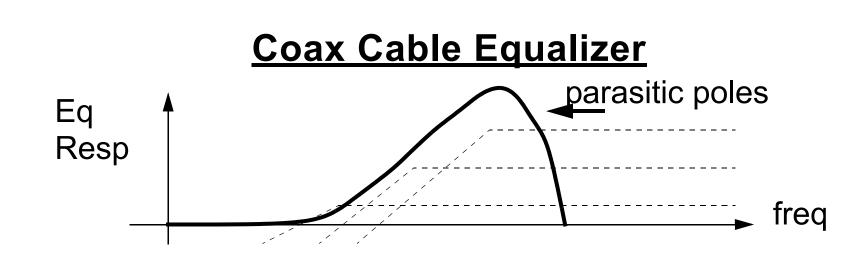
Coax Cable Equalizer

- Analog adaptive filter used to equalize up to 300m
- Cascade of two 3'rd order filters with a single tuning control



• Variable α is tuned to account for cable length

slide 55 of 70

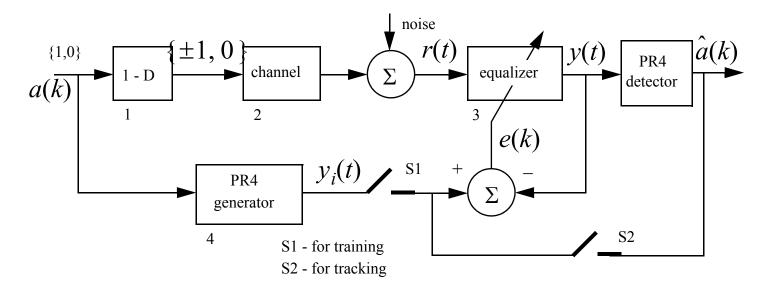


- Equalizer optimized for 300m
- Works well with shorter lengths by tuning α
- Tuning control found by looking at slope of equalized waveform
- Max boost was 40 dB
- System included dc recovery circuitry
- Bipolar circuit used operated up to 300Mb/s

University of Toronto

slide 56 of 70

Analog Adaptive Equalization Simulation



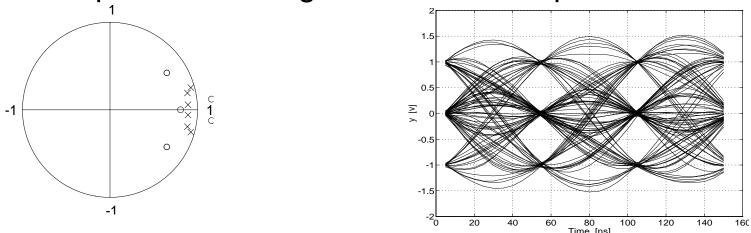
- Channel modelled by a 6'th-order Bessel filter with 3 different responses — 3MHz, 3.5MHz and 7MHz
- 20Mb/s data
- PR4 generator 200 tap FIR filter used to find set of fixed poles of equalizer
- Equalizer 6'th-order filter with fixed poles and 5 zeros adjusted (one left at infinity for high-freq roll-off)

University of Toronto

slide 57 of 70

Analog Adaptive Equalization Simulation

- Analog blocks simulated with a 200MHz clock and bilinear transform.
- Switch S1 closed (S2 open) and all poles and 5 zeros adapted to find a good set of fixed poles.



- Poles and zeros depicted in digital domain for equalizer filter.
- Residual MSE was -31dB

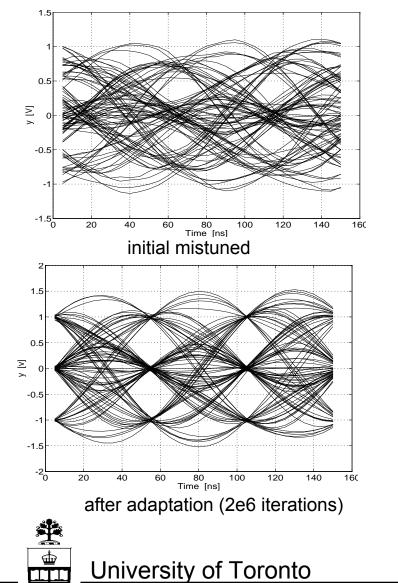
University of Toronto

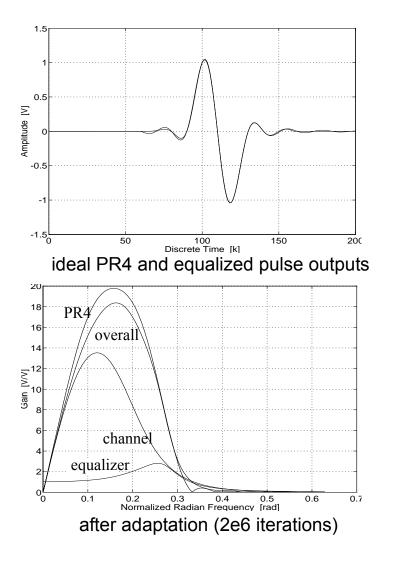
slide 58 of 70

- Switch S2 closed (S1 open), all poles fixed and 5 zeros adapted using
 - e(k) = 1 y(t) if (y(t) > 0.5)
 - e(k) = 0 y(t) if $(-0.5 \le y(t) \le 0.5)$
 - e(k) = -1 y(t) if (y(t) < -0.5)
- all sampled at the decision time assumes clock recovery perfect
- Potential problem AGC failure might cause y(t) to always remain below ±0.5 and then adaptation will force all coefficients to zero (i.e. y(t) = 0).
- Zeros initially mistuned to significant eye closure

slide 59 of 70

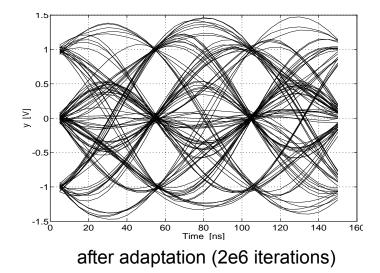
• 3.5MHz Bessel

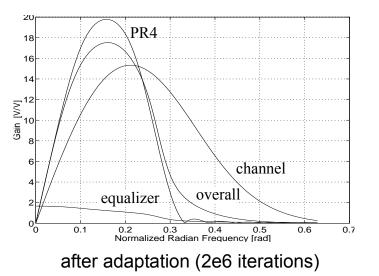




slide 60 of 70

- Channel changed to 7MHz Bessel
- Keep same fixed poles (i.e. non-optimum pole placement) and adapt 5 zeros.

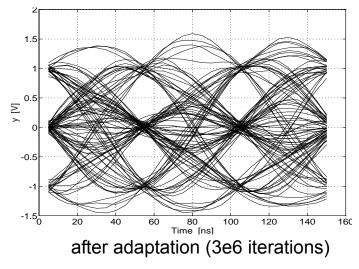


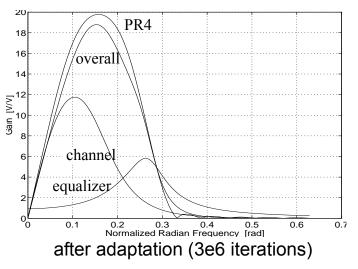


- Residual MSE = -29dB
- Note that no equalizer boost needed at high-freq.

slide 61 of 70

- Channel changed to 3MHz Bessel
- Keep same fixed poles and adapt 5 zeros.





- Residual MSE = -25dB
- Note that large equalizer boost needed at high-freq.
- Probably needs better equalization here (perhaps move all poles together and let zeros adapt)

University of Toronto

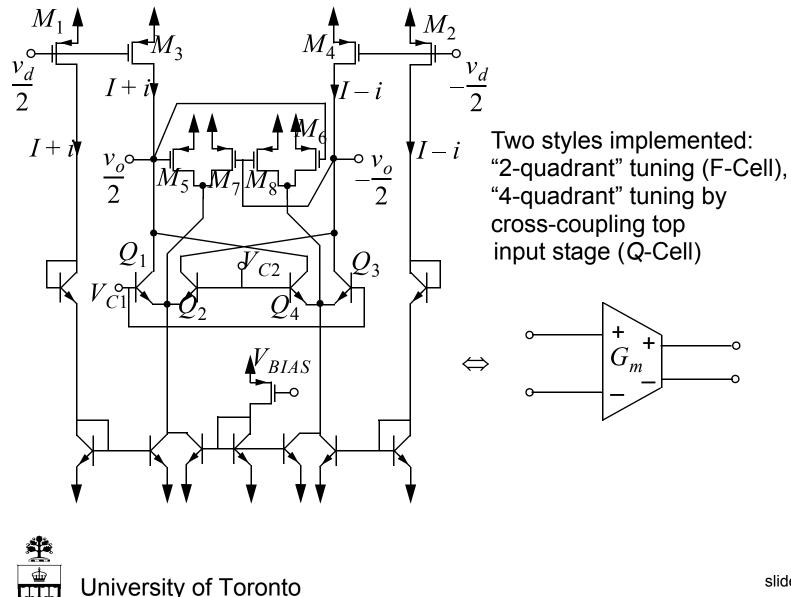
slide 62 of 70

BiCMOS Analog Adaptive Filter Example

- Demonstrates a method for tuning the polefrequency and Q-factor of a 100MHz filter — adaptive analog
- Application is a pulse-shaping filter for data transmission.
- One of the fastest reported integrated adaptive filters
 it is a Gm-C filter in 0.8um BiCMOS process
- Makes use of MOS input stage and translinearmultiplier for tuning
- Large tuning range (approx. 10:1)
- All analog components integrated (digital left off)

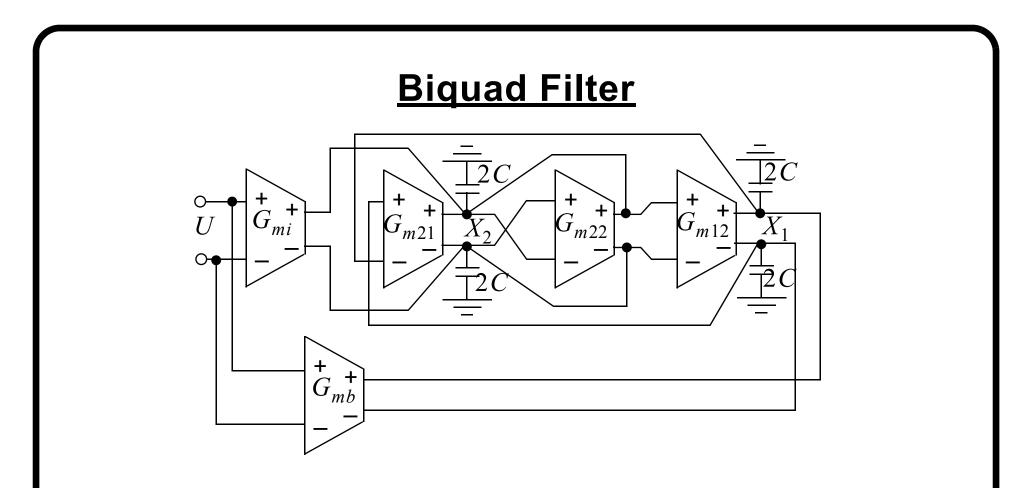
slide 63 of 70

BiCMOS Transconductor



University of Toronto

slide 64 of 70



- fo and Q not independent due to finite output conductance
- Only use 4 quadrant transconductor where needed

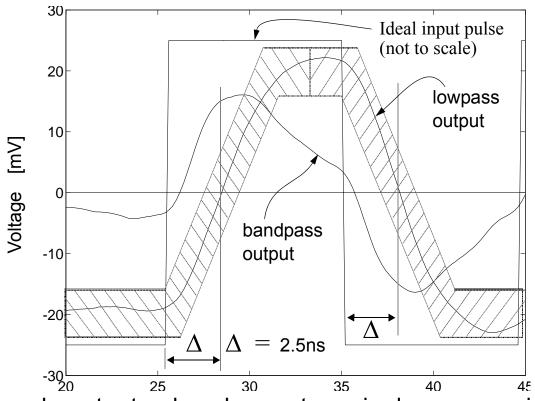
slide 65 of 70

Experimental Results Summary

Transconductor (T.) size	0.14mm x 0.05mm			
T. power dissipation	10mW @ 5V			
Biquad size	0.36mm x 0.164mm			
Biquad worst case CMRR	20dB			
Biquad f_o tuning range	10MHz-230MHz @ 5V, 9MHz-135MHz @ 3V			
Biquad Q tuning range	1-Infinity			
Bq. inpt. ref. noise dens.	$0.21\iota V_{rms}/\sqrt{H_{c}^2}$			
Biquad PSRR+	28dB			
Biquad PSRR-	21dB			
Filter Setting	Output 3rd Order Intercept Point	SFDR		
100MHz, Q = 2, Gain = 10.6dB	23dBm	35dB		
20 MHz, Q = 2, Gain = 30 dB	20dBm	26dB		
100MHz, Q = 15, Gain = 29.3dB	18dBm 26dB			
227MHz, $Q = 35$, Gain = 31.7dB	10dBm 20dB			

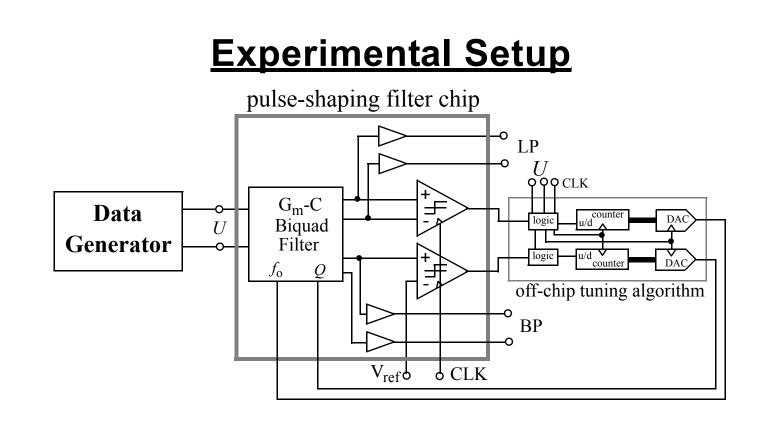
slide 66 of 70

Adaptive Pulse Shaping Algorithm



- Fo control: sample output pulse shape at nominal zero-crossing and decide if early or late (cutoff frequency too fast or too slow respectively)
- Q control: sample bandpass output at lowpass nominal zero-crossing and decide if peak is too high or too small (Q too large or too small)

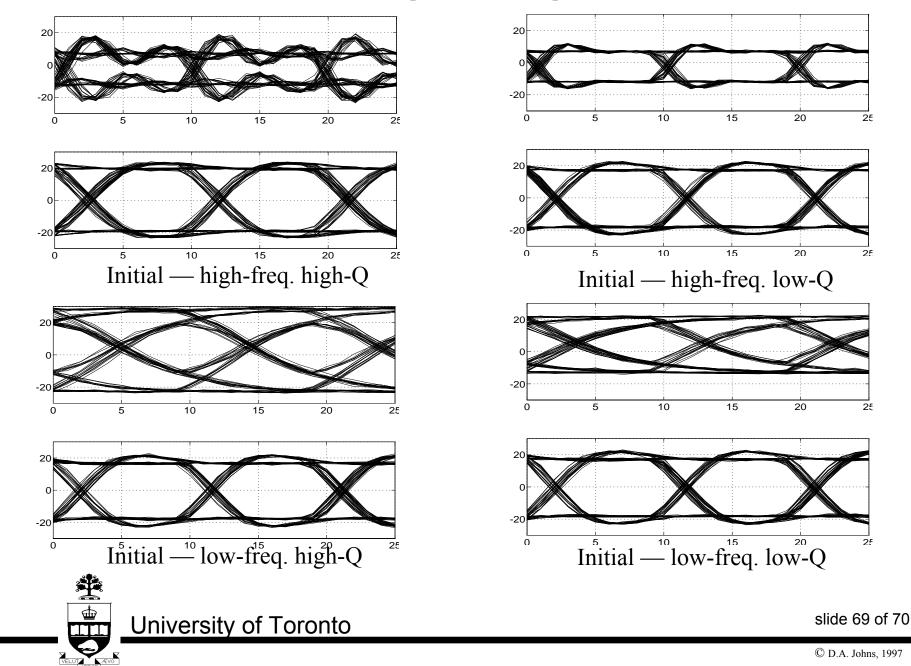
slide 67 of 70



- Off-chip used an external 12 bit DAC.
- Input was 100Mb/s NRZI data 2Vpp differential.
- Comparator clock was data clock (100MHz) time delayed by 2.5ns

slide 68 of 70

Pulse Shaper Responses



<u>Summary</u>

- Adaptive filters are relatively common
- LMS is the most widely used algorithm
- Adaptive linear combiners are almost always used.
- Use combiners that do not have poor performance surfaces.
- Most common digital combiner is tapped FIR

Digital Adaptive:

• more robust and well suited for programmable filtering

Analog Adaptive:

- best suited for high-speed, low dynamic range.
- less power
- very good at realizing arbitrary coeff with frequency only change.
- Be aware of DC offset effects

slide 70 of 70