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Adaptive Filter Introduction

» Adaptive filters are used in:

* Noise cancellation

* Echo cancellation

» Sinusoidal enhancement (or rejection)
* Beamforming

» Equalization

« Adaptive equalization for data communications
proposed by R.W. Lucky at Bell Labs in 1965.

* LMS algorithm developed by Widrow and Hoff in 60s
for neural network adaptation
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Adaptive Filter Introduction

» A typical adaptive system consists of the following
two-input, two output system

o(n)
a T
ym) e(n)
u(n) — H(z) ;d-/ >
~ > y(n)
adaptive
algorithm

* u(n) and y(n) are the filter’s input and output

» &(n) and e(n) are the reference and error signals
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Adaptive Filter Goal

* Find a set of filter coefficients to minimize the power
of the error signal, e(n).

* Normally assume the time-constant of the adaptive
algorithm is much slower than those of the filter, H(z).

« If it were instantaneous, it could always set y(n) equal
to 5(n) and the error would be zero (this is useless)

» Think of adaptive algorithm as an optimizer which
finds the best set of fixed filter coefficients that
minimizes the power of the error signal.
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Noise (and Echo) Cancellation

signal
g U

+
+

. H,(z) x noise
noise H,(2) d(n)
/ +
H(z)

e
u(n) sl

Hy(2)

A 4

e(n) = signal

— y(n) = H,(z) x noise

H(z) = Hy(2)/ Hy(2)

« Useful in cockpit noise cancelling, fetal heart

monitoring, acoustic noise cancelling, echo
cancelling, etc.

.
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Sinusoidal Enhancement (or Rejection)

sinusoid
_l’_

8(n)

noise

2 ym) +

A H(z) — Noise

A

u(n)

fixed delay — sinusoid

e(n)

» The sinusoid’s frequency and amplitude are
unknown.

 If H(z) is adjusted such that its phase plus the delay

equals 360 degrees at the sinusoid’s frequency, the
sinusoid is cancelled while the noise is passed.

» The “noise” might be a broadband signal which
should be recovered.

.
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Adaptation Algorithm
« Optimization might be performed by:

 perturb some coefficient in H(z) and check whether the power of
the error signal increased or decreased.

« If it decreased, go on to the next coefficient.

« If it increased, switch the sign of the coefficient change and go on to
the next coefficient.

* Repeat this procedure until the error signal is minimized.

» This approach is a steepest-descent algorithm but is
slow and not very accurate.

 The LMS (Least-Mean-Square) algorithm is also a
steepest-descent algorithm but is more accurate and
simpler to realize
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Steepest-Descent Algorithm
« Minimize the power of the error signal, E[¢’(n)]

» General steepest-descent for filter coefficient p,n):
2
pin+ 1) = pion) - )

 Here u>0 and controls the adaptation rate
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Steepest Descent Algorithm

* |In the one-dimensional case

E[*(n)] 4

/ PELE(m)]

op;
| .
[ > D
pr P2 P PLO)
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Steepest-Descent Algorithm

* |n the two-dimensional case
12

A

) > Py
Ele"(n *
(ou[t of gagt]a) P

» Steepest-descent path follows perpendicular to
tangents of the contour lines.

.
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LMS Algorithm

» Replace expected error squared with instantaneous
error squared. Let adaptation time smooth out result.

2
pn+1) = p(n)- M(@ea_;n))

i

pin+ 1) = pim =2pem( 51

» and since e(n) = §(n)—y(n) , we have

pin+1) = pn)+2pe(n)o,(n) where ¢; = y(n)/p;

* ¢(n) and ¢(n) are uncorrelated after convergence.
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Variants of the LMS Algorithm

» To reduce implementation complexity, variants are
taking the sign of e(») and/or ¢,n).

* LMS — p(n+1) = p(n)+2ue(n) x d,(n)

« Sign-data LMS — p(n+1) = p(n)+2ue(n) x sgn(,(n))

» Sign-error LMS — p(n+1) = p(n)+2usgn(e(n)) x ¢.(n)
« Sign-sign LMS — (n+1) = p(n)+2usgn(e(n)) x sgn(¢,(n)
* However, the sign-data and sign-sign algorithms

have gradient misadjustment — may not converge!

« These LMS algorithms have different dc offset
implications in analog realizations.
B
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Obtaining Gradient Signals

m  p;
un) L HE) s )

o.(n) = a,(;_? = (1) ® 1) ® ()

1

* H(z) is a LTIl system where the signal-flow-graph arm
corresponding to coefficient p, is shown explicitly.

* h,(n) is the impulse response of from u to m

* The gradient signal with respect to element p, is the
convolution of u(») with () convolved with &, (n).
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Gradient Example
Glmﬁ
/ le(t)

u(?) o—wv—;l>; E_ [: Gzﬂ |

) /'
pr (t) ‘v‘v‘vﬂ -
G . Gy o Y0

Vip(t) o—Mltv—T_l> \ E— [:] G%‘ {

»a 0
/G, J;“ Fren

) _

W) _

_pr(t)
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Adaptive Linear Combiner

d(n)

N - -;\‘\

state »+) » e(n)
u(n) — | generator ¥(n)
¥(n) = Zpi(”)xi(”)
oy(n) _
/‘ . api Xl-(l’l)
often, a tapped delay line H(Z) = %
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Adaptive Linear Combiner

« The gradient signals are simply the state signals
pin+1) = pn)+2ue(n)x(n) )

» Only the zeros of the filter are being adjusted.

» There is no need to check that for filter stability
(though the adaptive algorithm could go unstable if p

is too large).
* The performance surface is guaranteed unimodal

(i.e. there is only one minimum so no need to worry
about being stuck in a local minimum).

« The performance surface becomes ill-conditioned as
the state-signals become correlated (or have large
power variations).

.
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Performance Surface

» Correlation of two states is determined by multiplying
the two signals together and averaging the output.

* Uncorrelated (and equal power) states result in a
“hyper-paraboloid” performance surface — good
adaptation rate.

» Highly-correlated states imply an ill-conditioned
performance surface — more residual mean-square
error and longer adaptation time.

N e————

2 > P
E[e’(n *
(ou[t of g)a?;l) P

.

\_ ' University of Toronto slide 17 of 70 J

© D.A. Johns, 1997

Adaptation Rate

* Quantify performance surface — state-correlation

matrix
Elxyx;] E[xyx,] E[xx;]
R= El[x,x;] E[x,x,] E[Xyx5]
Elx3x] E[x3x,] E[x3x5]
« Eigenvalues, %;, of r are all positive real — indicate

curvature along the principle axes.

1

» For adaptation stability, 0 <u < but adaptation rate

xmax

is determined by least steepest curvature, % .

« Eigenvalue spread indicates performance surface
conditioning.
£
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Adaptation Rate

» Adaptation rate might be 100 to 1000 times slower
than time-constants in programmable filter.

« Typically use same u for all coefficient parameters
since orientation of performance surface not usually
known.

» A large value of u results in a larger coefficient
“bounce”.

« A small value of u results in slow adaptation

« Often “gear-shift” u — use a large value at start-up
then switch to a smaller value during steady-state.

« Might need to detect if one should “gear-shift” again.
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Adaptive lIR Filtering

* The poles (and often the zeros) are adjusted —
useful in applications with long impulse responses.

- Stability check needed for the adaptive filter itself to
ensure the poles do not go outside the unit circle for
too long a time (or perhaps at all).

* In general, a multi-modal performance surface
occurs. Can get stuck in local minimum.

* However, if the order of the adaptive filter is greater
than the order of the system being matched (and all
poles and zeros are being adapted) — the
performance surface is unimodal.

« To obtain the gradient signals for poles, extra filters
are generally required.
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Adaptive lIR Filtering

 Direct-form structure needs only one additional filter
to obtain all the gradient signals.

* However, choice of structure for programmable filter
is VERY important — sensitive structures tend to
have ill-conditioned performance surfaces.

« Equation error structure has unimodal performance
surface but has a bias.

« SHARF (simplified hyperstable adaptive recursive
filter) — the error signal is filtered to guarantee
adaptation — needs to meet a strictly-positive-real
condition

» There are few commercial use of adaptive IIR filters
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Digital Adaptive Filters

* FIR tapped delay line is the most common

pi(n)
x(n) /{\
u(n) »(X) 5(n)
n
Zfl pa(n)
x,(n) %
! +
= I 0 -=d'/ » e(n)
- * pA) yn) = 3 py ) )
z xp(n) A
bt %}? = x{n)
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FIR Adaptive Filters

» All poles at z = 0 and zeros only adapted.
« Special case of an adaptive linear combiner
* Unimodal performance surface

» States are uncorrelated and equal power if input
signal is white — hyper-paraboloid

 If not sure about correlation matrix, can guarantee
adaptation stability by choosing

1
(# of taps)(input signal power)

O<p<

» Usually need an AGC so signal power is known.
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FIR Adaptive Filter

» Coefficient word length typically 2 + 0.5log,(# of taps) bits
longer than “bit-equivalent” dynamic range

« Example: 6-bit input with 8-tap FIR might have 10-bit
coefficient word lengths.

« Example: 12-bit input with 128-tap FIR might have
18-bit coefficient word lengths for 72 dB output SNR.

* Requires multiplies in filter and adaptation algorithm
(unless an LMS variant used or slow adaptation rate)
— twice the complexity of FIR fixed filter.
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Equalization — Training Sequence

al
u(n) y(n) output data
] QN H,(z) » H(z) » — 1]
known
input data Fle:(li)
regenerated
_delayed FFE = Feed Forward Equalizer
input'data d(n)

« The reference signal, 5x) is equal to a delayed
version of the transmitted data

* The training pattern should be chosen so as to ease
adaptation — pseudorandom is common.

» Above is a feedforward equalizer (FFE) since y(») is
not directly created using derived output data
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FFE Example

Suppose channel, #,(z), has impulse response
0.3,1.0,-0.2,0.1,0.0, 0.0

1W
BCIE ? o o o

‘ time

If FFE is a 3-tap FIR filter with
y(n) = pyu(n) + pyu(n —1) + psu(n - 2) 2)

Want to force y(1) = 0, y2) =1, y3) =0

Not possible to force all other y(n) = 0

.
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FFE Example
y(1) = 0 = 1.0p, +0.3p, +0.0p,
¥2) =1
¥(3) = 0 = 0.1p, +(~0.2)p, + 1.0p,

—0.2p, +1.0p, +0.3p,

3)
« Solving results in p, = -0.266, p, = 0.886, p; = 0.204

* Now the impulse response through both channel and
equalizer is: 0.0, -0.08, 0.0, 1.0, 0.0, 0.05, 0.02, ...

| W
—e o | o ® o o o »
time
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FFE Example

+ Although ISI reduced around peak, introduction of
slight ISI at other points (better overall)

» Above is a “zero-forcing” equalizer — usually boosts
noise too much

* An LMS adaptive equalizer minimizes the mean
squared error signal (i.e. find low ISI| and low noise)

* In other words, do not boost noise at expense of
leaving some residual ISI
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Equalization — Decision-Directed

pal
+1 u(n) y(n) output data
——{ H, () ——{ H() ~ -

; o(n)

e(n)

input data

FFE

 After training, the channel might change during data
transmission so adaptation should be continued.

* The reference signal is equal to the recovered output
data.

« As much as 10% of decisions might be in error but
correct adaptation will occur
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Equalization — Decision-Feedback

+1 W(n) output data
— H,.(2) D > > 4]
input data

Dl o(n)
Yore() Hy(2) |t
e(n) DFE

» Decision-feedback equalizers make use of &) in
directly creating y(n).

* They enhance noise less as the derived input data is
used to cancel ISI

* The error signal can be obtained from either a
training sequence or decision-directed.

.
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» If DFE is a 2-tap FIR filter with
yppe() = 0.28(n — 1)+ (=0.1)8(n — 2)

* Input to slicer is now 0.0, 1.0, 0.0, 0.0 0.0 0.0

DFE Example

» Assume signals 0 and 1 (rather than -1 and +1)
(makes examples easier to explain)

* Suppose channel, H,(z), has impulse response
0.0, 1.0, -0.2, 0.1, 0.0, 0.0

“4)
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*1 u(n)

— H,(2)

H,(2)

input data

e(ny FFE

Ypre(1)

FFE and DFE Combined

y(n) J_

output data

pal

Hy(2) ¢

e(n)

DFE

* Assuming correct operation, output data = input data
* ¢(n) same for both FFE and DFE

* e(n) can be either training or decision directed

> +1
5(n)

slide 32 of 70 y

\ University of Toronto

© D.A. Johns, 1997



FFE and DFE Combined

Model as:
nnoise(n)
FE P
x(n) y(n) output data
+1 H,(2) A’Gg—' Hy(2) B
input data I 5(n)
H,(z) | Ypre()
DFE
Y
N H, (5)
Y
;( = HtcHl +H2 (6)

 When H,, small, make i, = 1 (rather than H, - «)
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DFE and FFE Combined

| ‘
—e ! ® o o o
| ‘ time
precursor |ISI postcursor ISI

* FFE can deal with precursor IS| and postcursor IS
* DFE can only deal with postcursor ISI

» However, FFE enhances noise while DFE does not
When both adapt

* FFE trys to add little boost by pushing precursor into
postcursor IS (allpass)

.
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Equalization — Decision-Feedback

« The multipliers in the decision feedback equalizer
can be simple since received data is small number of
levels (i.e. +1, 0, -1) — can use more taps if needed.

* An error in the decision will propagate in the ISI
cancellation — error propagation

» More difficult if Viterbi detection used since output
not known until about 16 sample periods later (need
early estimates).

» Performance surface might be multi-modal with local
minimum if changing DFE affects output data
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Fractionally-Spaced FFE

» Feed forward filter is often a FFE sampled at 2 or 3
times symbol-rate — fractionally-spaced
(i.e. sampled at 7/2 or at 7/3)

« Advantages:

— Allows the matched filter to be realized
digitally and also adapt for channel variations
(not possible in symbol-rate sampling)

— Also allows for simpler timing recovery
schemes (FFE can take care of phase recovery)

» Disadvantage

Costly to implement — full and higher speed
multiplies, also higher speed A/D needed.
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dc Recovery (Baseline Wander

» Wired channels often ac coupled

* Reduces dynamic range of front-end circuitry and
also requires some correction if not accounted for in
transmission line-code

o i * )
+2
+1 1
-1 -1

* Front end may have to be able to accomodate twice
the input range!

* DFE can restore baseline wander - lower frequency
pole implies longer DFE

* Can use line codes with no dc content
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Baseline Wander Correction #1
DFE Based

» Treat baseline wander as postcursor interference
« May require a long DFE
2=l oy L L2 e IMPULSE INPUT

010000...
> 010000 g j g
010000...
DFE «
000.50.250.1250.06 ... ’ ) )

—1 -2 -3
Sz -z -z
27 T4 T §
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Baseline Wander Correction #1

DFE Based
z=1 _ 11 12 13 STEP INPUT
z—0.5 2 4 &

0O111171..

. D I T |
H'% T 011111

011111...
- DFE “
000.50.750.875 0.938 .- ’ ’ |
-1 -2 -3
—z +-z +-z +..
2’Z 4-Z 8Z
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Baseline Wander Correction #2
Analog dc restore

STEP INPUT
L ‘ 011111..

o
011111..

L/—\ »
. O11111..

AW —

i

L

* Equivalent to an analog DFE
* Needs to match RC time constants

.
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Baseline Wander Correction #3
Error Feedback

(n) output data

s
0
1 @30

- =11 en)

integrator

o—]
oO1r11r1..

* Integrator time-constant should be faster than ac
coupling time-constant

+ Effectively forces error to zero with feedback

« May be difficult to stablilize if too much in loop
(i.e. AGC, A/D, FFE, etc)
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Analog Equalization

\ University of Toronto
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Switched-capacitor filters
+ Accurate transfer-functions

- Limited in speed
- Requires anti-aliasing filters
Continuous-time filters

tuning circuitry)

- Moderate linearity

+ High-speed

+ Good noise performance

Analog Filters

+ High linearity, good noise performance

- Moderate transfer-function accuracy (requires

s
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Adaptive Linear Combiner
t
x,(6) 1210)
o(t)
N —;\‘\
state _>d7 > e(h)
u(t) ———* generator (D)

\ University of Toronto

) = Zpi(t)xi(t)

) _
6[) xi(t)

i
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Adaptive Linear Combiner

The gradient signals are simply the state signals

If coeff are updated in discrete-time
pn+1) = p(n)+2pe(n)xyn) (7)

If coeff are updated in cont-time

o0

pit) = [2pe(nx t)dt (8)
0

Only the zeros of the filter are being adjusted.

» There is no need to check that for filter stability
(though the adaptive algorithm could go unstable if p

is too large).
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Adaptive Linear Combiner

* The performance surface is guaranteed unimodal
(i.e. there is only one minimum so no need to worry
about being stuck in a local minimum).

» The performance surface becomes ill-conditioned as
the state-signals become correlated (or have large
power variations).

Analog Adaptive Linear Combiner

» Better to use input summing rather than output
summing to maintain high speed operation

* Requires extra gradient filter to obtain gradients
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Analog Adaptive Filters
Analog Equalization Advantages

« Can eliminate A/D converter
* Reduce A/D specs if partial equalization done first
« If continuous-time, no anti-aliasing filter needed

» Typically consumes less power and silicon for high-
frequency low-resolution applications.

Disadvantages
* Long design time (difficult to “shrink” to new process)
» More difficult testing

« DC offsets can result in large MSE (discussed later).

\_ E rr1  University of Toronto slide 47 0f 70|
© D.A. Johns, 1997
[ 1

Analog Adaptive Filter Structures

« Tapped delay lines are difficult to implement in
analog.

To obtain uncorrelated states:

« Can use Laguerre structure — cascade of allpass

first-order filters — poles all fixed at one location on
real axis

» For arbitrary pole locations, can use orthonormal
filter structure to obtain uncorrelated filter states
[Johns, CAS, 1989].
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Orthonormal Ladder Structure

x5(2) x4(%)
| o —0, q_\ a;

Y
N

1s 1/s Us /s Yo,

u(t)

* For white noise input, all states are uncorrelated and
have equal power.
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Analog’s Big Advantage

* In digital filters, programmable filter has about same
complexity as a fixed filter (if not power of 2 coeff).

* In analog, arbitrary fixed coeff come for free (use
element sizing) but programming adds complexity.

 In continuous-time filters, frequency adjustment is
required to account for process variations — relatively
simple to implement.

* If channel has only frequency variation — use
arbitrary fixed coefficient analog filter and adjust
a single control line for frequency adjustment.

 Also possible with switched-C filter by adjusting
clock frequency.

.
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Analog Adaptive Filters

« Usually digital control desired — can switch in caps
and/or transconductance values

* Overlap of digital control is better than missed values

pi“ pl’“

better worse

(hysteresis effect) (potential large coeff jitter)

digital coefficient control digital coeffici'ent control

 In switched-C filters, some type of multiplying DAC
needed.

« Best fully-programmable filter approach is not clear
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Analog Adaptive Filters — DC Offsets

» DC offsets result in partial correlation of data and
error signals (opposite to opposite DC offset)

i

» At high-speeds, offsets might even be larger than
signals (say, 100 mV signals and 200mV offsets)

» DC offset effects worse for ill-conditioned
performance surfaces

.
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Analog Adaptive Filters — DC Offsets

» Sufficient to zero offsets in either error or state-
signals (easier with error since only one error signal)

» For integrator offset, need a high-gain on error signal

+ Use median-offset cancellation — slice error signal
and set the median of output to zero

* In most signals, its mean equals its median

error + offset comparator
+ o Offset-free error
up/down J
D/A counter

« Experimentally verified (low-frequency) analog
adaptive with DC offsets more than twice the size of

the signal.
& . . H
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Ge
Test Case LMS SD-LMS SE-LMS SS-LMS Residual Mean Squared Error
input power | G, oc 1/0} no effect G, ¢ 1/In[6]] o effect 10
2 VAR
c,—>0 c,—>0 G, c U o, G, € W oy
no offsets for L — 0 for p — 0
G, weakly depends on [ G, strongly depends on L
-2
leorith 1 multiplier/tap 1 slicer/tap 1 trivial 1 slicer/tap
algorithm 1 integrator/tap 1 trivial multiplier/tap 1 XOR gate/tap
circuit multiplier/tap 1 integrator/tap 1 counter/tap
complexity 1 integrator/tap 1 slicer/filter 1 DAC/tap -0
1 slicer/filter
convergence no gradient gradients no gradient gradients
misalignment misaligned misalignment misaligned
40
50 I I I I
o ot o ot

o Step Size
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Coax Cable Equalizer
« Analog adaptive filter used to equalize up to 300m
« Cascade of two 3'rd order filters with a single tuning

control
w{Wis/(s+p;) a
N s/ (s + ) out
> wys/ (s +p3)

highpass filters

« Variable « is tuned to account for cable length
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Coax Cable Equalizer
Eq Earasitic poles
Resp | /-~ '\

» Equalizer optimized for 300m
* Works well with shorter lengths by tuning «

« Tuning control found by looking at slope of equalized
waveform

* Max boost was 40 dB
« System included dc recovery circuitry
» Bipolar circuit used — operated up to 300Mb/s

.
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Analog Adaptive Equalization Simulation

noise
{1,0} +1,0 r(t) / (O [ praJa(k)
_ p-| channel equalizer - detector -
a(k) /

1 2 3

e(k)
PR4 YD) /_Sl_ + -

generator

4 S1 - for training /_S2
S2 - for tracking

Y
S

A

* Channel modelled by a 6’th-order Bessel filter with 3 different
responses — 3MHz, 3.5MHz and 7MHz

« 20Mb/s data

* PR4 generator — 200 tap FIR filter used to find set of fixed poles of
equalizer

» Equalizer — 6’th-order filter with fixed poles and 5 zeros adjusted (one
left at infinity for high-freq roll-off)
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Analoq Adaptive Equalization Simulation

* Analog blocks simulated with a 200MHz clock and
bilinear transform.

« Switch S1 closed (S2 open) and all poles and 5
zeros adapted to find a good set of fixed poles.

—

P —

-
N

0 20 40 60 80 100 120 140 16¢

* Poles and zeros depicted in digital domain for
equalizer filter.

* Residual MSE was -31dB
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Egqualizer Simulation — Decision Directed

« Switch S2 closed (S1 open), all poles fixed and 5
zeros adapted using

o e(k) = 1-y(0) if ((6)>0.5)
o e(k) = 0—y(®) if (-0.5<y(1)<0.5)
o ek) = —1-y(0) if (y(1)<-0.5)
 all sampled at the decision time — assumes clock
recovery perfect

» Potential problem — AGC failure might cause y() to
always remain below +0.5 and then adaptation will
force all coefficients to zero (i.e. y() = 0).

« Zeros initially mistuned to significant eye closure

o e

7] University of Toronto slide 59 0f 70|

© D.A. Johns, 1997

\ University of Toronto

Egqualizer Simulation — Decision Directed
 3.5MHz Bessel

== 1
— \
0.
/|
s o E
i | /
= ’ ) \/
4 == -1
15 20 40 60 . BQ[ . 100 120 140 16¢ 5 50 Dlscreéoﬁme W 150 20
initial mistuned ideal PR4 and equalized pulse outputs
20
p— /§\ * PR
overall
14,
0.5 _12
= g \
- 10
o // \\
chann
—OT D) chamet
LI/ equalizer
“o 20 40 60 80 100 120 140 16 cb 011 0.2 0%}) 0.5 0.6 0.7
Time [ns] Normalized Radian Frequency [radl
after adaptation (2e6 iterations) after adaptation (2e6 iterations)
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Egqualizer Simulation — Decision Directed
« Channel changed to 7MHz Bessel

» Keep same fixed poles (i.e. non-optimum pole
placement) and adapt 5 zeros.

—

== PR4
. AN
14
;12 \\\
= o 250
: // \
0.
/ channel
bl 1 J equalizer overall
L 0 2‘0 40 éO B‘O 160 1&0 lz‘lO 160 OO 0.1 0‘2 0.3 0.4 0.5 O; 0.7
Time fpst Normal lized Radian Frequency [rad]
after adaptation (2e6 iterations) after adaptation (2e6 iterations)

» Residual MSE = -29dB
* Note that no equalizer boost needed at high-freq.

E 1 University of Toronto slide 610f 70 J
© D.A. Johns, 1997

\
Equalizer Simulation — Decision Directed
« Channel changed to 3MHz Bessel
» Keep same fixed poles and adapt 5 zeros.
’ jb PR4
1. B % .
A . overal
= ! ) \
-0.5- . : 1 // channvl\ \
b = | equalizep
after adaptatTigenlnzliieG iterations) U a;;r aﬁjgfgdtoi%ﬁn(%géuémi;jf‘;tior:;) .
* Residual MSE = -25dB
* Note that large equalizer boost needed at high-freq.
» Probably needs better equalization here (perhaps
move all poles together and let zeros adapt)
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BiCMOS Analog Adaptive Filter Example

* Demonstrates a method for tuning the pole-
frequency and Q-factor of a 100MHz filter — adaptive
analog

» Application is a pulse-shaping filter for data
transmission.

* One of the fastest reported integrated adaptive filters
— itis a Gm-C filter in 0.8um BiCMOS process

+ Makes use of MOS input stage and translinear-
multiplier for tuning

« Large tuning range (approx. 10:1)
« All analog components integrated (digital left off)
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BiCMOS Transconductor

PUSI T

Ed I+ iw* ] Yd

I+

Two styles implemented:
“2-quadrant” tuning (F-Cell),
“4-quadrant” tuning by
cross-coupling top

input stage (Q-Cell)
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Biquad Filter

conductance

« fo and Q not independent due to finite output

« Only use 4 quadrant transconductor where needed
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Experimental Results Summary

Transconductor (T.) size

0.14mm x 0.05mm

T. power dissipation

10mW @ 5V

Biquad size

0.36mm x 0.164mm

Biquad worst case CMRR

20dB

Biquad f, tuning range

10MHz-230MHz @ 5V, 9MHz-135MHz @ 3V

Biquad Q tuning range 1-Infinity

Bg. inpt. ref. noise dens. | 0.21.V,, ./ JH:
Biquad PSRR+ 28dB

Biquad PSRR- 21dB

Filter Setting

Output 3rd Order

Intercept Point SFDR
100MHz, Q = 2, Gain = 10.6dB 23dBm 35dB
20MHz, Q = 2, Gain = 30dB 20dBm 26dB
100MHz, Q = 15, Gain = 29.3dB 18dBm 26dB
227MHz, Q =35, Gain = 31.7dB 10dBm 20dB
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Adaptive Pulse Shaping Algorithm

Ideal input pulse
—~—T 71 (not to scale) {
20r < H
AN X
Ny \ lowpass
\ output
—. lof X
< A
2 4
o O )
> — VAN i
5 ) / bandpass \ :
= 10 A output A
[ 7
\\ ,
205 N Yy «—> y
——— = M
A A 2.5ns
‘4—>
.30 ‘ ‘ ‘ ‘
20 25 30 35 40 ar

* Fo control: sample output pulse shape at nominal zero-crossing and
decide if early or late (cutoff frequency too fast or too slow
respectively)

* Q control: sample bandpass output at lowpass nominal zero-crossing and
decide if peak is too high or too small (Q too large or too small)

o e
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Experimental Setup

pulse-shaping filter chip

oll ¢,C
Data U Biquad
Generator |—o—  Filter
Jo O

« Off-chip used an external 12 bit DAC.
* Input was 100Mb/s NRZI data 2Vpp differential.

« Comparator clock was data clock (100MHz) time
delayed by 2.5ns

\ University of Toronto
E:L ‘ [ 5
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—

; ; 1 H H
10 20 ot 0 5 10 15 20 2¢

Initial — high-freq. high-Q Initial — high-freq. low-

" Initial — low-freq. low-Q
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Summar

» Adaptive filters are relatively common
* LMS is the most widely used algorithm
» Adaptive linear combiners are almost always used.

» Use combiners that do not have poor performance
surfaces.

* Most common digital combiner is tapped FIR

Digital Adaptive:

* more robust and well suited for programmable filtering

Analog Adaptive:

* best suited for high-speed, low dynamic range.
* less power

 very good at realizing arbitrary coeff with frequency only change.
* Be aware of DC offset effects

\ ' University of Toronto slide 70070 J
s

© D.A. Johns, 1997




