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Adaptive Filter Introduction

 •  Adaptive filters are used in:
• Noise cancellation
• Echo cancellation
• Sinusoidal enhancement (or rejection)
• Beamforming
• Equalization

 •  Adaptive equalization for data communications 
proposed by R.W. Lucky at Bell Labs in 1965.

 •  LMS algorithm developed by Widrow and Hoff in 60s 
for neural network adaptation
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Adaptive Filter Introduction

 •  A typical adaptive system consists of the following 
two-input, two output system

 •   and  are the filter’s input and output

 •   and  are the reference and error signals
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Adaptive Filter Goal

 •  Find a set of filter coefficients to minimize the power 
of the error signal, .

 •  Normally assume the time-constant of the adaptive 
algorithm is much slower than those of the filter, . 

 •  If it were instantaneous, it could always set  equal 
to  and the error would be zero (this is useless)

 •  Think of adaptive algorithm as an optimizer which 
finds the best set of fixed filter coefficients that 
minimizes the power of the error signal.
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H z( )

y n( )
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Noise (and Echo) Cancellation

 •  Useful in cockpit noise cancelling, fetal heart 
monitoring, acoustic noise cancelling, echo 
cancelling, etc.

y n( ) H1 z( ) noise×=
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Sinusoidal Enhancement (or Rejection)

 •  The sinusoid’s frequency and amplitude are 
unknown. 

 •  If  is adjusted such that its phase plus the delay 
equals 360 degrees at the sinusoid’s frequency, the 
sinusoid is cancelled while the noise is passed.

 •  The “noise” might be a broadband signal which 
should be recovered.
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Adaptation Algorithm

 •  Optimization might be performed by:
•  perturb some coefficient in  and check whether the power of 

the error signal increased or decreased. 
• If it decreased, go on to the next coefficient. 
• If it increased, switch the sign of the coefficient change and go on to 

the next coefficient.
• Repeat this procedure until the error signal is minimized.

 •  This approach is a steepest-descent algorithm but is 
slow and not very accurate.

 •  The LMS (Least-Mean-Square) algorithm is also a 
steepest-descent algorithm but is more accurate and 
simpler to realize

H z( )
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Steepest-Descent Algorithm

 •  Minimize the power of the error signal, 

 •  General steepest-descent for filter coefficient :

 •  Here  and controls the adaptation rate

E e2 n( )[ ]

pi n( )

pi n 1+( ) pi n( ) µ E e2 n( )[ ]∂
pi∂

----------------------- 
 –=

µ 0>
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Steepest Descent Algorithm
 •  In the one-dimensional case

E e2 n( )[ ]

pi
pi

* pi 0( )pi 1( )pi 2( )

E e2 n( )[ ]∂
pi∂

----------------------- 0>
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Steepest-Descent Algorithm
 •  In the two-dimensional case

 •  Steepest-descent path follows perpendicular to 
tangents of the contour lines.

E e2 n( )[ ]
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p2

(out of page)
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LMS Algorithm

 •  Replace expected error squared with instantaneous 
error squared. Let adaptation time smooth out result.

 •  and since , we have

 •   and  are uncorrelated after convergence.

pi n 1+( ) pi n( ) µ e2 n( )∂
pi∂

-------------- 
 –=

pi n 1+( ) pi n( ) 2µe n( ) e n( )∂
pi∂

------------ 
 –=

e n( ) δ n( ) y n( )–=

pi n 1+( ) pi n( ) 2µe n( )φi n( ) where φi y n( )∂ pi∂⁄=+=

e n( ) φi n( )
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Variants of the LMS Algorithm
 •  To reduce implementation complexity, variants are 

taking the sign of  and/or .

 •  LMS — 

 •  Sign-data LMS — 

 •  Sign-error LMS — 

 •  Sign-sign LMS — 

 •  However, the sign-data and sign-sign algorithms 
have gradient misadjustment — may not converge!

 •  These LMS algorithms have different dc offset 
implications in analog realizations.

e n( ) φi n( )

pi n 1+( ) pi n( ) 2µe n( ) φi n( )×+=

pi n 1+( ) pi n( ) 2µe n( ) φi n( )( )sgn×+=

pi n 1+( ) pi n( ) 2µ e n( )( )sgn φi n( )×+=

i n 1+( ) pi n( ) 2µ e n( )( )sgn φi n( )(sgn×+=
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Obtaining Gradient Signals

 •   is a LTI system where the signal-flow-graph arm 
corresponding to coefficient  is shown explicitly.

 •   is the impulse response of from  to 

 •  The gradient signal with respect to element  is the 
convolution of  with  convolved with .

pi
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Gradient Example
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Adaptive Linear Combiner
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Adaptive Linear Combiner
 •  The gradient signals are simply the state signals

(1)

 •  Only the zeros of the filter are being adjusted.
 •  There is no need to check that for filter stability 

(though the adaptive algorithm could go unstable if  
is too large).

 •  The performance surface is guaranteed unimodal 
(i.e. there is only one minimum so no need to worry 
about being stuck in a local minimum).

 •  The performance surface becomes ill-conditioned as 
the state-signals become correlated (or have large 
power variations).

pi n 1+( ) pi n( ) 2µe n( )xi n( )+=

µ
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Performance Surface
 •  Correlation of two states is determined by multiplying 

the two signals together and averaging the output.
 •  Uncorrelated (and equal power) states result in a 

“hyper-paraboloid” performance surface — good 
adaptation rate.

 •  Highly-correlated states imply an ill-conditioned 
performance surface — more residual mean-square 
error and longer adaptation time.

E e2 n( )[ ]
p1

(out of page)
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Adaptation Rate
 •  Quantify performance surface — state-correlation 

matrix

 •  Eigenvalues, , of  are all positive real — indicate 
curvature along the principle axes.

 •  For adaptation stability,  but adaptation rate 

is determined by least steepest curvature, .

 •  Eigenvalue spread indicates performance surface 
conditioning.

R
E x1x1[ ] E x1x2[ ] E x1x3[ ]

E x2x1[ ] E x2x2[ ] E x2x3[ ]

E x3x1[ ] E x3x2[ ] E x3x3[ ]

≡

λi R

0 µ 1
λmax
----------< <

λmin
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Adaptation Rate

 •  Adaptation rate might be 100 to 1000 times slower 
than time-constants in programmable filter.

 •  Typically use same  for all coefficient parameters 
since orientation of performance surface not usually 
known.

 •  A large value of  results in a larger coefficient 
“bounce”.

 •  A small value of  results in slow adaptation
 •  Often “gear-shift”  — use a large value at start-up 

then switch to a smaller value during steady-state.
 •  Might need to detect if one should “gear-shift” again.

µ

µ

µ

µ



slide 20 of 70University of Toronto
© D.A. Johns, 1997

Adaptive IIR Filtering
 •  The poles (and often the zeros) are adjusted — 

useful in applications with long impulse responses.
 •  Stability check needed for the adaptive filter itself to 

ensure the poles do not go outside the unit circle for 
too long a time (or perhaps at all).

 •  In general, a multi-modal performance surface 
occurs. Can get stuck in local minimum.

 •  However, if the order of the adaptive filter is greater 
than the order of the system being matched (and all 
poles and zeros are being adapted) — the 
performance surface is unimodal.

 •  To obtain the gradient signals for poles, extra filters 
are generally required.
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Adaptive IIR Filtering
 •  Direct-form structure needs only one additional filter 

to obtain all the gradient signals.
 •  However, choice of structure for programmable filter 

is VERY important — sensitive structures tend to 
have ill-conditioned performance surfaces.

 •  Equation error structure has unimodal performance 
surface but has a bias.

 •  SHARF (simplified hyperstable adaptive recursive 
filter) — the error signal is filtered to guarantee 
adaptation — needs to meet a strictly-positive-real 
condition

 •  There are few commercial use of adaptive IIR filters
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Digital Adaptive Filters
 •  FIR tapped delay line is the most common
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FIR Adaptive Filters

 •  All poles at  and zeros only adapted.
 •  Special case of an adaptive linear combiner
 •  Unimodal performance surface
 •  States are uncorrelated and equal power if input 

signal is white — hyper-paraboloid
 •  If not sure about correlation matrix, can guarantee 

adaptation stability by choosing

 •  Usually need an AGC so signal power is known.

z 0=

0 µ 1
# of taps( ) input signal power( )

---------------------------------------------------------------------------< <
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FIR Adaptive Filter
 •  Coefficient word length typically  bits 

longer than “bit-equivalent” dynamic range
 •  Example: 6-bit input with 8-tap FIR might have 10-bit 

coefficient word lengths.
 •  Example: 12-bit input with 128-tap FIR might have 

18-bit coefficient word lengths for 72 dB output SNR.
 •  Requires multiplies in filter and adaptation algorithm 

(unless an LMS variant used or slow adaptation rate) 
— twice the complexity of FIR fixed filter.

2 0.5log2 # of taps( )+
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Equalization — Training Sequence

 •  The reference signal,  is equal to a delayed 
version of the transmitted data

 •  The training pattern should be chosen so as to ease 
adaptation — pseudorandom is common.

 •  Above is a feedforward equalizer (FFE) since  is 
not directly created using derived output data

H z( )Htc z( )
y n( )

e n( )

δ n( )

u n( )
1±

input data

output data
1±

regenerated

known

delayed
input data

FFE

FFE = Feed Forward Equalizer

δ n( )

y n( )
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FFE Example
 • Suppose channel, , has impulse response 

0.3, 1.0, -0.2, 0.1, 0.0, 0.0

 • If FFE is a 3-tap FIR filter with
(2)

 • Want to force , , 
 • Not possible to force all other 

Htc z( )

1

time

y n( ) p1u n( ) p2u n 1–( ) p3u n 2–( )+ +=

y 1( ) 0= y 2( ) 1= y 3( ) 0=

y n( ) 0=
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FFE Example

(3)

 • Solving results in , , 

 • Now the impulse response through both channel and 
equalizer is: 0.0, -0.08, 0.0, 1.0, 0.0, 0.05, 0.02, ...

y 1( ) 0 1.0p1 0.3p2 0.0p3+ += =

y 2( ) 1 0.2– p1 1.0p2 0.3p3+ += =

y 3( ) 0 0.1p1 0.2–( )p2 1.0p3+ += =

p1 0.266–= p2 0.886= p3 0.204=

1

time



slide 28 of 70University of Toronto
© D.A. Johns, 1997

FFE Example
 • Although ISI reduced around peak, introduction of 

slight ISI at other points (better overall)
 • Above is a “zero-forcing” equalizer — usually boosts 

noise too much
 • An LMS adaptive equalizer minimizes the mean 

squared error signal (i.e. find low ISI and low noise)
 • In other words, do not boost noise at expense of 

leaving some residual ISI
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Equalization — Decision-Directed

 •  After training, the channel might change during data 
transmission so adaptation should be continued.

 •  The reference signal is equal to the recovered output 
data.

 •  As much as 10% of decisions might be in error but 
correct adaptation will occur

H z( )Htc z( )
y n( )

e n( )

δ n( )

u n( )1±

input data

output data
1±

FFE
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Equalization — Decision-Feedback

 •  Decision-feedback equalizers make use of  in 
directly creating .

 •  They enhance noise less as the derived input data is 
used to cancel ISI

 •  The error signal can be obtained from either a 
training sequence or decision-directed.

Htc z( )
y n( )

δ n( )

1±

input data

output data
1±

H2 z( )

e n( ) DFE

yDFE n( )

δ n( )
y n( )
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DFE Example
 • Assume signals 0 and 1 (rather than -1 and +1) 

(makes examples easier to explain)
 • Suppose channel, , has impulse response 

0.0, 1.0, -0.2, 0.1, 0.0, 0.0

 • If DFE is a 2-tap FIR filter with
(4)

 • Input to slicer is now 0.0, 1.0, 0.0, 0.0 0.0 0.0 

Htc z( )

1

time

yDFE n( ) 0.2δ n 1–( ) 0.1–( )δ n 2–( )+=
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FFE and DFE Combined

 • Assuming correct operation, output data = input data
 •  same for both FFE and DFE
 •  can be either training or decision directed

H1 z( )Htc z( )
y n( )

e n( ) δ n( )

u n( )1±

input data

output data
1±

H2 z( )

e n( )

FFE

DFE

yDFE n( )

e n( )

e n( )
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FFE and DFE Combined
Model as:

(5)

(6)

 • When  small, make  (rather than )

H1 z( )Htc z( )
y n( )

δ n( )

x n( )

input data

output data
1±

H2 z( )

FFE

DFE

yDFE n( )

nnoise n( )

1±

Y
N
---- H1=

Y
X
--- HtcH1 H2+=

Htc H2 1= H1 ∞→
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DFE and FFE Combined

 • FFE can deal with precursor ISI and postcursor ISI
 • DFE can only deal with postcursor ISI
 • However, FFE enhances noise while DFE does not

When both adapt

 • FFE trys to add little boost by pushing precursor into 
postcursor ISI (allpass)

1

time

postcursor ISIprecursor ISI
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Equalization — Decision-Feedback

 •  The multipliers in the decision feedback equalizer 
can be simple since received data is small number of 
levels (i.e. +1, 0, -1) — can use more taps if needed.

 •  An error in the decision will propagate in the ISI 
cancellation — error propagation

 •  More difficult if Viterbi detection used since output 
not known until about 16 sample periods later (need 
early estimates).

 •  Performance surface might be multi-modal with local 
minimum if changing DFE affects output data
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Fractionally-Spaced FFE
 •  Feed forward filter is often a FFE sampled at 2 or 3 

times symbol-rate — fractionally-spaced 
(i.e. sampled at  or at )

 •  Advantages:
— Allows the matched filter to be realized 
digitally and also adapt for channel variations 
(not possible in symbol-rate sampling)
— Also allows for simpler timing recovery 
schemes (FFE can take care of phase recovery)

 •  Disadvantage
Costly to implement — full and higher speed 
multiplies, also higher speed A/D needed.

T 2⁄ T 3⁄
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dc Recovery (Baseline Wander)
 • Wired channels often ac coupled
 • Reduces dynamic range of front-end circuitry and 

also requires some correction if not accounted for in 
transmission line-code

 • Front end may have to be able to accomodate twice 
the input range!

 • DFE can restore baseline wander - lower frequency 
pole implies longer DFE

 • Can use line codes with no dc content

+1
-1

+1
-1

+2



slide 38 of 70University of Toronto
© D.A. Johns, 1997

Baseline Wander Correction #1
DFE Based

 • Treat baseline wander as postcursor interference
 • May require a long DFE
z 1–
z 0.5–
--------------- 1 1

2
---z 1– 1

4
---z 2––– 1

8
---z 3–– …–=

DFE

0 1 0 0 0 0 ...

0 1 -0.5 -0.25 -0.125 -0.06 ...

0 0 0.5 0.25 0.125 0.06 ...
1
2
---z 1– 1

4
---z 2–+ 1

8
---z 3– …+ +

0 1 0 0 0 0 ...

0 1 0 0 0 0 ...

IMPULSE INPUT
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Baseline Wander Correction #1

DFE Based

z 1–
z 0.5–
--------------- 1 1

2
---z 1– 1

4
---z 2––– 1

8
---z 3–– …–=

DFE

0 1 1 1 1 1 ...

0 1 0.5 0.25 0.125 0.06 ...

0 0 0.5 0.75 0.875 0.938 ...
1
2
---z 1– 1

4
---z 2–+ 1

8
---z 3– …+ +

0 1 1 1 1 1 ...

0 1 1 1 1 1 ...

STEP INPUT
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Baseline Wander Correction #2
Analog dc restore

 • Equivalent to an analog DFE
 • Needs to match RC time constants 

0 1 1 1 1 1 ... 0 1 1 1 1 1 ...

0 1 1 1 1 1 ...

STEP INPUT
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Baseline Wander Correction #3
Error Feedback

 • Integrator time-constant should be faster than ac 
coupling time-constant

 • Effectively forces error to zero with feedback
 • May be difficult to stablilize if too much in loop 

(i.e. AGC, A/D, FFE, etc)

y n( )

e n( )

δ n( )

output data
1±

integrator

1
z 1–
-----------

0 1 1 1 1 1 ...
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Analog Equalization



slide 43 of 70University of Toronto
© D.A. Johns, 1997

Analog Filters
Switched-capacitor filters

+ Accurate transfer-functions
+ High linearity, good noise performance
- Limited in speed
- Requires anti-aliasing filters

Continuous-time filters
- Moderate transfer-function accuracy (requires 
tuning circuitry)
- Moderate linearity
+ High-speed
+ Good noise performance
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Adaptive Linear Combiner

y t( ) pi t( )xi t( )∑=

u t( )

p1 t( )

p2 t( )

pN t( )

+
-

δ t( )

e t( )

x1 t( )

x2 t( )

xN t( )

y t( )

H s( ) Y s( )
U s( )
----------=

N
state

generator

y t( )∂
pi∂

----------- xi t( )=
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Adaptive Linear Combiner
 •  The gradient signals are simply the state signals
 •  If coeff are updated in discrete-time

(7)

 •  If coeff are updated in cont-time

(8)

 •  Only the zeros of the filter are being adjusted.
 •  There is no need to check that for filter stability 

(though the adaptive algorithm could go unstable if  
is too large).

pi n 1+( ) pi n( ) 2µe n( )xi n( )+=

pi t( ) 2µe t( )xi t( ) td
0

∞

∫=

µ
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Adaptive Linear Combiner
 •  The performance surface is guaranteed unimodal 

(i.e. there is only one minimum so no need to worry 
about being stuck in a local minimum).

 •  The performance surface becomes ill-conditioned as 
the state-signals become correlated (or have large 
power variations).

Analog Adaptive Linear Combiner

 •  Better to use input summing rather than output 
summing to maintain high speed operation

 •  Requires extra gradient filter to obtain gradients
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Analog Adaptive Filters
Analog Equalization Advantages
 •  Can eliminate A/D converter 
 •  Reduce A/D specs if partial equalization done first
 •  If continuous-time, no anti-aliasing filter needed
 •  Typically consumes less power and silicon for high-

frequency low-resolution applications.
Disadvantages
 •  Long design time (difficult to “shrink” to new process)
 •  More difficult testing
 •  DC offsets can result in large MSE (discussed later).
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Analog Adaptive Filter Structures
 •  Tapped delay lines are difficult to implement in 

analog.
To obtain uncorrelated states:
 •  Can use Laguerre structure — cascade of allpass 

first-order filters — poles all fixed at one location on 
real axis

 •  For arbitrary pole locations, can use orthonormal 
filter structure to obtain uncorrelated filter states 
[Johns, CAS, 1989].
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Orthonormal Ladder Structure

 •  For white noise input, all states are uncorrelated and 
have equal power.

1/s

u t( )

x1 t( )

x2 t( )

x3 t( )

x4 t( )α1

α– 4

α1– α3–α2

α2– α3

βin

1/s1/s 1/s
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Analog’s Big Advantage
 •  In digital filters, programmable filter has about same 

complexity as a fixed filter (if not power of 2 coeff).
 •  In analog, arbitrary fixed coeff come for free (use 

element sizing) but programming adds complexity.
 •  In continuous-time filters, frequency adjustment is 

required to account for process variations — relatively 
simple to implement.

 •  If channel has only frequency variation — use 
arbitrary fixed coefficient analog filter and adjust 
a single control line for frequency adjustment.

 •  Also possible with switched-C filter by adjusting 
clock frequency.
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Analog Adaptive Filters
 •  Usually digital control desired — can switch in caps 

and/or transconductance values
 •  Overlap of digital control is better than missed values

 •  In switched-C filters, some type of multiplying DAC 
needed.

 •  Best fully-programmable filter approach is not clear

digital coefficient control

pi

digital coefficient control

pi

better worse
(hysteresis effect) (potential large coeff jitter)
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Analog Adaptive Filters — DC Offsets
 •  DC offsets result in partial correlation of data and 

error signals (opposite to opposite DC offset)

 •  At high-speeds, offsets might even be larger than 
signals (say, 100 mV signals and 200mV offsets)

 •  DC offset effects worse for ill-conditioned 
performance surfaces

Σ

mxi

xi k( )

Σ

me

e k( )

Σ

mi

wi k( )∫
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Analog Adaptive Filters — DC Offsets
 •  Sufficient to zero offsets in either error or state-

signals (easier with error since only one error signal)
 •  For integrator offset, need a high-gain on error signal
 •  Use median-offset cancellation — slice error signal 

and set the median of output to zero
 •  In most signals, its mean equals its median

 •  Experimentally verified (low-frequency) analog 
adaptive with DC offsets more than twice the size of 
the signal.

up/down
counterD/A

offset-free error
error + offset comparator
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DC Offset Effects for LMS Variants

10
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Test Case LMS SD-LMS SE-LMS SS-LMS

input power no effect no effect

no offsets for for 
 

  weakly depends on   strongly depends on 

algorithm

circuit 
complexity

1 multiplier/tap
1 integrator/tap

1 slicer/tap
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multiplier/tap
1 integrator/tap

1 trivial
multiplier/tap

1 integrator/tap
1 slicer/filter
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Coax Cable Equalizer
 •  Analog adaptive filter used to equalize up to 300m
 •  Cascade of two 3’rd order filters with a single tuning 

control

 •  Variable  is tuned to account for cable length

w1s s p1+( )⁄

w2s s p2+( )⁄

w3s s p3+( )⁄

α

in out

highpass filters 

α
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Coax Cable Equalizer

 •  Equalizer optimized for 300m
 •  Works well with shorter lengths by tuning 

 •  Tuning control found by looking at slope of equalized 
waveform

 •  Max boost was 40 dB
 •  System included dc recovery circuitry
 •  Bipolar circuit used — operated up to 300Mb/s

freq

Eq
Resp

parasitic poles

α
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Analog Adaptive Equalization Simulation

 •  Channel modelled by a 6’th-order Bessel filter with 3 different 
responses — 3MHz, 3.5MHz and 7MHz

 •  20Mb/s data

 •  PR4 generator — 200 tap FIR filter used to find set of fixed poles of 
equalizer

 •  Equalizer — 6’th-order filter with fixed poles and 5 zeros adjusted (one 
left at infinity for high-freq roll-off)

channel
PR4

detector1 - D

PR4 
generator

equalizer
a k( )

{1,0}

1 2 3

4

Σ

Σ

noise

r t( ) y t( )

yi t( ) S1

S2

e k( )

â k( )

S1 - for training 
S2 - for tracking

+ _

1 0,±{ }
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Analog Adaptive Equalization Simulation
 •  Analog blocks simulated with a 200MHz clock and 

bilinear transform.
 •  Switch S1 closed (S2 open) and all poles and 5 

zeros adapted to find a good set of fixed poles.

 •  Poles and zeros depicted in digital domain for 
equalizer filter.

 •  Residual MSE was -31dB
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Equalizer Simulation — Decision Directed
 •  Switch S2 closed (S1 open), all poles fixed and 5 

zeros adapted using
• 
• 
• 

 •  all sampled at the decision time — assumes clock 
recovery perfect

 •  Potential problem — AGC failure might cause  to 
always remain below  and then adaptation will 
force all coefficients to zero (i.e. ).

 •  Zeros initially mistuned to significant eye closure

e k( ) 1 y t( )– if y t( ) 0.5>( )=
e k( ) 0 y t( )– if 0.5– y t( ) 0.5≤ ≤( )=
e k( ) 1– y t( )– if y t( ) 0.5–<( )=

y t( )
0.5±

y t( ) 0=



slide 60 of 70University of Toronto
© D.A. Johns, 1997

Equalizer Simulation — Decision Directed
 •  3.5MHz Bessel
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Equalizer Simulation — Decision Directed
 •  Channel changed to 7MHz Bessel
 •  Keep same fixed poles (i.e. non-optimum pole 

placement) and adapt 5 zeros.

 •  Residual MSE = -29dB
 •  Note that no equalizer boost needed at high-freq.
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Equalizer Simulation — Decision Directed
 •  Channel changed to 3MHz Bessel 
 •  Keep same fixed poles and adapt 5 zeros.

 •  Residual MSE = -25dB
 •  Note that large equalizer boost needed at high-freq.
 •  Probably needs better equalization here (perhaps 

move all poles together and let zeros adapt)
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BiCMOS Analog Adaptive Filter Example
 •  Demonstrates a method for tuning the pole-

frequency and Q-factor of a 100MHz filter — adaptive 
analog

 •  Application is a pulse-shaping filter for data 
transmission.

 •  One of the fastest reported integrated adaptive filters 
— it is a Gm-C filter in 0.8um BiCMOS process

 •  Makes use of MOS input stage and translinear-
multiplier for tuning

 •  Large tuning range (approx. 10:1)
 •  All analog components integrated (digital left off)
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BiCMOS Transconductor
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Biquad Filter

 •  fo and Q not independent due to finite output 
conductance

 •  Only use 4 quadrant transconductor where needed
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Experimental Results Summary
Transconductor (T.) size 0.14mm x 0.05mm
T. power dissipation 10mW @ 5V
Biquad size 0.36mm x 0.164mm
Biquad worst case CMRR 20dB
Biquad  tuning range 10MHz-230MHz @ 5V, 9MHz-135MHz @ 3V
Biquad Q tuning range 1-Infinity
Bq. inpt. ref. noise dens. 0.21
Biquad PSRR+ 28dB
Biquad PSRR- 21dB

Filter Setting Output 3rd Order 
Intercept Point SFDR

100MHz, Q = 2, Gain = 10.6dB 23dBm 35dB
20MHz, Q = 2, Gain = 30dB 20dBm 26dB
100MHz, Q = 15, Gain = 29.3dB 18dBm 26dB
227MHz, Q = 35, Gain = 31.7dB 10dBm 20dB

fo

µVrms Hz⁄
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Adaptive Pulse Shaping Algorithm

• Fo control: sample output pulse shape at nominal zero-crossing and 
decide if early or late (cutoff frequency too fast or too slow 
respectively)

• Q control: sample bandpass output at lowpass nominal zero-crossing and 
decide if peak is too high or too small (Q too large or too small)
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Experimental Setup

 •  Off-chip used an external 12 bit DAC.
 •  Input was 100Mb/s NRZI data 2Vpp differential.
 •  Comparator clock was data clock (100MHz) time 

delayed by 2.5ns
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Pulse Shaper Responses
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Summary
• Adaptive filters are relatively common
• LMS is the most widely used algorithm
• Adaptive linear combiners are almost always used.
• Use combiners that do not have poor performance 

surfaces.
• Most common digital combiner is tapped FIR

Digital Adaptive: 
• more robust and well suited for programmable filtering

Analog Adaptive:
• best suited for high-speed, low dynamic range.
• less power
• very good at realizing arbitrary coeff with frequency only change.
• Be aware of DC offset effects


