Problem Set 2 - Small Signal Model

Question 1

An NMOS transistor is operated with a small v_{DS} voltage in the triode region and the drain source resistance is measured to be r_{DS} . What will be the new r'_{DS} under each of the following situations? (give r'_{DS} relationship to r_{DS}).

Assume the only change is the one(s) discussed in each situation.

- (a) The overdrive voltage is increased by a factor of 1.5.
- (b) The transistor width is increased by a factor of 1.8.
- (c) The transistor width and length are both increased by a factor of 3.
- (d) The transistor gate oxide thickness is reduced by a factor of 2.

Answer

(a) $r'_{DS} = r_{DS}/1.5$

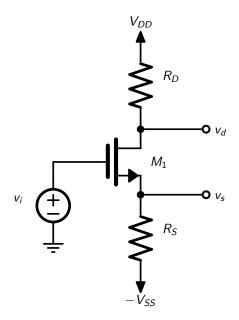
(b) $r'_{DS} = r_{DS}/1.8$

(c) $r'_{DS} = r_{DS}$ (d) $r'_{DS} = r_{DS}/2$

Question 2

Consider a CMOS technology with the following parameters:

NMOS: $V_{tn} = 0.4V$; $\mu_n C_{ox} = 240 \mu A/V^2$; $\lambda'_n = 40 nm/V$

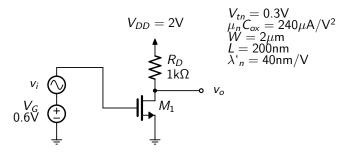

- (a) For an NMOS transistor with $W_n = 2\mu m$ and $L_n = 200 nm$, find I_{Dn} when the overdrive voltage is 0.3V and $V_{DS} = 0.5$ V. For this question, do NOT assume $\lambda = 0$.
- (b) Find the value of r_o for the transistor (a)
- (c) For the transistor in (a), find the change in I_{Dn} if V_{DS} is increased by 0.4V by using r_o found in (b)

Answer

- (a) $I_{Dn} = 112.3 \mu A$
- (b) $r_o = 44.52 \text{k}\Omega$
- (c) $\Delta I_{Dn} = 8.986 \mu A$

Question 3

For the NMOS amplifier below, replace the transistor with its T equivalent circuit and assume $\lambda = 0$. Derive expressions for small-signal voltage gains v_s/v_i and v_d/v_i given g_m for the transistor.

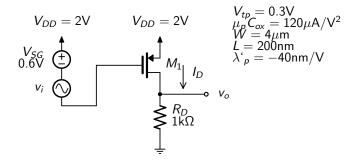


Answer

$$\frac{v_s}{v_i} = \frac{R_S}{R_S + (1/g_m)}$$
 $\frac{v_d}{v_i} = \frac{-R_D}{R_S + (1/g_m)}$

Question 4

For the common-source amplifier shown below, find the small signal gain, v_o/v_i .

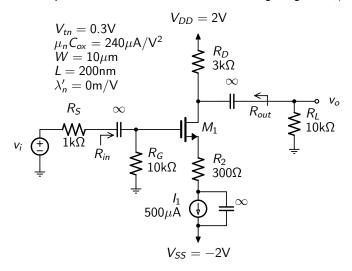


Answer

$$v_o/v_i = -0.7048 \text{V/V}$$

Question 5

For the common-source PMOS amplifier shown below, find the small signal gain, v_o/v_i .



Answer

$$v_o/v_i = -0.7048 V/V$$

Question 6

For the common-source amplifier shown below, find the small signal gain, v_o/v_i , R_{in} and R_{out} .

Answer

$$v_o/v_i = -3.564 \text{V/V}$$