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Overview of Some Signal Spectra
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Example Signal Spectra
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Example Signal Spectra

 •   has same spectra as  but repeats every  
(assuming no aliasing occurs).

 •   has same spectra as  freq axis normalized.

 •  Spectra for  equals  multiplied by  

response — in effect, filtering out high frequency images.

Xs f( ) Xc f( ) fs

X ω( ) Xs f( )

Xsh f( ) Xs f( ) xsin
x----------
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Laplace Transform & Discrete-Time

 •   scaled by  such that the area under the pulse at  
equals the value of . 

 •  In other words, at , we have

(1)

xc t( )
τxs t( )

T
τ

t
2T 3T

nT

τxsn t( )

(all pulses)

(single pulse at nT)

xs t( ) τ nT
xc nT( )

t nT=

xs nT( )
xc nT( )

τ
---------------=
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Laplace Transform & Discrete-Time
 •  Thus as , height of  at time  goes to  and so 

we plot  instead.

 •  Define  to be the step function,

(2)

 •  then single-pulse signal, , can be written as

(3)

and the entire signal  as

(4)

τ 0→ xs t( ) nT ∞
τxs t( )

ϑ t( )

ϑ t( ) 1 t 0≥( )
0 t 0<( )
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xsn t( )
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τ
--------------- ϑ t nT–( ) ϑ t nT– τ–( )–[ ]=
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xs t( ) xsn t( )

n ∞–=

∞

∑=
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Laplace Transform & Discrete-Time
 •  Above signals are defined for all time — we can find 

Laplace transforms of these signals.
 •  The Laplace transform  for  is

(5)

and  is simply a linear combination of , which 
results in

(6)

Xsn s( ) xsn t( )

Xsn s( ) 1
τ
--- 1 e sτ––

s------------------ 
  xc nT( )e snT–=

X s( ) xsn t( )

Xs s( ) 1
τ
--- 1 e s– τ–

s------------------ 
  xc nT( )e snT–

n ∞–=

∞

∑=
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Laplace Transform & Discrete-Time

 •  Using the expansion , when , the 

term before the summation in (6) goes to unity. 
 •  Therefore, as ,

(7)

 •  This Laplace transform only depends on sample points, 
 which in turn depends on the relative sampling-

rate, .

ex 1 x x2

2!----- …+ + += τ 0→

τ 0→

Xs s( ) xc nT( )e snT–

n ∞–=

∞

∑=

xc nT( )
T
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Spectra of Discrete-Time Signals
 •   spectra can be found by replacing  in (7)

 •  However, a more intuitive approach is ... 
 •  Define a periodic pulse train,  as

(8)

where  is the unit impulse function.
 •  Then  can be written as

(9)

(10)

where  denotes convolution. 

xs t( ) s jω=

s t( )

s t( ) δ t nT–( )

n ∞–=

∞

∑=

δ t( )
xs t( )

xs t( ) xc t( )s t( )=

Xs jω( ) 1
2π
------Xc jω( ) S jω( )⊗=

⊗
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Spectra of Discrete-Time Signals
 •  Since the Fourier transform of a periodic impulse train is 

another periodic impulse train we have

(11)

 •  Thus, the spectra  is found to be 

(12)

 •  or equivalently,

(13)

S jω( ) 2π
T------ δ ω k2π

T------–( )

k ∞–=

∞

∑=

Xs jω( )

Xs jω( ) 1
T--- Xc jω

jk2π
T-----------–( )

k ∞–=

∞

∑=

Xs f( ) 1
T--- Xc j2πf jk2πfs–( )

k ∞–=

∞

∑=
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Spectra for Discrete-Time Signals

 •  The spectra for the sampled signal  equals a sum of 
shifted spectra of .

 •  No aliasing will occur if  is bandlimited to . 

 •  Note that  can not exist is practice as it would require 
an infinite amount of power (seen by integrating  
over all frequencies).

xs t( )
xc t( )

Xc jω( ) fs 2⁄

xs t( )
Xs f( )
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Spectra Example
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Z-Transform
 •  The z-transform is merely a shorthand notation for (7). 
 •  Specifically, defining

(14)
 •  we can write

(15)

 •  where  is called the z-transform of the samples . 

z esT≡

X z( ) xc nT( )z n–

n ∞–=

∞

∑≡

X z( ) xc nT( )
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Z-Transform
 •  2 properties of the z-transform are:

— If , then 
— Convolution in the time domain is equivalent to 
multiplication in the frequency domain. 

 is not a function of the sampling-rate!
 •  A 1Hz signal sampled at 10Hz has the same transform as a 

similar 1kHz signal sampled at 10kHz
 •   is only related to the numbers,  while  is 

the Laplace transform of the signal  as .

 •  Think of the series of numbers as having a sample-rate 
normalized to  (i.e. ).

x n( ) X z( )↔ x n k–( ) z k– X z( )↔

X z( )

X z( ) xc nT( ) Xs s( )
xs t( ) τ 0→

T 1= f's 1Hz=
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Z-Transform
 •  Such a normalization results in

(16)

or equivalently, a frequency scaling of 

(17)

 •  Thus, discrete-time signals have  in units of radians/
sample.

 •  Continuous-time signals have frequency units of cycles/
second (hertz) or radians/second. 

Xs f( ) X 2πf
fs

--------( )=

ω 2πf
fs

--------=

ω
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Example Sinusoidal Signals
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Example Sinusoidal Signals
 •  A continuous-time sinusoidal signal of  when 

sampled at  will change by  radians between each 
sample. 

 •  Such a discrete-time signal is defined to have a frequency 
of .

 •  Note that discrete-time signals are not unique since the 
addition of  will result in the same signal. 

 •  For example, a discrete-time signal having a frequency of 
 is identical to that of . 

 •  Normally discrete-time signals are defined to have 
frequency components only between  and  
rad/sample. 

1kHz
4kHz π 2⁄

π 2⁄ rad/sample

2π

π 4⁄ rad/sample 9π 4⁄ rad/sample

π– π
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Downsampling

 •  Keep every ‘th sample and throw away  samples.
 •  It expands the original spectra by .
 •  For aliasing not to occur, original signal must be bandlimited 

to .

π
6---

L
n n

L 4=
4 80 0 1 2

ω
2π

ω
2π0 4π

6------

L L 1–
L

π L⁄
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Upsampling

 •  Insert  zero values between samples
 •  The frequency axis is scaled by  such that  now occurs 

where  occurred in the original signal. 
 •  No worry about aliasing here.

nn
L

L 4=
0 4 80 1 2

2π
ω

2π0 4π
6------

π
6---

π

L 1–

L 2π
L2π
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Discrete-Time Filters

 •  An input series of numbers is applied to a discrete-time 
filter to create an output series of numbers. 

 •  This filtering of discrete-time signals is most easily 
visualized with the shorthand notation of .

Transfer-Functions
 •  Similar to those for continuous-time filters except instead 

of polynomials in “ ”, polynomials in “ ” are obtained.

(discrete-time filter)

u n( ) y n( )
( equals if is an impulse)h n( ) u n( )

H z( )
y n( )

z-transforms

s z
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Cont-Time Transfer-Function
 •  Low-pass continuous-time filter, ,

(18)

 •  The poles are the roots of the denominator polynomial
 •  Poles:  for this example. 
 •  Zeros: Defined to have two zeros at  since the den poly 

is two orders higher than the numerator poly. 

Hc s( )

Hc s( ) 4

s2 2s 4+ +
--------------------------=

1.0– 1.7321j±

∞
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Cont-Time Frequency Response

 •  Poles and zeros plotted in the -plane. 
 •  Substitution  is equivalent to finding the magnitude 

and phase of vectors from a point along the  axis to all 
the poles and zeros.

dc

high-frequency
s-plane

(poles)

jω
jω ∞=

jω 0=

s

s jω=
jω
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Discrete-Time Transfer-Function
(19)

 •  Poles:  in the -plane and two zeros are again at 
. 

 •  To find the frequency response of , the poles and 
zeros can be plotted in the -plane, and the unit circle 
contour is used, 

H z( ) 0.05

z2 1.6z– 0.65+
--------------------------------------=

0.8 0.1j± z
∞

H z( )
z

z ejω=
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Discrete-Time Frequency Response

 •  Note that poles or zeros occurring at  do not affect 
the magnitude response of  since a vector from the 
origin to the unit circle always has a length of unity. 
However, they would affect the phase response.

z-plane

-1

1

j

-j

ω

ejω

ω 3π
2------=

ω 2π=

ω 0=

ω π 2⁄=

ω π=

z 0=
H z( )
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Discrete-Time Frequency Response
 •   corresponds to the frequency response at both dc 

(i.e. ) and for . 
 •  The time normalization of setting  implies that 

 is equivalent to the sampling-rate speed (i.e. 
) for . 

 •  As with cont-time filter, if filter coefficients are real, 
poles and zeros occur in complex-conjugate pairs — 
magnitude is symmetric, phase is anti-symmetric.

 •  Going around the circle again would give the same result 
as the first time implying that the frequency response 
repeats every .

z 1=
ω 0= ω 2π=

T 1=
ω 2π=
f fs= Xs f( )

2π
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Stability of Discrete-Time Filters

 •  To realize rational polynomials in “ ”, discrete-time filters 
use delay elements (i.e. “ ” building blocks) much the 
same way that analog filters can be formed using 
integrators (i.e. “ ” building blocks). 

 •  The result is finite difference equations describing 
discrete-time filters 

z 1–
b

a

x n( ) y n( )

y n 1+( )

z
z 1–

s 1–
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Stability of Discrete-Time Filters
 •  A finite difference equation can be written for above 

system
(20)

 •  In the -domain, this equation is written as
(21)

 •  We find  given by

(22)

which has a pole on the real axis at . 

y n 1+( ) bx n( ) ay n( )+=

z

zY z( ) bX z( ) aY z( )+=

H z( )

H z( ) Y z( )
X z( )----------≡ b

z a–-----------=

z a=
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Stability of Discrete-Time Filters
 •  To test for stability, let the input  be an impulse

where  is some arbitrary initial state value for .

x n( )

y 0( ) k=
k y

y 1( ) b ak+=
y 2( ) ab a2k+=
y 3( ) a2b a3k+=
y 4( ) a3b a4k+=

:
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Stability of Discrete-Time Filters
 •  The response, , is seen to be given by

(23)

 •  This response remains bounded only when  for this 
first-order filter and is unbounded otherwise.

 •  In general, a linear time-invariant discrete-time filter, 
, is stable if and only if all its poles are located 

within the unit circle. 

h n( )

h n( )
0 n 1<( )

an 1– b ank+( ) n 1≥( )






=

a 1≤

H z( )
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IIR Filters
 •  Infinite-Impulse-Response (IIR) filters are those discrete-

time filters that when excited by an impulse, their outputs 
remain non-zero assuming infinite precision arithmetic. 

 •  The above example is IIR when 
 •  IIR filters can be more efficient when long impulse 

responses are needed.
 •  They have some unusual behaviors due to finite-precision 

effects such as limit-cycles.

a 0≠
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FIR Filters
 •  Finite-Impulse-Response (FIR) filters are those discrete-

time filters that when excited by an impulse, their outputs 
go precisely to zero (and remain zero) after a finite value 
of . 

 •  Example — running average of 3

(24)

(25)

 •  Has poles but they all occur at .
 •  FIR filters are always stable and exact linear phase filters 

can be realized.

n

y n( ) 1
3--- x n( ) x n 1–( ) x n 2–( )+ +( )=

H z( ) 1
3--- z i–

i 0=

2

∑=

z 0=
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Bilinear Transform
 •  Consider  as a continuous-time transfer-function 

(where “ ” is the complex variable equal to ), the 
bilinear transform is defined to be given by,

(26)

 •  The inverse transformation is given by,

(27)

 •  The -plane locations of 1 and -1 (i.e. dc and ) are 
mapped to -plane locations of 0 and , respectively. 

Hc p( )
p σp jΩ+

p z 1–
z 1+-----------=

z 1 p+
1 p–------------=

z fs 2⁄
p ∞
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Bilinear Transform

 •  The unit circle, , in the -plane is mapped to the 
entire  axis in the -plane. 

(28)

(29)

 •  Results in the following frequency “warping”.
(30)

z ejω= z
jΩ p

p ejω 1–

ejω 1+
----------------- ej ω 2⁄( ) ej ω 2⁄( ) e j ω 2⁄( )––( )

ej ω 2⁄( ) ej ω 2⁄( ) e j ω 2⁄( )–+( )
-------------------------------------------------------------------= =

2j ω 2⁄( )sin
2 ω 2⁄( )cos----------------------------- j ω 2⁄( )tan= =

Ω ω 2⁄( )tan=
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Bilinear Transform Filter Design
 •  Design a continuous-time transfer-function, , and 

choose the discrete-time transfer-function, , such that
(31)

so that 

(32)

 •  The response of  is seen to be equal to the response of 
 except with a frequency “warping”

 •  Order of the cont-time and discrete-time also same.

Hc p( )
H z( )

H z( ) Hc z 1–( ) z 1+( )⁄( )≡

H ejω( ) Hc j ω 2⁄( )tan( )=

H z( )
Hc p( )
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Bilinear Design Example
 •  Find a first-order  that has a 3db frequency at , a 

zero at -1 and a dc gain of one.
 •  Using (30), the frequency value, , or equivalently, 

 is mapped to . 
 •  Thus,  should have a 3dB frequency value of 0.1584 

rad/s. 
 •  Such a 3db frequency value is obtained by having a -

plane zero equal to  and pole equal to -0.1584.

H z( ) fs 20⁄

fs 20⁄
ω 2π( ) 20⁄ 0.314159= = Ω 0.1584=

Hc p( )

p
∞
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Bilinear Design Example
 •  Transforming these continuous-time pole and zero back 

using (27) results in a -plane zero at -1 and a pole at 
0.7265. 

 •  Therefore,  appears as

(33)

 •  The constant  can be determined by setting the dc gain to 
one, or equivalently,  which results in 

.

z

H z( )

H z( ) k z 1+( )
z 0.7265–------------------------=

k
H 1( ) 1=

k 0.1368=
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Sample-and-Hold Response
 •  A sample-and-held signal, , is related to its sampled 

signal by the mathematical relationship,

(34)

 •   is well-defined for all time and thus the Laplace 
transform can be found to be equal to

(35)

xsh t( )

xsh t( ) xc nT( ) ϑ t nT–( ) ϑ t nT– T–( )–[ ]

n ∞–=

∞

∑=

xsh t( )

Xsh s( ) 1 e sT––
s------------------- xc nT( )e snT–

n ∞–=

∞

∑=

1 esT–
s----------------Xs s( )=
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Sample-and-Hold Response
 •  The hold transfer-function, , is equal to

(36)

 •  The spectra for  is found by substituting 

(37)

Hsh s( )

Hsh s( ) 1 e sT––
s-------------------=

Hsh s( ) s jω=

Hsh jω( ) 1 e jωT––
jω---------------------- T e

jωT
2---------–

ωT
2------- 

 sin

ωT
2------- 

 
---------------------× ×= =
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Sample-and-Hold Response
 •  The magnitude of this response is given by

(38)

 •  and is often referred to as the “ ” or “sinc” response. 

Hsh jω( ) T

ωT
2------- 

 sin

ωT
2-------

------------------------=

or Hsh f( ) T

πf
fs
----- 
 sin

πf
fs
-----

---------------------=

xsin
x----------
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Sample-and-Hold Response

 •  This frequency shaping of a sample-and-hold only occurs 
for a continuous-time signal. 

 •  Specifically, a sample-and-hold before an A/D converter 
does not aid in any anti-aliasing requirement since the A/
D converter has a true discrete-time output.

Hsh jω( )

f
fs 2fs 3fs0fs–2– fs3– fs


