
slide 1 of 18University of Toronto
© D.A. Johns, 1997

Timing Recovery

Prof. David Johns
University of Toronto

(johns@eecg.toronto.edu)
(www.eecg.toronto.edu/~johns)



slide 2 of 18University of Toronto
© D.A. Johns, 1997

Timing Recovery (two types)

 • Timing more difficult with less excess bandwidth.
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Deductive Timing Recovery
 • Non-linear spectral line method most popular

(linear spectral line method used if  tone present).

 • Apply a non-linearity to receive signal and bandpass 
filter to recover  tone (usually with PLL).

 • Works because receive signal is cyclostationary (i.e. 
its moments vary in time and are periodic).

 • Common non-linearities used are squaring and 
absolute circuit (rectifier) (for low excess BW)

 • Ensemble average of non-linear circuit output is 
periodic in T

 • Thus, a  component exists (scrambled data)
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Example (100% excess BW)
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Example (20% excess BW)
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Deductive Timing
 • Can pre-filter receive signal to only non-flat portion to 

reduce jitter — eliminate portion that does not 
contribute to timing tone.

fs
2
---fs

2
---–

f

P j2πf( )
Hpf s( )

PLL

Rx

Clk

Hpf s( ) non-
linearity



slide 7 of 18University of Toronto
© D.A. Johns, 1997

Inductive Timing — Early Late
 • Can sample at 2X and determine if clock is early or 

late when a transition occurs.

 • If , do nothing
 • However, (b) sample does not indicate how far away 

from zero crossing — can add dither to (b) to aid 
estimate.
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Inductive Timing (MMSE)
 • Commonly realized as minimum mean-square error 

(i.e. MMSE timing)
 • Also called LMS timing.
 • Assume sample times are kT τk+
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Inductive Timing (MMSE)
 • MMSE adjusts  to minimize

(1)

where  denotes expectation,  is the sampled 
signal (it is a function of ) and  is the ideal symbol.

 • Stochastic gradient (as in LMS algorithm) leads to

(2)
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Inductive Timing (MMSE)
 • Can replace derivative wrt  by derivative wrt time 

since sampled at 

(3)
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Inductive Timing (MMSE)
 • Can sample at 2X symbol-rate and perform derivative 

in discrete-time.
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2X Timing Example
 • Sample at twice symbol-rate

(4)

 • At , slope is neg,  is neg, so  is decreased.

 • Use absolute values then 50% duty cycle not needed
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Inductive Timing — Baud-Rate
 • If all sampling done at symbol-rate, MMSE timing can 

still be used — base it on impulse response.

 • Early-late — adjust so 

 • Zero-crossing — adjust so 
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Inductive Timing — Baud-Rate
 • To obtain impulse response estimates, cross 

correlate received signals with received symbols.
 • Recall

(5)

 • Sampled at time , we have

(6)

where 
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Inductive Timing — Baud-Rate
 • To estimate , use 

 • All other terms go to zero since  is 
uncorrelated with  when 

 • To estimate , we need to use a delayed version 
of 

(7)

 • To estimate , use 
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Inductive Timing — Baud-Rate
 • To build early-late scheme,

 • Early-late is insensitive to amplitude distortion.
 • Zero-crossing is better where phase distortion 

dominates
 •  factor should be known otherwise adaptation gain 

will vary (can divide it out in algorithm).
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A Fractional-N Frequency Synthesizer
 • Often need a low jitter clock that can have arbitrary 

frequency.
 • A voltage-controlled crystal oscillator is expensive.
 • Use oversampling within a PLL
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Elastic Buffer
 • Used to deal with low frequency input clock jitter
 • Allows attenuation of clock jitter to next stage
Example

 • Input clock rate — 1MHz but varies from 0.9MHz to 
1.1MHz in sinusoidal fashion at 1kHz

 • Output clock rate — fixed at 1MHz
 • Input clock high — 16 extra bits stored in buffer
 • Input clock low — 16 bits removed from buffer

 • Keep elastic buffer half-full on-average through 
feedback


