Problem Set 3 - Cascode

Question 1

Given a two-stage common-source amplifier where the biasing current sources I_1 and I_2 have output resistances equal to those of M_1 and M_2 respectively, determine an expression for the voltage gain, v_o/v_s , in terms of g_{m1} , g_{m2} , r_{o1} and r_{o2} .

Answer

$$v_o/v_s = (g_{m1}g_{m2}r_{o1}r_{o2})/4$$

Question 2

Given transistor M_1 which has $\mu_n C_{ox} = 240 \mu A/V^2$, $\lambda'_n = 50 \text{nm/V}$, $V_t = 0.5 \text{V}$, $W = 1 \mu \text{m}$, and L = 200 nm:

- a) Ignoring any DC current in R_2 and assuming $r_o \to \infty$, determine V_{GS} .
- b) Determine the DC current in R_2 , determine V_{DS} , and justify your neglection of the DC current when calculating V_{GS} in part a).
- c) Determine the small-signal voltage gain v_o/v_{in} . (Assume an ideal current source)
- d) Assuming the negative swing of the output limits the overall output swing, what is the min output voltage, max output voltage and output peak-to-peak swing?
- e) What is the corresponding input amplitude, max and min voltages at the gate?

Answer

- a) $V_{GS} = 1.077 \text{V}$
- b) $V_{DS} = 2.693 \text{V}$
- c) $v_o/v_{in} = -13.76 \text{V/V}$
- d) $V_{o,pp} = 3.945 \text{V}$; $V_{o,min} = 0.7207 \text{V}$; $V_{o,max} = 4.666 \text{V}$
- e) $V_{G,pp} = 0.2868 \text{V}$; $V_{G,min} = 0.934 \text{V}$; $V_{G,max} = 1.221 \text{V}$

Question 3

In a MOS cascode amplifier, the cascode transistor is required to raise the output resistance by a factor of 40 over that of a non-cascode amplifier. If the transistor is operated at $V_{ov}=0.2$ V, what must its λ_n be? If the process technology specifies λ_n' as 50nm/V, what channel length must the transistor have?

Answer

$$\lambda_n = 0.25 V^{-1}$$
; $L = 200 nm$

Question 4

Design the cascode amplifier shown below to obtain $g_{m1}=1\text{mA/V}$ and $R_o=400\text{k}\Omega$. Use a $0.18-\mu m$ technology for which $V_{tn}=0.5\text{V}$, $\lambda'_n=200\text{nm/V}$ and $\mu_nC_{ox}=400\mu\text{A/V}^2$. Determine L, W/L, V_{G1} , V_{G2} , and I. Use identical transistors operated at $V_{ov}=0.2\text{V}$, and design for the maximum possible negative signal swing at the output. What is the value of the minimum permitted output voltage?

Answer

L = 400nm; W/L = 12.5; $V_{G1} = 0.7$ V; $V_{G2} = 0.9$ V; $I = 100\mu$ A; $V_{o,min} = 0.4$ V

Question 5

Design the circuit shown below to provide an output of $I_D=100\mu\text{A}$. Use $V_{DD}=3.3\text{V}$, and assume the PMOS transistors to have $\mu_p C_{ox}=60\mu\text{A}/\text{V}^2$, $V_{tp}=-0.8\text{V}$, L=250nm, and $\lambda_p'=-50\text{nm}/\text{V}$. The current source is to have the widest possible signal swing at its output. Design for $V_{ov}=0.2\text{V}$, and specify the width, W, of the transistors and of V_{G3} and V_{G4} . What is the highest allowable voltage at the output? What is the value of output impedance, R_o ?

Answer

$$W=$$
 20.83 μ m; $V_{G4}=$ 2.3V; $V_{G3}=$ 2.1V; $V_{o,max}=$ 2.9V; $R_{o}=$ 2.5M Ω

Question 6

For $V_{DD}=1.8 \text{V}$ and using $I_{ref}=100 \mu \text{A}$, it is required to design the circuit below to obtain an output current whose nominal value is $I_{ref}=100 \mu \text{A}$.

- a) Find R if M_1 and M_2 are matched with channel lengths of L=500nm, channel widths of $W=4\mu$ m, $V_{tn}=0.5$ V, and $\mu_n C_{ox}=400\mu\text{A}/\text{V}^2$.
- b) What is the lowest possible value for V_o ?
- c) Assuming that for this process technology $\lambda_n' = 50 \text{nm/V}$, find the output resistance of the current source.
- d) Find the current change in output current resulting from a +0.5V change in V_o

ANSWER

- a) $R = 10.5 k\Omega$
- b) $V_{o,min} = 0.25 V$
- c) $r_{o3}=100 \mathrm{k}\Omega$
- d) $\Delta I_D = 5\mu A$