Problem Set 2 - Small Signal Model

Question 1

An NMOS transistor is operated with a small v_{DS} voltage in the triode region and the drain source resistance is measured to be r_{DS} . What will be the new r'_{DS} under each of the following situations? (give r'_{DS} relationship to r_{DS}).

Assume the only change is the one(s) discussed in each situation.

- (a) The overdrive voltage is increased by a factor of 1.5.
- (b) The transistor width is increased by a factor of 1.8.
- (c) The transistor width and length are both increased by a factor of 3.
- (d) The transistor gate oxide thickness is reduced by a factor of 2.

Solution

For a small v_{DS} voltage, the transistor is in triode and the drain-to-source resistance, r_{DS} , can be approximated by

$$r_{ds} = \frac{1}{\mu_n C_{ox}(W/L) V_{OV}}$$

- (a) If $V'_{OV} = 1.5 V_{OV}$, then $r'_{DS} = r_{DS}/1.5$
- (b) If W' = 1.8W, then $r'_{DS} = r_{DS}/1.8$
- (c) If W' = 3W and L' = 3L, then $r'_{DS} = r_{DS}$
- (d) If the oxide thickness $t'_{ox} = t_{ox}/2$, then $C_{ox} = \epsilon_{ox}/t_{ox}$ is multiplied by 2 resulting in $r'_{DS} = r_{DS}/2$

Question 2

Consider a CMOS technology with the following parameters:

NMOS: $V_{tn} = 0.4V$; $\mu_n C_{ox} = 240 \mu A/V^2$; $\lambda'_n = 40 nm/V$

- (a) For an NMOS transistor with $W_n = 2\mu m$ and $L_n = 200 nm$, find I_{Dn} when the overdrive voltage is 0.3V and $V_{DS} = 0.5$ V. For this question, do NOT assume $\lambda = 0$.
- (b) Find the value of r_o for the transistor (a)
- (c) For the transistor in (a), find the change in I_{Dn} if V_{DS} is increased by 0.4V by using r_o found in (b)

Solution

(a)
$$I_{Dn}=rac{\mu_n\mathcal{C}_{ox}}{2}\left(rac{W_n}{L_n}
ight)V_{ov}^2(1+\lambda_n(V_{DS}-V_{ov}))$$
 so we need to find λ_n from

$$\lambda_n = \lambda'_n / L_n = (40e - 9)/(200e - 9) = 0.2V^{-1}$$

resulting in

$$I_{Dn} = \frac{240e - 6}{2} \left(\frac{2e - 6}{200e - 9} \right) 0.3^2 (1 + 0.2 \times (0.5 - 0.3))$$

$$I_{Dn} = 112.3 \mu A$$

(b)
$$r_o = L_n/(\lambda'_n * I_{Dn}) = (200e - 9)/((40e - 9) * (112.3e - 6)) = 44.52k\Omega$$

(c)
$$\Delta I_{Dn} = \Delta V_{DS}/r_o = (0.4)/(44.52e3) = 8.986 \mu A$$

COMMENT: Note that if $\lambda_n=0$ was used for part (a), it would only change the answers by less than 5% and this is often done for dc bias analysis. However, λ_n must then be taken into account for parts (b) and (c) otherwise gross errors would occur.

Question 3

For the NMOS amplifier below, replace the transistor with its T equivalent circuit and assume $\lambda = 0$. Derive expressions for small-signal voltage gains v_s/v_i and v_d/v_i given g_m for the transistor.

Solution

For small-signal analysis, all dc independent sources are set to zero. As a result, we have the following circuit

For v_s/v_i , there is a simple resistor divider between the applied voltage v_i and the measured output voltage v_s . As a result, we have

$$\frac{v_s}{v_i} = \frac{R_S}{R_S + r_s} = \frac{R_S}{R_S + (1/g_m)}$$

$$\frac{v_s}{v_i} = \frac{R_S}{R_S + (1/g_m)}$$

For v_d/v_i , we first find i_s and then since all of i_s goes through R_D , we can find v_d .

$$i_{s} = \frac{v_{i}}{r_{s} + R_{S}}$$

$$v_{d} = (-i_{s}) \times R_{D}$$

$$v_{d} = \frac{-v_{i}}{r_{s} + R_{S}} \times R_{D}$$

$$\frac{v_{d}}{v_{i}} = \frac{-R_{D}}{r_{s} + R_{S}} = \frac{-R_{D}}{R_{S} + (1/g_{m})}$$

$$\frac{v_{d}}{v_{i}} = \frac{-R_{D}}{R_{S} + (1/g_{m})}$$

Question 4

For the common-source amplifier shown below, find the small signal gain, v_o/v_i .

Solution

We first need to find the dc operating values.

$$V_{GS} = V_G = (0.6) = 0.6V$$

 $V_{ov} = V_G - V_{tn} = (0.6) - (0.3) = 0.3V$

and for dc analysis, we let $\lambda = 0$ so

$$I_D = 0.5 * \mu_n C_{ox} * (W/L) * {V_{ov}}^2 = 0.5 * (240e - 6) * ((2e - 6)/(200e - 9)) * (0.3)^2 = 108\mu A$$

$$V_D = V_{DD} - I_D * R_D = (2) - (108e - 6) * (1e3) = 1.892V$$

Since $V_{DS} > V_{ov}$, the transistor is indeed in the active region. Now, we find the small signal parameters:

$$g_m = 2 * I_D/V_{ov} = 2 * (108e - 6)/(0.3) = 720e - 6$$

$$r_o = L/(\lambda'_n * I_D) = (200e - 9)/((40e - 9) * (108e - 6)) = 46.3k\Omega$$

and we have the following small signal circuit

$$v_o = -g_m v_{gs}(R_D||r_o)$$

$$v_{gs} = v_i$$

$$v_o/v_i = -g_m(R_D||r_o)$$

$$v_o/v_i = -g_m * (R_D||r_o) = -(720e - 6) * ((1e3)||(46.3e3)) = -0.7048 \text{V/V}$$

Question 5

For the common-source PMOS amplifier shown below, find the small signal gain, v_o/v_i .

Solution

We first need to find the dc operating values.

$$V_{ov} = V_{SG} - |V_{tp}| = (0.6) - |(0.3)| = 0.3V$$

and for dc analysis, we let $\lambda = 0$ so

$$I_D = 0.5 * \mu_p C_{ox} * (W/L) * {V_{ov}}^2 = 0.5 * (120e - 6) * ((4e - 6)/(200e - 9)) * (0.3)^2 = 108\mu A$$

$$V_D = I_D * R_D = (108e - 6) * (1e3) = 0.108V$$

$$V_{SD} = V_{DD} - V_D = (2) - (0.108) = 1.892V$$

Since $V_{SD} > V_{ov}$, the transistor is indeed in the active region.

Now, we find the small signal parameters:

$$g_m = 2 * I_D/V_{ov} = 2 * (108e - 6)/(0.3) = 720e - 6$$

 $r_o = L/(|\lambda'_p| * I_D) = (200e - 9)/(|(-40e - 9)| * (108e - 6)) = 46.3k\Omega$

and we have the following small signal circuit

$$v_o = -g_m v_{gs}(R_D||r_o)$$

$$v_{gs} = v_i$$

$$v_o/v_i = -g_m(R_D||r_o)$$

$$v_o/v_i = -g_m * (R_D||r_o) = -(720e - 6) * ((1e3)||(46.3e3)) = -0.7048 \text{V/V}$$

Question 6

For the common-source amplifier shown below, find the small signal gain, v_o/v_i , R_{in} and R_{out} .

Solution

We begin by finding the dc operating values assuming M_1 is in the active region. Since we are given $\lambda = 0$, therefore

$$I_1 = I_D = 0.5 \mu_n C_{ox} (W/L) V_{ov}^2$$

$$V_{ov} = \sqrt{I_1/(0.5\mu_n C_{ox}(W/L))} = 0.2887V$$

The gate voltage is given by $V_G = 0$ and since

$$V_{GS} = V_{ov} + V_{tn} = (0.2887) + (0.3) = 0.5887V$$

we have $V_S = V_G - V_{GS} = (0) - (0.5887) = -0.5887$ V. We also have

$$V_D = V_{DD} - I_D * R_D = (2) - (500e - 6) * (3e3) = 0.5V$$

So that

$$V_{DS} = V_D - V_S = (0.5) - (-0.5887) = 1.089V$$

and since $V_{DS} > V_{ov}$, the transistor is indeed in the active region. Now, we find the small signal parameters:

$$g_m = 2 * I_D/V_{ov} = 2 * (500e - 6)/(0.2887) = 3.464e - 3$$

 $r_s = 1/g_m = 1/(3.464e - 3) = 288.7\Omega$
 $r_o = L/(\lambda'_n * I_D) \to \infty$

and we have the following small signal circuit

and replacing M_1 with its small signal model, we have

Since there is no current going into the gate of the transistor,

$$R_{in}=R_G=(10e3)=10k\Omega$$

For R_{out} , we set $v_i = 0$ which results in $i_s = 0$ so

$$R_{out} = R_D = (3e3) = 3k\Omega$$

Now we have

$$v_g/v_i = R_{in}/(R_{in} + R_S) = (10e3)/((10e3) + (1e3)) = 0.9091V/V$$

We also have

$$i_s = v_g/(r_s + R_2)$$

$$v_o = -i_s(R_D||R_L)$$

So

$$v_o/v_g = -(R_D||R_L)/(r_s + R_2) = -((3e3)||(10e3))/((288.7) + (300)) = -3.92V/V$$

So the overall gain is given by

$$v_o/v_i = (v_g/v_i) * (v_o/v_g) = ((0.9091)) * ((-3.92)) = -3.564 \text{V/V}$$