
Memory Dependence Prediction

by

Andreas Ioannis Moshovos

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSINÑMADISON

1998

1

Abstract

As the existing techniques that empower the modern high-performance processors are being refined and as
the underlying technology trade-offs change, new bottlenecks are exposed and new challenges are raised.
This thesis introduces a new tool, Memory Dependence Prediction that can be useful in combating these bot-
tlenecks and meeting the new challenges. Memory dependence prediction is a technique to guess whether a
load or a store will experience a dependence. Memory dependence prediction exploits regularity in the mem-
ory dependence stream of ordinary programs, a phenomenon which is also identified in this thesis. To dem-
onstrate the utility of memory dependence prediction this thesis also presents the following three novel
microarchitectural techniques:

1. Dynamic Speculation/Synchronization of Memory Dependences: this thesis demonstrates that to
exploit parallelism over larger regions of code waiting to determine the dependences a load has is
not the best performing option. Higher performance is possible if memory dependence speculation
is used especially if memory dependence prediction is used to guide this speculation.

2. Speculative Memory Cloaking and Bypassing: this thesis approaches memory as either an inter-
operation communication or as a data-sharing mechanism. In the first case, memory is used to com-
municate values among instructions. In the second case, memory is used to hold values that are read
repeatedly. Memory dependence prediction can be used to explicitly express either action so that
loads can obtain a speculative value long before they can even access memory. Moreover, this thesis
presents a technique to further reduce memory latency by linking directly the actual producer of a
value with the actual consumers, taking loads and stores off the access path.

3. Transient Value Cache (TVC): Supporting highly-parallel execution requires the ability to perform
multiple, simultaneous memory accesses. The TVC uses a small data cache to provide this support
for a large fraction of loads while avoiding an increase in the latency of all other loads. This is
achieved by using memory dependence prediction to selectively place the small data cache either in-
series or in-parallel to the L1 cache.

2

Acknowledgments

Vasiliki has been a constant source of support, advice, devotion and above all optimism for as long as we
have known each other. I am grateful for her patience and willingness to make sacrifices just so that I can
continue working towards my doctorate. I am also grateful to her mother Naysika and her sister Dora for
their love, support and forbearance. My parents, Koula and Yannis, and my brother Nikos have always been
there for me providing encouragement and unconditional support. They made everything in their power to
provide me with the best education, even if that meant we had to be separated. I only wish that my grandpar-
ents, Elpida and Andreas, who in many ways made me who I am, were still with us.

I want to express my appreciation to my advisor, Guri Sohi, for taking me as his student and for his sup-
port throughout my doctorate studies. He heavily influenced my way of thinking about technical issues and
ideas. Above all, I am most grateful for that he forced me to develop my own ideas and learn how to best
defend them. It has been a privilege working with him.

Over the past five and a half years I had the privilege of interacting with Jim Goodman, Mark Hill, Jim
Smith and David Wood. Most if not all I know about Computer Architecture I learned from them and Guri. I
am also grateful to all of them for serving in my committee. Mark Hill and Jim Smith also served in my pre-
lim committee, while David Wood and Jim Smith had the dreadful task of reading this thesis. DavidÕs, GuriÕs
and JimÕs efforts made this thesis more readable and accurate. Jim Smith made life occasionally more taste-
ful with his paella. I am also grateful to Manolis Katevenis who introduced me to Computer Architecture
and taught me how to make presentations.

My thanks to the members of the Multiscalar and Kestrel research groups, both past and present. Scott
Breach and T. N. Vijaykumar have been close collaborators in the dependence speculation and synchroniza-
tion work, and sounding boards for new ideas. I am grateful to Scott for writing the first simulation model
for the memory dependence synchronization mechanism and for suggesting the merged MDST/MDPT orga-
nization. Amir Roth has been a collaborator in recent work on prefetching and control flow prediction. It has
been a pleasure working with them. My thanks to Sridhar Gopal, Andy Glew, Avinash Sodani, Craig Zilles,
Todd Austin, Steve Bennett, Harit Modi, Eric Rotenberg, Yannos Sazeides, Quinn Jacobson, Subramanya
Sastry and Timothy Heil for the numerous discussions. My thanks to Doug Burger, Babak Falsafi, Alain
Kagi and Subbarao Palacharla for many discussions about technical and not so technical issues. I most grate-
ful to both Babak and Vijay for they were always willing to talk and offer advice. Babak also taught me how
to say the most important things in Farsi. I am certainly going to miss the basketball games with Babak,
Alain, Tia Newhall and Steve Seitz.

My stay in Madison was made more enjoyable and interesting by new friends: Dionisios Pnevmatikatos
and Natalia Francis, Minos Garofalakis, Yannis Ioannidis, Yannis Schoinas and Leah Parks, Yannis Chris-
tou, Kyriakos and Sarah Kutulakos, Anastasia Ailamaki, Dimitris Komilis, Stefanos Kaxiras, Aggeliki Bal-
toyianni, Isidoros Sarinopoulos, Eirini Xagoraraki, Leonidas Galanis and Alkis Polyzotis.

Many thanks to Lorene Webber and to Debra Diewald. They have been always willing to help no matter
how hectic their day was.

iii

Contents

Abstract . 1

Acknowledgments . 2

Chapter 1. Introduction. 1

1.1 Contributions. 2

1.1.1 Memory Dependence Locality and Prediction . 2

1.1.2 Dynamic Speculation and Synchronization of Memory Dependences 3

1.1.3 Speculative Memory Cloaking and Bypassing . 5

1.1.4 Transient Value Cache . 7

1.2 Thesis Organization . 8

1.3 Experimental Framework . 8

1.3.1 Programs and Compiler Infrastructure . 8

1.3.2 Simulation Methodology . 9

Chapter 2. Memory Dependence Behavior Analysis . 15

2.1 Memory Dependence Types . 16

2.2 A Class of History-Based Memory Dependence Predictors. 18

2.3 Memory Dependence Behavior Analysis . 20

2.3.1 Metrics and Justification . 21

2.3.2 Memory Dependence Characterization . 21

2.3.2.1 Address Space Distribution of Memory Dependences . 23

2.3.2.2 Dynamic Instruction Distance Distribution . 26

iv
2.3.3 Memory Dependence Shape Characterization . 28

2.3.3.1 Instance Dependence Set Size . 29

2.3.3.2 Aggregate Dependence Set Size . 31

2.3.4 Working Set of Memory Dependences . 31

2.3.5 Capturing Memory Dependence Activity . 33

2.3.6 Memory Dependence Status Locality . 36

2.3.7 Memory Dependence Locality . 37

2.3.7.1 Read-after-Write Dependences . 39

2.3.7.2 Read-after-Read Dependences . 40

2.4 Summary . 42

Chapter 3. Dynamic Memory Dependence

Speculation and Synchronization . 43

3.1 Using Load/Store Parallelism To Improve Performance . 44

3.2 Memory Dependence Speculation . 45

3.3 Memory Dependence Speculation Policies. 48

3.4 Mimicking Ideal Memory Dependence Speculation . 50

3.5 Implementation Aspects . 53

3.5.1 Working Example . 54

3.6 Issues. 56

3.6.1 The Multiscalar Execution Model . 56

3.6.2 Incorporating Speculation/Synchronization into a Pipeline . 58

3.6.3 Incomplete Synchronization . 58

3.6.4 Intelligent Prediction . 58

3.6.5 Control Mispeculations . 59

3.6.6 Multiple Dependences Per Static Load or Store . 59

v
3.6.7 Centralized Versus Distributed Structures . 61

3.7 Related Work . 62

3.8 Evaluation - Distributed, Spit-Window Processor Model . 63

3.8.1 Performance Potential of Load/Store Parallelism . 64

3.8.2 Naive Memory Dependence Speculation . 66

3.8.3 Using Store Address Information To Improve Speculation Accuracy 67

3.8.4 Selective Memory Dependence Speculation . 70

3.8.5 Speculation/Synchronization - Centralized Mechanism . 71

3.8.6 Speculation/Synchronization - Distributed Mechanisms . 75

3.8.7 Comparison of Speculation/Synchronization Mechanism . 76

3.9 Evaluation - Centralized, Continuous -Window Processor Model . 77

3.9.1 Performance Potential of Load/Store Parallelism . 78

3.9.2 Performance with Naive Memory Dependence Speculation . 80

3.9.3 Using Address-Based Scheduling to Extract Load/Store Parallelism 81

3.9.4 Speculation/Synchronization . 84

3.10 Chapter Summary . 87

Chapter 4. Speculative Memory Cloaking and Bypassing . 89

4.1 Two Common Uses of Memory . 90

4.1.1 Memory as an Inter-operation Communication Agent . 91

4.1.2 Memory As A Value Place Holder . 92

4.1.3 Using Memory Dependence Prediction To Streamline Memory Accesses 92

4.2 Speculative Memory Cloaking . 94

4.2.1 Detection and Prediction of Dependences . 96

4.2.2 Synonym Generation and Communication . 97

4.2.3 Verification . 99

vi
4.2.4 Implementation Aspects . 99

4.3 Speculative Memory Bypassing . 101

4.4 Extending Cloaking and Bypassing to Support Data-Sharing . 103

4.5 Related Work . 103

4.5.1 Register Allocation Alternatives . 103

4.5.2 Address Prediction Based Techniques . 104

4.5.3 Value Prediction . 105

4.5.4 Techniques Similar to Cloaking or Bypassing . 105

4.6 Evaluation . 106

4.6.1 Memory Dependence Detection . 107

4.6.2 Cloaking Coverage And Mispeculation Rates . 109

4.6.3 Using Adaptive Predictors to Improve Cloaking Accuracy . 113

4.6.4 Characteristics of the Memory Values that are Handled by Cloaking 115

4.6.4.1 Address Space Breakdown . 117

4.6.4.2 Base Register Breakdown . 117

4.6.4.3 Address Locality Measurements . 119

4.6.4.4 Value Locality and Value Prediction Measurements . 120

4.6.4.5 Dynamic Instruction Distance Distribution . 122

4.6.4.6 Input Data Set Sensitivity Analysis . 123

4.6.5 Effects of Finite Prediction Structures . 124

4.6.5.1 Sensitivity to the Number of DPNT Entries . 124

4.6.5.2 Sensitivity to the Associativity of the DPNT . 126

4.6.5.3 Synonym File Size Sensitivity Analysis . 126

4.6.6 Performance Impact . 126

4.6.6.1 Configuration Parameters . 127

4.6.6.2 Performance with a Cloaking/Bypassing Mechanism . 130

vii
4.6.6.3 Comparing Cloaking/Bypassing and Value Prediction . 132

4.6.6.4 Combining Cloaking/Bypassing and Value Prediction . 133

4.7 Summary . 134

Chapter 5. Transient Value Cache . 136

5.1 Short-Distance Memory Dependence Measurements. 137

5.2 The Transient Value Cache. 139

5.3 Related Work . 142

5.4 Evaluation . 143

5.4.1 Load Dependence Status Prediction Accuracy . 144

5.4.1.1 Effects of Associativity on Prediction Accuracy . 147

5.4.1.2 Effects of Block Size on Prediction Accuracy . 149

5.4.2 Store Dependence Status Prediction Accuracy . 149

5.5 Summary . 152

Chapter 6. Conclusion . 153

6.1 Summary . 153

6.1.1 Dynamic Speculation and Synchronization of Memory Dependences 154

6.1.2 Speculative Memory Cloaking and Bypassing . 155

6.1.3 Transient Value Cache . 156

6.2 Future Directions. 157

6.2.1 Correlating Memory Dependence Behavior

with Program Elements and Data Structures . 157

6.2.2 Interaction with the Compiler . 157

6.2.3 Memory Communication and Sharing in Distributed Environments 158

viii
6.2.4 Support for Selective Invalidation and Data Speculation Resolution 159

6.2.5 Operation Prediction . 159

Bibliography . 161

1

Chapter 1

Introduction

Program execution may initially seem as an inherently sequential process where the following steps are to
be performed repeatedly, one after the other: (1) fetch an instruction, (2) read a set of input data, perform a
calculation, if necessary (3) store the results for future reference, and finally, (4) decide which instruction to
fetch next. From this perspective, it would seem that our only hope for faster processing would be to simply
rely on advances in the underlying semiconductor device technologies; faster circuits may make performing
each of the steps faster, and as result they reduce the time required to execute a whole program. Modern
high-performance computing systems however, employ techniques that allow them to be quite a bit smarter
about program execution in effect making better use of what solid-state technology has to offer at any given
point of time. A plethora of techniques that empower these computing systems rely on empirical observa-
tions about program behavior to be effective. The motivation underlying these techniques is that programs,
for the most part, do not behave randomly. Rather, they exhibit several idiosyncrasies, or in other words,
they tend to exhibit regularity in how the operate and in what they produce. Which is to say that while in
principle it is possible to design a program that would deem any such technique ineffective, such programs
rarely have any other practical use. All this is best understood if we consider two prevalently used tech-
niques of this kind: caching and branch prediction. Both techniques are implemented in virtually all modern
high-performance processing systems.

Caching aims at better approximating the ideally large and fast memory device which corresponds to the
data storage model typical programming languages present to their users. It has been long known that pro-
grams have a tendency to either access the same memory location repeatedly (temporal locality) or to access
neighboring memory locations (spatial locality), both phenomena appearing close in time. Caches exploit
this empirical observation by placing a set of recently accessed memory locations in a small and fast storage
structure, a cache. As a result, many if not most of the memory accesses are serviced in the cache, benefit-
ing from its low latency (how fast it responds) and high bandwidth (how much data it can respond with)
characteristics. Had programs not exhibited temporal and spatial locality in their memory reference stream,
caching would not have been an effective technique; data placed in the cache would rarely get referenced
before evicted. Another example of a technique that exploits programs behavior is branch prediction.
Branch prediction facilitates fetching and, often, executing instructions without having to wait to determine

2

whether these instructions should be executed (normally, we would have to wait until the current instruction
completes execution to determine which instruction should we execute next). Branch prediction exploits the
regularity found in the control flow paths programs tend to follow (this is not intended to be a formal,
exhaustive definition of the underlying phenomena branch prediction exploits). Had programs not exhibited
regularity in their control flow, branch prediction and the performance benefits it produces, would not have
been possible.

As the preceding discussion serves to demonstrate, in our efforts to build even faster or better suited to our
purposes computing systems, we may seek to understand how ordinary programs behave and develop tech-
niques that exploit this behavior to better utilize the resources offered by the underlying semiconductor
device technologies. In this context, this thesis introduces a form of regularity exhibited by ordinary,
sequential programs along with a number of micro-architectural techniques that exploit this regularity to
improve performance. Specifically, we have identified that high levels of regularity is there to be found in
the relationships formed when loads (memory read instructions) and stores (memory write instructions)
access memory. These relationships are commonly referred to as memory dependences, hence the name we
use for this phenomenon: memory dependence locality. Informally, memory dependence locality suggests
that if at some point a particular load or store experiences a memory dependence, chances are that the same
memory dependence will be experienced again the next time the same instruction is encountered (a formal
definition of memory dependences and of memory dependence locality can be found in chapter 2).

Identifying a particular regularity in program behavior in itself is useful only in indicating a potential for
exploiting this regularity. Actual techniques that make use of this opportunity for some practical purpose
are required. To this respect, in this thesis we present memory dependence prediction, a technique facilitated
by memory dependence locality and three micro-architectural techniques that are based on memory depen-
dence prediction. In memory dependence prediction, information about the memory dependences exhibited
during program execution is collected on-the-fly (i.e., while the program is running) and is used to make
educated guesses on the forthcoming dependence behavior of the program. In our proposal these actions
take place in a program and programmer transparent way via the use of architecturally invisible structures.

The three micro-architectural techniques we introduce are: (1) memory dependence speculation and syn-
chronization, (2) memory cloaking and bypassing, and (3) transient value cache. A brief introduction of
each of the aforementioned techniques and of their goals is given in the next section where we enumerate the
contributions of this thesis.

1.1 Contributions

The contributions of this thesis are: (1) we identify that programs exhibit locality in their memory depen-
dence stream, (2) we present memory dependence prediction, a technique that exploits memory dependence
locality to guess whether a instruction will experience a dependence and if necessary which this dependence
exactly is, and (3) we present three micro-architectural techniques that utilize memory dependence predic-
tion to improve performance. In Section 1.1.1 we discuss memory dependence locality and memory depen-
dence prediction. In sections 1.1.2 through 1.1.3 we discuss the three micro-architectural techniques we
propose.

1.1.1 Memory Dependence Locality and Prediction

In this thesis we introduce memory dependence locality, a characteristic exhibited by ordinary, sequential
programs. Memory dependence locality refers to the regularity that exists in the relationships formed when
loads and stores access memory (a formal definition of memory dependences is given in chapter 2). We con-

3

sider two forms of memory dependence locality: (1) memory dependence status locality and (2) memory
dependence set locality or, simply, memory dependence locality. Informally, memory dependence status
locality suggests that, if at some point during execution a load or a store experiences a memory dependence
of a particular type, it is highly probable that when encountered again, the same load or store will experience
a memory dependence of the same type. In this case, which are the exact dependences experienced are not
important, only whether such dependences exist is. Memory dependence locality is a specialization of mem-
ory dependence status locality. Memory dependence locality suggests that if at some point during execution
a load or a store experience a particular dependence (or a set of dependences), it is highly probable that
when encountered again, the same load or store will experience the same dependence (or dependences). In
this case, not only whether dependences of a particular type exist is important, but also which exactly these
dependences are.

Either form of memory dependence locality facilitates history-based prediction of the corresponding
events. Specifically, in this thesis we present two memory dependence prediction techniques: (1) memory
dependence status prediction, and (2) memory dependence set prediction, or simply, memory dependence
prediction. Memory dependence status prediction is a technique that allows us to guess with high accuracy
whether a load or a store has a memory dependence of a given type. Memory dependence prediction is a
technique that allows us guess not only whether a given load or store has dependence but also which exactly
this dependence (or dependences) is. Both techniques operate by (1) observing memory dependences as
they occur through memory, (2) associating memory dependence information with the static instructions
that are involved (e.g., with the PC of stores or loads), and (3) using the recorded information to make edu-
cated guesses on what dependences instructions will experience the next time they are encountered.

To support the efficacy of memory dependence prediction, in chapter 2 we study the memory dependence
behavior of programs and demonstrate that: (1) sufficient regularity exist in both the memory dependence
status and the memory dependence stream of programs, and (2) the working set of instructions with depen-
dences is relatively small. The first propertyÑas we explain in chapter 2Ñis a requirement of history-based
prediction as it indicates that past dependence behavior is a good indicator of forthcoming memory depen-
dence behavior. The second property suggests that we can collect and record dependence information for
prediction purposes using finite structures of reasonable size. This is required if memory dependence pre-
diction is to be of practical use.

In itself, memory dependence prediction serves just to provide highly accurate information about memory
dependences. Techniques are required to make use of this information for some practical purpose. We
present three such techniques in this thesis: (1) dynamic speculation and synchronization of memory depen-
dences, (2) speculative memory cloaking and bypassing, and (3) transient value cache. A description of the
goals and operation of each technique is given in the following three sections.

1.1.2 Dynamic Speculation and Synchronization of Memory Dependences

Techniques to exploit instruction-level parallelism (ILP) are an integral part of virtually all modern high-
performance processors. With these techniques, instructions do not necessarily execute one after the other
and in the order they appear in the program. Rather, instructions are executed in any order convenient pro-
vided however, that program semantics are maintained (i.e., the same results are produced). This ability is
useful in reducing execution time by executing instructions in-parallel (many at the same time) and by
avoiding stalling execution while an instruction takes its time to execute (e.g., it performs a relatively time
consuming calculation or accesses a relatively slow storage device for its operands). An arena where ILP
techniques are particularly useful is that of tolerating memory latency where these techniques are used to
send loads requests as early as possible, overlapping memory processing time with other useful computa-
tion.

4

One approach to exploiting ILP is to first make sure that executing an instruction will not violate program
semantics before the instruction is allowed to execute. In the case of a load, this action amounts to waiting to
determine if a preceding, yet unexecuted store writes to the same memory location, that is whether a true
dependence with a preceding store exists. However, and as we explain in detail in chapter 3, waiting to
determine whether a preceding store writes to the same memory location is not the best option. Higher per-
formance is possible if memory dependence speculation is used, that is, if a load is allowed to execute spec-
ulatively before a preceding store on which it may be data dependent. Later on, and after the preceding store
has calculated its address, we can check whether program semantics were violated. If no true memory
dependence is violated in the resulting execution order, speculation was successful. Otherwise, speculation
was erroneous and corrective action is necessary to undo the effects of erroneous execution. A penalty is
typically incurred in the latter case.

In this work we focus on dynamic memory dependence speculation techniques and study how existing
methods of applying memory dependence speculation will scale for future generation processors. Prior to
this work, memory dependence speculation was used whenever the opportunity to execute a load existed.
We will refer to this technique as naive memory dependence speculation. In this work we demonstrate that
as processors attempt to extract higher-levels of ILP by establishing larger instruction windows: (1) memory
dependence speculation becomes increasingly important, and (2) the net penalty of memory dependence
mispeculation can become significant. The latter observation suggests that further performance improve-
ments are possible if mispeculations could be avoided. Specifically, we demonstrate that further perfor-
mance improvements are possible under the following two execution models: (1) a centralized, continuous
window ILP processor, and (2) in a distributed, split-window ILP processor. In the centralized, continuous
window processor, the net penalty of mispeculation becomes significant when loads cannot inspect the
addresses of preceding stores either because a mechanism is not provided (to simplify the design) or because
of the latency required to inspect store addresses. In the distributed, spit-window processor mispeculations
are problematic independently on whether loads can inspect preceding store addresses. Moreover, we dem-
onstrate that the potential benefits increase as the size of the instruction window also increases in either pro-
cessor environment.

Motivated by the aforementioned observations we study the trade-offs involved in memory dependence
speculations and propose techniques to improve the accuracy of memory dependence speculation. Specifi-
cally, we propose techniques to: (1) identify via memory dependence prediction those loads and stores that
would otherwise be mispeculated, and (2) delay load execution only as long as it is necessary to avoid a
memory dependence mispeculation. The best performing technique we propose is memory dependence
speculation and synchronization, or speculation/synchronization. With this technique, initially loads are
speculated whenever the opportunity exists (as it is common today). However, when mispeculations are
encountered, information about the violated dependence is recorded in a memory dependence prediction
structure. This information is subsequently used to predict whether the immediate execution of a load will
result in a memory dependence violation, and (2) if so, which is the store this load should wait for.

Timing simulations show that for a distributed, split-window processor (i.e., Multiscalar
[26,14,82,27,40,92,13]), our technique can improve performance by 28% for integer codes and 15% for
floating point codes on the average. More importantly, the performance obtained through the use of our
techniques is very close to that possible with perfect, in advance knowledge of all memory dependences
(31% and 17% respectively), suggesting that our method is successful in attaining both goals of memory
dependence speculation: (1) avoiding mispeculations, and (2) delaying load execution only as long as it is
necessary.

We also study memory dependence speculation under a centralized, continuous window processor (typical
current superscalar) that utilizes fetch and execution units of equal bandwidth, and a program order priority
scheduler (i.e., when there are many instructions ready to execute, the older ones in program order are given

5

precedence). For this processor model we make two observations. The first is that using an address-based
load/store scheduler (i.e., a structure where loads can inspect preceding store addresses to decide whether
memory dependences exist) coupled with naive memory dependence speculation offers performance very
close to that possible with perfect, in advance knowledge of all memory dependences, provided that going
through the address-based scheduler does not increase load latency. The second is that if building an
address-based load/store scheduler is not an option (clock cycle) or not a desirable option (complexity),
naive memory dependence speculation can still offer most of the performance benefits possible by exploiting
load/store parallelism. However, under this set of constraints the net penalty of mispeculation is significant
suggesting that our memory dependence speculation and synchronization technique might be useful in
improving performance. Specifically, timing simulations show that an implementation of our techniques
results in performance improvements of 19.7% (integer) and 19.1% (floating-point) which are very close to
those ideally possible: 20.9% (integer) and 20.4% (floating-point).

1.1.3 Speculative Memory Cloaking and Bypassing

Faster execution requires faster methods of reading and writing memory values. The memory dependence
speculation and synchronization technique we described in the previous section helps in reducing the
observed memory latency by allowing loads to access memory earlier. However, even with this technique,
the interface used to read and write memory values and the mechanisms implementing memory remain the
same: a load or store has to first calculate an address and then use this address to access memory. Yet, mem-
ory can be viewed as an interface through which programs synthesize a desired, possibly elaborate action.
Which is to say that while from the perspective of a single instruction memory appears as a storage device,
from the perspective of the program as a whole, reading or writing a memory value is really a single step in
a series of actions which combined produce a desired effect. Just because we have decided to use an
address-based memory interface in expressing what the program does, this does not imply that we have to
implement this action in that way also. This perspective hints to another direction of improving memory
performance, that of: (1) first identifying what purpose memory serves at any given point, (2) then, studying
whether the address-based interface introduces any inefficiencies or overheads, and (3) if so, designing
mechanisms that can perform the desired action faster.

In this thesis we identify two common uses of memory: (1) inter-operation communication, and (2) data-
sharing. In inter-operation communication a store is used to write a memory value so that loads may later
read it. In data-sharing, a memory location is used as a place holder for values that are read repeatedly (i.e.,
by many loads) in the program. As we explain in detail in chapter 4, the address-based memory interface
introduces both overheads and inconveniences in performing these actions. For example, for inter-operation
communication to take place, both the store and the load have to calculate their address and then locate each
other using that address. These actions take time and more importantly the value being communicated may
be available long before these actions complete (a detailed discussion of the overheads and inconveniences
introduced by the address-based memory interface is delayed until chapter 4).

We also observe that an explicit specification of either action has potential advantages over the current
address-based specification. In an explicit specification of inter-operation communication both the store and
the load that ought to communicate, not only are given knowledge of the desired action but also can locate
each other directly without having to first calculate an address. Similarly, in an explicit specification of data-
sharing, a load that will access a previously accessed memory location, is not only given knowledge of this
fact, but is also provided with a mechanism to identify the earlier load that accessed the same memory loca-
tion without having to first calculate an address.

Motivated by the aforementioned observations we present speculative memory cloaking, or cloaking, a
technique that: (1) transparently converts the address-based specification of inter-operation communication

6

and of data-sharing into an explicit form, and (2) uses this explicit representation to allow loads to obtain
their memory value by just naming an earlier store or load that wrote or accessed it. In cloaking, memory
dependence prediction is used to identify those loads and stores that communicate and to identify those
loads that access a common memory location. This information is used to create direct, albeit speculative
links between these instructions so that values can flow directly, as soon as they become available. In partic-
ular, the mechanism we present operate by associating memory dependence information with the PC of the
static loads and stores. This permits loads and stores to pass values via cloaking using information derived
using their PCs.

Aiming at further reducing memory value access latency, we observe that loads and stores typically do not
change the data they write or read. These instructions are really used as agents retrieving or placing memory
data that other instructions produce or consume; the value written by a store is produced by another instruc-
tion, while the value read by a load is passed to other instructions. Motivated by this observation we propose
speculative memory bypassing, a straightforward extension to cloaking, that speculatively bypasses loads
and stores, linking producing and consuming instructions directly. Specifically, when memory is used as an
inter-operation mechanism, speculative memory bypassing converts DEF-STORE-LOAD-USE chains into DEF-
USE ones. When memory is used to hold data that is read repeatedly, this technique consolidates a series of
LOAD1-USE1...LOADN-USEN chains into a single LOAD1-USE1...USEN producer-consumer graph.

The effect achieved via cloaking and bypassing is illustrated in Figure 1.1. Cloaking allows values to
flows between loads and stores, while bypassing takes loads and stores off the communication path, allowing
values to flow directly from the actual producer to the actual consuming instructions.

Since we make use of memory dependence prediction, the proposed techniques are speculative and so are
the values obtained through their use. Accordingly, value verification through the traditional memory name
space is necessary. However, this verification can take place while the speculative values are used for further
processing. Provided that speculation is successful, the observed memory latency is reduced as instructions
that would otherwise wait for the traditional memory hierarchy to provide a value may now execute earlier,
possible even before the memory access is initiated.

Trace driven simulations show that a straightforward implementation of a combined cloaking/bypassing
mechanism can supply correct values for about 60% and 50% of all loads for the integer and the floating
point programs respectively. Timing simulations show that for a fairly aggressive and highly optimized 8-
way superscalar with an 128-entry window and that uses memory dependence speculation, cloaking/bypass-
ing can improve performance by 4% and 9%.

Figure 1.1: Speculative Memory Cloaking and Bypassing. (a) Inter-operation communication: exploiting
read-after-write dependences. (b) Data sharing: exploiting read-after-read dependences.

LOAD RY

USE RY

Cloaking
Bypassing

Memory

(a)

LOAD RZ

USE RY

USE RZ

Cloaking
Byp

as
sin

g

DEF RX

STORE RX

LOAD RY

(b)

7

1.1.4 Transient Value Cache

Highly parallel execution can benefit from both low memory latency and from the ability to perform mul-
tiple memory accesses in parallel. Both speculation/synchronization and cloaking/bypassing aim at reduc-
ing memory latency. The final technique we present in this work aims at supporting multiple memory
accesses per cycle. This technique is motivated by the relatively large fraction of loads that read a value that
was either recently written by a store or recently read by another load. Specifically, we found that roughly
70% (integer programs) and 43% (floating-point programs) of all loads read a memory location that is within
the last 128 memory locations accessed by preceding stores or loads. This result suggests that a relatively
small data cache capable of storing just 128 memory locations could potentially service all these loads.
Such a small data cache could help in supporting multiple memory requests for the following two reasons:
(1) it could be easier to multiport than a reasonably sized L1 data cache, and (2) loads that would get ser-
viced in this small data cache will not have be exposed to the L1, freeing up L1 port resources to be used for
other loads. Unfortunately, placing such a data cache in between the processor and the L1 would increase
the latency of all dynamic loads that would not hit in it (30% and 57% respectively). Placing it in series with
the L1 data would not be of much use either as all loads will have to be exposed to both the L1 and the small
data cache. What is needed is a method to place this small data cache in series with the L1 for those loads
that will hit in it and in parallel to the L1 for all other loads. This is exactly what the Transient Value Cache
(TVC) tries to do. The Transient Value Cache, or TVC is a novel memory hierarchy component that com-
bines a memory dependence status predictor and a relatively small, narrow data cache. The basic approach
is illustrated in Figure 1.2. The TVC records in its data cache component the nth most recent accessed mem-
ory locations as a traditional data cache would. However, contrary to what is done in a traditional memory
hierarchy, the data cache component does not always appear in series with the rest of the memory hierarchy.
Instead, its placement is decided using a memory dependence prediction as follows: When a load is ready to
access memory, a prediction is made on whether the memory location it will access is resident in the TVC,
or viewed differently whether the load has a dependence with a recent store or load respectively. If so, the
load is send only to the TVC, in which case the TVC appears in series with the L1 data cache. Otherwise
the load is send to both the TVC and the rest of the memory hierarchy, in which case the TVC appears in
parallel with the L1 data cache. Provided that prediction accuracy is high, the potential benefits of the TVC
approach are: (1) the loads that hit in the TVC are hidden from the rest of the memory hierarchy, freeing up
L1 data cache ports to be used by other loads, (2) the latency of loads that are unlikely to hit in the TVC
remains unchanged. High prediction accuracy is essential as the TVC may result into increased load latency
when prediction incorrectly indicates that a load will find its data in the TVC. We also present a possible
store-to-store dependence (WAW) status prediction extension, were the TVC is also used to hide from the
rest of the memory hierarchy those store accesses that are likely to be overwritten quickly precluding poten-
tial problems with writeback traffic contention while reducing the L1 port requirements.

Trace driven simulation shows that a TVC comprised of a counter-based memory dependence status pre-
dictor and a 128-word (512 bytes) cache component can service 66.8% and 40.4% of all loads on the aver-
age and for the integer and floating point codes respectively. More importantly, only 3.3% and 1.1% of all
loads would observe a latency increase as the result of erroneous memory dependence status prediction. In
contract, a traditional memory organization that would place the 128-word data cache in series with the L1,
would result in 70.1% (integer) and 43.1% (floating-point) reduction of loads at the L1 interface while
increasing the latency of 29.7% (integer) and 43.7% (floating-point) of all loads. While the aforementioned
results provide an indication of the potential of the TVC approach, further investigation is required to deter-
mine its performance impact.

8

1.2 Thesis Organization

The remainder of this thesis is organized as follows: in Section 1.3 we detail the experimental framework
used to evaluate the ideas and techniques we propose. In chapter 2, we provide a formal definition of mem-
ory dependences, a short introduction to the principles of operation of history-based memory dependence
predictors and also present an analysis of the memory dependence behavior of the programs studied. This
analysis focuses on those aspects of memory dependence behavior that are interesting from the perspective
of history-based memory dependence prediction. It is here that we provide experimental evidence in support
of the efficacy of memory dependence prediction. In chapter 3, we study memory dependence speculation
and present memory dependence speculation and synchronization. In chapter 4, we present speculative
memory cloaking and bypassing. In chapter 5, we present the transient value cache approach. Finally, we
summarize our findings in chapter 6 and offer suggestions on how this work can be extended. In the appen-
dix we present additional measurements that relate to memory dependence prediction and to its applications
we present in this thesis.

1.3 Experimental Framework

In this section we detail the experimental framework we used for the experiments reported in this thesis.
In Section 1.3.1 we provide details on the programs analyzed and on the compiler infrastructure we used. In
Section 1.3.2 we discuss our simulation methodology,

1.3.1 Programs and Compiler Infrastructure

In all experiments reported in this thesis we used the SPEC95 benchmark suite [86]. We used two input
data sets. The exact parameters used per input data set are given in Table . Unless otherwise noted, the first
input data set is used. All programs were compiled using a modified version of the GNU gcc compiler ver-
sion 2.7.2. The modifications allow the compiler to also generate binaries for the Multiscalar architecture
[26, 82] and only affects binaries compiled for that architecture. The base instruction set architecture is the
MIPS-I [42] but with no architectural delay slots of any kind. The modifications done to gcc along with a

Figure 1.2: The Transient Value Cache

OOO Core

TVC

Memory Hierarchy Load/Store Path

no dependence

dependence

De
pe

nd
en

ce
 S

ta
tu

s
Pr

ed
ic

to
r

9

description of the additional instructions introduced to support the Multiscalar architecture are detailed in
[92]. Fortran sources were compiled by first converting them to C using AT&TÕs f2c compiler. Unfortu-
nately, we have no way of determining how the use of a FORTRAN-TO-C translator impacts the quality of the
produced code. However, it is to be expected that an actual FORTRAN compiler would improve the quality of
the produced code mainly as the result of better static disambiguation and scheduling. We note that such
optimizations may affect the results of the techniques we propose either way. For example, while better dis-
ambiguation may help in exposing some of the load/store parallelism in floating point programs, hence
reducing the potential of a dynamic approach, it will also reduce the distance between dependent loads and
stores increasing the probability of mispeculation, hence increasing the potential of the speculation/synchro-
nization technique presented in chapter 3. All programs were compiled using the -O2 optimization level and
with loop unrolling and function inlining enabled.

Two binaries were generated per program: (1) a MIPS-I binary, and (2) a Multiscalar binary. The instruc-
tion counts, along with the fraction of loads and stores executed per binary and input data set are given in
Table 1.1.

1.3.2 Simulation Methodology

We employ two simulation techniques: (1) trace-driven simulation and (2) detailed, execution-driven tim-
ing simulation. Traces are generated using two functional simulators, one for MIPS-I ISA and one for the
Multiscalar architecture. The functional simulators execute all user-level instructions. System calls are ser-
viced by the OS of the host machine. The functional simulators we used are derivatives of the Multiscalar
functional simulator [13]. In all experiments that utilize functional simulation we included all user-level
instructions in our measurements.

We also make use of detailed, execution-driven timing simulation. For this purpose we utilized two simu-
lators, one that simulates a dynamically scheduled superscalar processor and one that simulated a Multisca-
lar processor. Both simulators are derivatives of the Multiscalar timing simulator [13]. The out-of-order
core simulator was rewritten to facilitate simulation of the techniques we examine and to better approximate
the processor models we study. Moreover, mechanisms to collect advance memory dependence informa-
tions were incorporated. While these modifications were required for our experimentation that also
decreased simulation speed considerably. The simulators execute all user-level instructions including those
on control speculative paths. Systems calls are redirected to the OS of the host machine.

The default superscalar configuration we used is detailed in Table 1.2. We used a 32K data cache to com-
pensate for the relatively small memory working sets of the SPEC95 programs. For some experiments we
use a 64-entry reorder buffer model. That model, has 4 copies of all functional units, a 2-port load/store
queue and memory system, and can fetch up to 4 instructions per cycle.

The default Multiscalar configuration we used is detailed in Table 1.3. For some experiments we used
models of processing units with 4 copies of all functional units and all 4 load/store ports. For those experi-
ments the number of banks and miss handlers for the I-cache, D-cache and the ARB was partitioned accord-
ingly to provide four times the bandwidth of the configuration shown in Table 1.3.

Finally, to attain reasonable simulation times we utilized sampling for the timing simulations. In this tech-
nique which was also employed, for example, in [96,67,13], the simulator switches between functional and
timing simulation. The mode of simulation is changed once a predefined number of instructions have been
simulated. In all sampling simulations the observation size is 50,000 instructions. We chose sampling ratios
that resulted in rougly 100M instructions being simulated in timing mode (i.e., sample size). We did not use
sampling for 099.go, 107.mgrid, 132.ijpeg and 141.apsi. We used a 1:1 timing to functional simulation ratio

10

Program Input Data Set 1 Input Data Set 2

SPECintÕ95

099.go play level = 9, board size = 9 train input set: play level = 9, board
size = 50

124.m88ksim modified test input: 370 iterations of Dhrystone
Benchmark

train input set

126.gcc reference input file recog.i test input: file cccp.i

129.compress modified train input: maximum file size increased to
50,000

modified train input: maximum file size
increased to 100,000

130.li modified test input: (queens 7) train input set

132.ijpeg test input train input set

134.perl modified train input: jumple.pl with dictionary reduced
by retaining every other 15th word

train input set

147.vortex modified train input: persons.250k database,
PART_COUNT 250, LOOKUPS 20, DELETES 20,
STUFF_PARTS 100, PCT_NEWPARTS 10,
PCT_LOOKUPS 10, PCT_DELETES 10,
PCT_STUFFPARTS 10

train input set

SPECfpÕ95

101.tomcatv modified train input: N = 41 train input set

102.swim modified train input: X = 256, Y = 256 test input set

103.su2cor modified test input: LSIZE = 4 4 4 8 16 test input set

104.hydro2d modified test input: MPROW = 200 test input set

107.mgrid modified test input: LMI = 4 test input set

110.applu modified train input: itmax = 25, nx = 10, ny = 10, nz =
10

train input set

125.turb3d modified train input: nsteps = 1, itest = 0 test input set

141.apsi modified train input: grid points x = 32, grid points z=
8, time steps = 130

test input set

145.fpppp modified reference input: natoms = 4 train input set

146.wave5 modified train input: particle distribution 1000 20, grid
size 625x20

train input set

Benchmark input parameters.

11

(i.e., once 50000 instructions are simulated in timing mode, we switch to functional mode and simulate
50000 instructions before switching back to timing mode, and so on) for: 110.applu, 124.m88ksim, 130.li,
134.perl and 145.fpppp. We used a 1:2 timing to functional simulation ratio (i.e, once 50000 instructions are
simulated in timing mode, we switch to functional mode and execute 100000 instructions before switching
back to timing mode, and so on) for: 101.tomcatv, 102.swim, 126.gcc, 129.compress, 146.wave5 and
147.vortex. We used a 1:3 timing to functional simulation ratio for 103.su2cor. And finally, we used a 1:10
timing to functional simulation ratio for: 104.hydro2d and 125.turb3d. During the functional portion of the

Non-Multiscalar Multiscalar

Input Data Set 1 Input Data Set 2 Input Data Set 1

Program IC Loads Stores IC Loads Stores IC Loads Stores

SPECintÕ95

099.go 133.8 20.9% 7.3% 553.7 21.3% 7.9% 141.2 22.7% 7.8%

124.m88ksim 196.3 18.8% 9.6% 141.5 18.5% 13.3% 213.3 17.3% 8.7%

126.gcc 316.9 24.3% 17.5% 1,496.5 23.4% 19.4% 333.9 23.9% 17.3%

129.compress 153.8 21.7% 13.5% 296.4 21.7% 12.9% 153.8 21.7% 13.5%

130.li 206.5 29.6% 17.6% 182.9 25.4% 16.1% 229.7 26.6% 15.7%

132.ijpeg 129.6 17.7% 8.7% 1,478.2 17.6% 8.4% 139.2 18.6% 9.0%

134.perl 176.8 25.6% 16.6% > 2,200.0 25.5% 16.4% 176.8 25.6% 16.6%

147.vortex 376.9 26.3% 27.3% > 2,200.0 28.6% 24.8% 390.7 21.3% 30.6%

SPECfpÕ95

101.tomcatv 329.1 31.9% 8.8% > 2,200.0 31.5% 8.9% 333.7 30.6% 8.7%

102.swim 188.8 27.0% 6.6% 753.1 27.0% 6.6% 191.8 27.0% 6.5%

103.su2cor 279.9 33.8% 10.1% 1,099.9 34.0% 10.0% 283.7 33.5% 10.0%

104.hydro2d 1,128.9 29.7% 8.2% 1,130.1 29.7% 8.2% 1,162.6 29.4% 8.0%

107.mgrid 95.0 46.6% 3.0% > 2,200.0 49.3% 2.1% 100.6 46.1% 5.2%

110.applu 168.9 31.4% 7.9% 649.3 31.5% 7.9% 171.8 31.9% 8.0%

125.turb3d 1,666.6 21.3% 14.6% > 2,200.0 21.1% 14.1% 1,701.7 20.6% 14.4%

141.apsi 125.9 31.4% 13.4% >2,200.0 30.8% 12.2% 129.5 31.0% 13.5%

145.fpppp 214.2 48.8% 17.5% 469.6 48.9% 17.2% 202.5 49.4% 11.0%

146.wave5 290.8M 30.2% 13.0% >2,200.0 32.0% 12.7% 299.3 30.2% 12.9%

Table 1.1: Benchmark Execution Characteristics. Instruction counts (ÒICÓ columns) are in millions.

12

simulation the following structures were simulated: I-cache, D-cache, and branch prediction. Table 1.4 pre-
sents data that are useful in quantifying the error that is introduced by the use of sampling. In this experi-
ments we report the relative difference in IPC (instructions per cycle) reported with sampling simulation
over full timing simulation of the default superscalar configuration.

Fetch
Interface

Up to 8 instructions can be fetched per cycle. Up to 4 fetch requests can be active at any time.
Combining of up to 4 non-continuous blocks.

Branch
Predictor

64K-entry combined predictor [58]. Selector uses 2-bit counters. 1st predictor: 2bit counter
based. 2nd predictor: Gselect with 5-bit global history. 4 branches can be resolved per cycle. 64-
entry call stack. 2K BTB.
Up to 4 predictions per cycle.

Instruction
Cache

64K, 2-way set associative, 8 banks, block interleaved, 256 sets per bank, 32 bytes per block, 2
cycles hit, 10 cycle miss to unified, 50 cycle miss to main memory.
Lockup free, 2 primary misses per bank, 1 secondary miss per primary.
LRU replacement.

OOO
core

128-entry reorder buffer, up to 8 operations per cycle, 128-entry combined load/store queue, with
4 input and 4 output ports.
Loads can execute as soon as their address becomes available.
Stores check for memory dependence violations by comparing addresses and data.
It takes a combined 4 cycles for an instruction to be fetched and placed into the reorder buffer.

Architected
Registers

64 integer, 64 floating point, HI, LO and FSR.

Functional
Units

8 copies of all functional units. All are fully-pipelined. 4 memory ports.

Functional
Unit
Latencies

Integer: 1 cycle latency except for: multiplication 4 cycles, division 12 cycles,.
Floating point: 2 cycles for addition/subtraction and comparison (single and double precision or
SP/DP). 4 cycles SP multiplication, 5 cycles DP multiplication, 12 cycles SP division, 15 cycles
DP division.

Store
Buffer

128-entry. Does not combine store requests to memory. Combines store requests for load for-
warding.

Data
Cache

32K, 2-way set associative, 4 banks, 256 sets per bank, 32 bytes per block, 2 cycle hit, 10 cycle
miss to unified, 50 cycle miss to main memory. Lockup-free, 8 primary miss per bank, 8 second-
ary miss per primary. LRU replacement.

Unified
Cache

4M-byte, 2-way set associative, 4 banks, 128-byte block, 8 cycle + # 4 word transfer * 1 cycle hit,
50 cycles miss to main memory. Lockup-free, 4 primary miss per bank, 3 secondary per primary.

Main
Memory

Infinite, 34 cycle + #4 word transfer * 2 cycles access.

Table 1.2: Default configuration for superscalar timing simulations

13

Processing
Units

4 or 8, single task, 16-entry reorder buffer with 8-entry scheduler.
Functional Units: 2 copies of all functional units, except for load/store units that has 1 port. Laten-
cies same as in TableSection 1.2.
Load/Store unit: 16 entry load/store queue, 16 entry store buffer non-combining to memory, com-
bining for local load requests. Loads may execute after all preceding local stores have calculated
their address.
Fetch interface: 2 instructions per cycle, one branch prediction, 16-entry call-stack, 1K BTB.
Control Predictor: global-pattern based, 16-bit pattern register, 64K-entry, 2-bit counters, 2 tar-
gets.

Inter-Task
Predictor

Path-based DOLC=7,3,6,8 path register 64K-entry, 2-bit counters, 4 targets [13]. 64-entry call-
stack.

Task
Cache

1K-entry, 2-way set associative, 64-byte task descriptor, LRU replacement.
1 cycle hit, 12 cycle miss to unified, 50 cycle miss to main memory.
1 bank, bus, lockup.

Instruction
Cache

64K, 2-way set associative, #PU banks, block interleaved, 32 bytes per block, 1 cycle hit, 10 cycle
miss to unified, 50 cycle miss to main memory.
Lockup free, 8 primary misses per bank, 8 secondary miss per primary.
LRU replacement. Crossbar with one port per PU and per bank.

Register
File

4 registers per cycle, 2 cycle latency between adjacent units

Address
Resolution
Buffer

#PU banks, 32-way set associative, 128 entries per bank, byte disambiguation granularity. 2 cycle
hit.

Data
Cache

32K, 2-way set associative, #PU banks, 32 bytes per block, 2 cycle hit, 10 cycle miss to unified, 50
cycle miss to main memory. Lockup-free, 8 primary miss per bank, 2 secondary miss per primary.
LRU replacement. Crossbar with one port per PU and per bank. Same block access combining for
crossbar.

Unified
Cache

4M-byte, 2-way set associative, 4 banks, 128-byte block, 8 cycle + # 4 word transfer * 1 cycle hit, 50
cycles miss to main memory. Lockup-free, 4 primary miss per bank, 3 secondary per primary.

Main
Memory

Infinite, 34 cycle + #4 word transfer * 2 cycles access.

Table 1.3: Default configuration for Multiscalar timing simulations.

14

IPC Full
Relative

Difference
w/ Sampling

IPC Full
Relative

Difference
w/ Sampling

099 1.81 0.0% (N/A) 101 3.06 +0.653%

124 3.54 -1.142% 102 2.39 +3.347%

126 2.56 -1.171% 103 3.51 -0.854%

129 2.32 0.0% 104 3.48 -0.574%

130 2.38 0.0% 107 5.11 0.0% (N/A)

132 4.16 0.0% (N/A) 110 4.29 -0.233%

134 2.77 -1.818% 125 4.63 0.0%

147 4.66 -0.858% 141 3.25 0.0% (N/A)

145 3.89 -0.514%

146 3.85 -0.239%

Table 1.4: Error introduced by the use of sampling in a timing simulation. ÒIPC FullÓ columns report the
instructions per cycle execution rate when no sampling is used. Also reported is the relative difference in
IPC introduced by the use of sampling.

15

Chapter 2

Memory Dependence Behavior Analysis

Before we embark into describing possible applications of memory dependence prediction it is best if we
develop an understanding of the memory dependence behavior of programs. Accordingly, in this chapter we
present a characterization of memory dependence behavior. This information will aid us during both the
motivation and the design process of the applications described in the chapters that follow. Hopefully, this
information will also help stimulate other applications of memory dependence prediction. We should note
that there are certainly many more attributes of memory dependence behavior than those we consider in this
study. Moreover, there might be types of memory dependence information that might be interesting other
than those we consider in this work (a description can be found in Section 2.3). Rather than performing an
exhaustive analysis, we focus on those attributes that seem most relevant to a specific class of memory
dependence predictors1 (discussed in Section 2.2).

An overview of the specific results presented in this chapter along with a justification of why we include
them is delayed until Section 2.3.1. This is necessary to motivate the relevance of our metrics we need to
first formally define memory dependences and review the principles underlying the operation of the class of
memory dependence predictors we consider. However, in a nutshell, the results of this chapter are: (1) most
of loads and stores experience dependences, (2) relatively small structures (e.g., 4K entries) can be used to
capture a large fraction of that dependence activity, (3) the working set of memory dependences is relatively
small, (4) memory dependences exhibit fairly regular behavior. As will become apparent by the discussion

1.There is an inherent difficulty in making generally applicable observations about the ÒpredictabilityÓ Ñwhich infor-
mally can be defined as the ability to design automata capable of guessing the relevant informationÑ of memory depen-
dences or other program related information. After all, the program itself is an automaton that may be used to predict its
own actions (in Section 6.2.5, we will discuss such a possibility). The interested reader can refer to any description of
algorithmic information content and of complex adaptive systems, e.g., [29] chapters 2 through 4. For this reason, in this
work we focus on a specific class of predictors and measure those aspects of memory dependence behavior that seem
relevant for those predictors.

16

of this chapter, these results constitute strong indications that memory dependences may be amenable to his-
tory-based prediction.

The rest of this chapter is organized as follows. Before we proceed into the details of the memory depen-
dence behavior analysis, we briefly define memory dependences and their types (Section 2.1) and present an
abstract description of a class of history-based memory dependence predictors (Section 2.2). The material
presented in these two sections allows us to motivate the relevancy of the metrics presented in Section 2.3
and aid in their interpretation. An overview of the metrics presented is given in Section 2.3.1. A summary
of our findings is given in Section 2.4. As we will discuss in Section 2.1, there are four possible types of
memory dependences. Much of the discussion in this chapter focuses on those two types (read-after-write
and read-after-read) which we extensively use in the applications we present later on.

2.1 Memory Dependence Types

In this section we review what memory dependences are, present the various types of memory depen-
dences and explain what implications each of these types has on interpreting program semantics. We also
define static and dynamic dependences and discuss what possible shape the dependences of an instruction
may take (i.e., whether they are one-to-one or many-to-one).

A memory dependence is a relationship between two instructions that access memory. We could define
memory dependences simply as the relationships formed when instructions access a common memory loca-
tion (address). However, such a definition will encompass many more relationships than those that are of
interest for our purposes. For example, such a definition will allow a dependence among a memory read
(load) and all preceding memory writes (stores) to the same memory location. To define memory depen-
dences precisely, we first need to define the concept of memory location versions. Throughout the course of
execution, a memory location may be used to hold many different values. Every time a value is written to a
memory location by a memory write (store), a new version of that memory location is created. As programs
are written with an implied, total order, memory location versions can also be ordered according to the pro-
gram implied order. With this definition in hand we can now proceed to define memory dependences,
restricting our attention to the relationships formed among instructions starting from one that creates a new
version of a memory location and ending with the one that creates the immediately succeeding in program
order version of the same memory location.

A memory dependence is a relationship between two memory accessing instructions that either create or
read the same version of a memory location or that create the immediately succeeding in program order ver-
sion of the same memory location. Since there are two types of memory accessing instructions, loads and

Figure 2.1: Memory dependence examples. ÒlwÓ (ÒswÓ) stands for Òload wordÓ (Òstore wordÓ), where a
ÒwordÓ is four bytes long. ÒlhÓ (ÒshÓ) stands for Òload half-wordÓ (Òstore half-wordÓ) where a Òhalf-
wordÓ is two bytes long. Finally, ÒlbÓ (ÒsbÓ) stands for Òload byteÓ (Òstore byteÓ).

1: sw M(100), r1
2: lw M(100), r1
3: lw M(100), r2

4: sw M(100), r3

(a)

1: sb 101, r1
2: sb 100, r1
3: lh 100, r2

4: sh 100, r3

(b)

5: lw M(100), r4

for i = 0 to 99

2: sw a[i], r1

3: lw a[i], r2

(c)

17

stores, that read and write memory data respectively, there are four possible types of memory dependences:
read-after-write (RAW), read-after-read (RAR), write-after-write (WAW) and write-after-read (WAR). A
RAW dependence is formed when a load reads the memory location version written by a preceding store. A
RAR dependence is formed when two loads read the same version of a memory location. A WAW depen-
dence is formed in between a store that creates a new version of a memory location and a preceding store
that created the most recent in program order version of the same memory location. Finally, a WAR depen-
dence is formed between a store that creates a new version of a memory location and any preceding load that
reads the immediately preceding in program order version of the same memory location. The example of
Figure 2.1, part (a) is useful in illustrating the various memory dependence types. A sequence of five mem-
ory instructions is shown, numbered and in program order. There are three RAW dependences: (1,2), (1,3)
and (4,5). There is one RAR dependence (2,3). There are two WAR dependences: (2,4) and (3,4). Finally,
there is one WAW dependence: (1,4). As per our definition no dependence exists among load 5 and any
instruction before store 4 as the latter creates a new version of memory location 100.

Memory dependences contain ordering information as all are of the form X-after-Y. This order is derived
from the order in which the instructions appear in the original sequential program order. However, it should
be noted that to interpret program semantics, RAR dependences do not impose any ordering restrictions as
two loads that are connected via a RAR dependence can execute in any order with respect to each other. (For
this reason, the term ÒRAR relationshipÓ might have been a more appropriate term. However, for uniformity
we will use the term RAR dependence.) All other dependences however, have implications on what is
required to maintain sequential semantics. A load that has a RAW dependence with a preceding store must
read the value written by that store. A store that has a WAR dependence with a preceding load must not
overwrite the data read by the load before the latter had a chance to read it. Finally, WAW dependences dic-
tate that in the program order, once both stores are encountered the correct memory state is defined by the
value written by the latter store.

At times it is useful to differentiate between static dependences and their dynamic instances. A static
dependence identifies the pair of static instructions that are connected via the dependence at some point dur-
ing execution. For example, a static dependence can be a (store PC, load PC) pair, where by PC we denote
the program address where the corresponding load or store resides. A dynamic instance of a static depen-
dence, in addition to the dependent static instructions, also identifies their specific dynamic instances. Typ-
ically, a static dependence will have multiple dynamic instances. The example of Figure 2.1 part (b)
illustrates the difference between a static dependence and its dynamic instances. A loop is shown, whose
iterations first write to the ith element of array a[] (store at line 2) and then read the value written (load at line
3). A static dependence exists between the store at line 2 and the load at line 3. When this code executes,
multiple dynamic instances of this static dependence will be encountered, one per iteration of the loop.

Another interesting characteristic of memory dependences is their shape, which for the purposes of this
study we define as the number of distinct memory dependences a load or store experiences (a precise defini-
tion is given in Section 2.3.3). We can measure shape on each dynamic load or store instance separately
(e.g., how may loads read the value written by a particular instance of a given static store) or we can measure
shape over all dynamic instances of a given static store or load (e.g., after the program has executed how
many unique loads accessed values written by instances of a given store). A given load or store may have
multiple static dependences of all possible types (for example, as the result of control flow). The same is
true for each dynamic instance of loads and stores: Since a memory version can be read by multiple loads
before it is overwritten, multiple RAW (store at line 1 in Figure 2.1, part (a)) and WAR (store at line 4 of the
same figure) dependences are possible for stores. For the same reason multiple RAR dependences are pos-
sible per load (this would be the case in part (a) of Figure 2.1, if another load was reading memory location
100 before the store at line 4 and after the store at line 1). A load may also have multiple RAW and WAR
dependences while a store may also have multiple WAW dependences. This is a result of the plurality of
memory data types supported by a typical ISA (for example, in the MIPS-I ISA [42], a load or store may

18

access anywhere from 1 to 4 consecutive bytes in memory). An example is shown in part (b) of Figure 2.1.
Load 3, that reads two bytes starting from location 100, has two RAW dependences, (1,3) and (2,3), since
stores 1 and 2 only write a single byte. It can also be seen that store 4 has two WAW dependences: (1,4) and
(2,4).

Finally, for clarity it is useful to use the terms source and sink to refer to instructions that are dependent.
Given a dependence (A, B), where A and B are instances of a load or store, we define the sink and the source
based on the order in which instructions A and B appear in the program defined sequential execution order.
We will refer to the oldest in program order (encountered first) instruction as the source, while we will refer
to the youngest in program order (encountered last) instruction as the sink. It should be understood that
while for RAW dependences the terms source and sink also appropriately describe the flow of memory val-
ues, this is not so for the other dependence types. However, we will uniformly use these terms for all depen-
dence types for clarity.

2.2 A Class of History-Based Memory Dependence Predictors

In this work we are interested in two types of memory dependence information which informally are (for-
mal definitions are given in sections 2.3.6 and 2.3.7): (1) whether a load or a store has a dependence of a
given type (i.e., the exact dependence is not important in this case, only its existence is), and (2) which
exactly are the memory dependences a load or a store instance has (i.e., the exact load or store with which
the dependences exist is important). As the discussion of the previous section serves to imply, the memory
dependence information that interests us can be derived by inspecting the memory address stream of a pro-
gram. However, and as it will become apparent during the description of the techniques presented in chap-
ters 3 through 5, using address-based information to derive memory dependence information is not always
an option or sometimes, it is not a desirable option. For example, we may wish to know whether a version
created by a store will be read by a subsequent load (i.e., whether the store has a RAW dependence). How-
ever, at the time this information is required we may have not even seen a subsequent load, let alone a load
that accesses the same memory location.

Instead of waiting to derive memory dependence information by address stream inspection, we may opt
for a method that allows us to guess, preferably with high accuracy, the memory dependence information we
require. This is exactly the function of a memory dependence predictor. A simple memory dependence pre-
dictor is one that always makes a predefined, hard-wired prediction. In our preceding paragraph example,
such a predictor could for example, always predict that a store will experience a RAW dependence. Exam-
ples of such predictors for other types of program related information abound. For example, caches implic-
itly use such a predictor as all memory addresses accessed are placed into a typical data cache in hope that
they will be soon referenced again. Static branch predictors are another example. Finally, naive memory
dependence speculation (discussed in Section 3.2) implicitly uses such a predictor that always predicts that a
load will not experience a RAW dependence with a preceding store within the current instruction window.

However, in this work we focus on a different class of predictors. There are two reasons: (1) often the pre-
diction accuracy possible with a predictor that always responds with a predefined, hard-wired answer is not
sufficient (most of the material of Chapter 3 is motivated by this observation about naive memory depen-
dence speculation), and (2) in some cases we are interested in information for which there does not seem to
be a reasonable method of providing a predefined prediction. The latter point is best understood if, for
example, we consider applications that require prediction of the exact RAW memory dependences (i.e.,
load-store pairs).

In this work we focus on a class of history-based predictors which attempt to learn how the program
behaves and use that information to make guesses about the desired memory dependence information. The

19

example of Figure 2.2 is helpful in illustrating how a straightforward history-based memory dependence pre-
dictor of this kind might operate. Here we assume that we are interested in predicting whether a store has a
RAW dependence with a subsequent load and which load that is. The first time a store is encountered our
predictor has no information and for this reason cannot make an educated guess on whether a RAW depen-
dence exists. However, what our predictor does in this case is wait to observe via the address space whether
a dependence is experienced, and if so, which dependence that is. The actions that lead to the detection of
the RAW dependence are as follows: first the store is encountered. Later on, when the store accesses mem-
ory, a record is made of the address it wrote to (action 1). This record is associated with the store instruction
somehow (e.g., marked by the PC of the store). When later on, after the load has been encountered and once
it accesses memory, its address is used to locate the record left by the store (action 2). At this point our pre-
dictor has successfully detected that the store instruction experienced a RAW dependence and which load
this dependence was with. This information is recorded in a prediction structure (action 3). Later on, when
another instance of the same store instruction is encountered, the prediction structure is inspected (action 4)
and since a record is found for the particular store, our predictor can now guess that the same RAW depen-
dence will be experienced again. If so desired, our predictor can later validate whether its guess was correct
and change its prediction for subsequent instances of the same store. Provided that stores tend to experience
the same memory dependence most of the time, the accuracy of our predictor will be high.

Generally, history-based predictors rely on the assumption that past behavior is a strong indicator of future
behavior. If this property does not hold then predictors of this kind will fail. However, as the results pre-
sented later in chapter serve to demonstrate typical programs do exhibit this kind of regularity in their mem-
ory dependence stream. The predictor we have presented in the previous paragraph is of the most
straightforward type as it simply predicts that what happened last time will happen the next time around.
Provided that events repeat with high probability, even such a simple predictor will be quite accurate. If
higher prediction accuracy is required, we may opt for more sophisticated predictors that attempt to discover
repeating patterns of events (e.g., [12, 99]).

Example code sequences whose memory dependences are a good match for a simple history-based predic-
tor are shown in Figure 2.3. Each iteration of the loop of part (a), contains a load that reads a[i - 1] and a store
that writes to a[i]. A RAW dependence exists between the load and the store of two consecutive iterations.

Figure 2.2: Example illustrating the operation of history-based memory dependence predictors.

TI
M

E

STORE

STORE ACCESS

LOAD

LOAD ACCESS

LOAD

1. DETECTION

(ADDRESS, STORE)

 ADDRESS

2. PREDICTIONSTORE PREDICT

(STORE, LOAD)

1

2

3

4

PREDICTOR

(STORE, LOAD)

(STORE, LOAD)
RAW DEP. PREDICTED

RAW DEPENDENCE DETECTED

20

Similarly, every iteration of the loop of part (b) contains a load and a store which are used to read, increment
and update the count variable. RAW dependences exist between each store and the load of the next iteration.
Also WAW dependences exist between stores of successive iterations. The aforementioned RAW and WAW
dependences are amenable to history based prediction as once observed they occur every time the corre-
sponding instructions are encountered.

For history-based memory dependence prediction to be possible and of practical use the following charac-
teristics are desirable: (1) we should be able to build history, that is detect memory dependences, (2) we
should be able to record the collected history using structures of reasonable size, and (3) the memory depen-
dence attribute we wish to predict should exhibit sufficient regularity so that past behavior is a good indica-
tion of future behavior. A multitude of options exists on how to go about designing the specifics of a history-
based memory dependence predictor. Weighting the appropriateness of each option is an exercise most
meaningful given a target application. Accordingly, in this chapter, we restrict our attention to aspects of
memory dependence behavior that seem relevant for most, if not all predictors of this type or that have impli-
cations on the sophistication required of the prediction mechanism. A description of these attributes along
with a justification of why we include them is given at the beginning of the next section.

2.3 Memory Dependence Behavior Analysis

 With a high-level understanding of what is involved in predicting memory dependence information we
now proceed to characterize the memory dependence behavior of the SPEC95 programs. In this analysis we
focus on those characteristics of memory dependence behavior that are more relevant from the perspective of
the class of history-based predictors we described in the previous section and of the memory dependence
information that we utilize in the techniques presented in chapters 3 through 5. In this section we first
describe the types of memory dependence information that interest us and then proceed to list the attributes
of memory dependence behavior we studied.

While there are certainly many different types of memory dependence information that might be useful, in
this work we are interested in predicting two types of dependence information. Informally, these are: (1)
whether a particular instruction has a dependence of a particular type or the memory dependence status of an
instruction (a formal definition is given in Section 2.3.6), and (2) the set of dependences an instruction has,
or the memory dependence set of an instruction (a formal definition is given in Section 2.3.7).

As we have seen, there are four types of memory dependences. For most of the analysis that follows we
focus on RAW and RAR dependences. We do so, as these are the dependence types that we use for the bulk
of the techniques we present in chapters 3 to 5. However, we do measure some of the WAR and WAW
dependence characteristics of programs. Before presenting our findings in sections 2.3.2 through 2.3.7, we
first list the metrics we used along with a justification of why we include them in Section 2.3.1.

Figure 2.3: Example code sequences that are amenable to history-based memory dependence prediction.

for (i = 1; i < N; i++)

a[i] = a[i - 1]

for (p = parent->children; p; p = p->next)

p->parent->count++

(a) (b)store
load

21

2.3.1 Metrics and Justification

For history-based memory dependence prediction to be possible the following characteristics are desir-
able: (1) we should be able to build history, that is detect memory dependences, (2) we should be able to
record the collected history, and (3) memory dependences should exhibit sufficient regularity so that past
behavior is a good indication of future behavior. In this context, the following characteristics of memory
dependence behavior are relevant:

1. What fraction of loads and stores experience what memory dependence types? This metric pro-
vides an indication of the potential coverage of any memory dependence prediction based technique.
These measurements we present in Section 2.3.2.

2. Do we have to predict a single dependence or multiple dependences per store or load? This char-
acteristic of memory dependences has ramifications on how a prediction mechanism will have to
represent dependences and on the sophistication required of it. For example, if dependences are
mostly one-on-one (i.e., each load or store instance has a single dependence), a direct representation
of dependences may be practical. If however, multiple dependences have to be predicted per
dynamic instance, other representations may be necessary. These measurements are presented in
Section 2.3.3.

3. How large is the working set of loads and stores with dependences? Or, for how many loads and
stores we have to record dependence history information in order to be able to make predictions for
a desired fraction of loads and stores? If high coverage is desired, a prediction mechanism will have
to record information for those instructions that experience dependences. The working set size of
those instructions provides an indication of the amount of resources that will be necessary to record
the relevant information. These measurements we present in Section 2.3.4.

4. What size structures are required to detect a desired level of memory dependence activity? Detect-
ing memory dependences is required to build the history necessary for prediction purposes. Many
options exist in how to go about detecting dependences. For the purposes of this study we consider
a straightforward, yet effective way which amounts to keeping a record of the last n data addresses
touched by the program. A detailed description of this metric is given in Section 2.3.5 along with
the measurements. (Note that item 3 is a property of the instructions, while this metric is a property
of the memory addresses accessed.)

5. Whether sufficient regularity exists in the dynamic behavior of the attribute of memory depen-
dences we want to predict. Since we are interested in memory dependence status and in memory
dependence set prediction (definitions are given in sections 2.3.6 and 2.3.7) we restrict our attention
to these two attributes and present locality measurements in sections 2.3.6 and 2.3.7 respectively.
Informally, locality refers to the likelihood that the same memory dependence status or memory
dependences are encountered in two consecutive executions of the same static instruction. A formal
definition is given at the beginning of each section.

2.3.2 Memory Dependence Characterization

We start our analysis by measuring the frequency of memory dependences. We also characterize depen-
dences by how they are distributed in memory segment terms (data, heap, stack) and by how far apart are the
dependent instructions in the execution stream.

First, we measure the percentage of executed loads and stores that experience RAW, RAR, WAR and
RAW, WAR, WAW dependences respectively. These results are shown in Figures 2.4 and 2.5 for loads and
stores respectively. For loads we also show the fraction that experience both RAR and RAW dependences at
the same time as in the methods we present in Chapter 4 preference will be given to the RAW dependences
in such cases. Before we comment on these results it is important to note that accounting correctly for RAR

22

and WAW dependences requires distinguishing which side of a dependence (sink or source) a load or a store
appears at. The reason is that a particular load (store) may have a RAR (WAW) dependence with loads
(stores) the precede or that follow it. Ultimately, we could distinguish between backward and forward
dependences by accounting for the corresponding dependences separately. However, we choose to measure
those loads that have a dependence with a preceding load, and those stores that overwrite a memory location
written by a preceding store (i.e., we look only at backward RAR and WAW dependences). It is this defini-
tion of RAR dependences that is useful for the techniques we present in Chapter 4. With this definition of
RAR dependences we do not count a RAR dependence on the first in program order load that accesses a
memory location that other subsequent loads also access. Similarly, we do not count a WAW dependence on
the first store that writes to a particular memory location that later gets overwritten.

Focusing on Figure 2.4 and specifically on RAW dependences we can observe that the vast majority of
executed loads read a value written by a preceding store through a RAW dependence. The rest of loads
access a value that was produced outside of the scope of the program. This data was either loaded in mem-
ory before the program execution was initiated or was the result of a system call. Many loads have also
WAR dependences (above 70% for all programs, except 124.m88ksim). In conjunction with the high per-
centage of RAW dependences, this observation suggests that memory is often used to hold values that are
written, read and later overwritten.

Greater variation is exhibited by RAR dependences. For most programs around half of all loads read a
value previously read by a preceding load. At the two extremes are 107.mgrid with about 93% of loads hav-
ing a RAR dependence and 125.turb3d with 40% of load having a RAR dependence. Most of these loads
and in some cases all of them, read a value that was also written by a store as it can be seen by comparing the
RAR and RAW+RAR bars. This observation suggests that some stored values are read at least twice. In
those cases where that RAR bar is above 50%, some memory values are read more than two times (since we
do not include the first load in our RAR measurement).

Figure 2.4: Memory Dependence Breakdown - Loads. Shown is the fraction (Y-axis) of all executed loads
that experience a memory dependence of the given type.

099 124 126 129 130 132 134 147

 RAW RAR WAR RAW+RAR

101 102 103 104 107 110 125 141 145 146

LO
A

D
S

S
pe

cI
N

T
S

pe
cF

P

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

23

Figure 2.5 shows a breakdown of the dependences experienced by stores. For most programs nearly all
stores experience RAW dependences suggesting that these values might be used for further computations
within the program itself (it might also be that this traffic corresponds to callee-saved registers that contain
dead values). However, some stored values are never read by a load. This phenomenon is most acute in the
case of 126.gcc and 147.vortex where nearly half of all stored values are never used. Three possible causes
of this phenomenon are: (1) Some of these stored values constitute program output. (2) Others are the result
of ambiguous dependences. In these cases, a value resides both in a register and in memory. As a result
every time the register is updated its copy in memory is also updated, however the memory copy is read by a
load only when undetectable statically memory dependences exist. (3) However, in some cases this phenom-
enon is the result of the algorithms used; stored values are simply overwritten by another store before a load
has had a chance to read them. (For example gcc uses its own dynamic memory allocator, implementing
multiple stacks of objects. This allocator uses several global flags that relate to the current stack. These
flags are always updated when the current stack changes. However, these flags are not always accessed
before the next stack change occurs.) The latter observation (point 3) is supported by the frequency of WAW
dependences, which are typically more frequent than RAW dependences. Finally, it should be noted that
most stores also overwrite a value previously read by a load (WAR dependences). This result confirms our
previous observation that a large fraction of memory values are written, read and overwritten repeatedly.

2.3.2.1 Address Space Distribution of Memory Dependences

In this section we present a breakdown of memory dependences in terms of the address space through
which they occur. Specifically, we classify dependences into those that occur through the data, the heap and
the stack segments. These measurements are interesting primarily as reference material and secondarily in
providing indications on: (1) whether much of the dependence activity results from programming conven-
tions (stack), and (2) whether most of the activity results from the data and the stack segments which are typ-

Figure 2.5: Memory Dependence Breakdown - Stores. Shown is the fraction (Y-axis) of all executed stores
that experience a memory dependence of the given type.

0%

25%

50%

75%

100%

099 124 126 129 130 132 134 147

 RAW WAR WAW

101 102 103 104 107 110 125 141 145 146

S
TO

R
E

S

S
pe

cI
N

T
S

pe
cF

P

0%

25%

50%

75%

100%

24

ically easier to disambiguate at compile time. Table 2.1 reports these measurements. The percentages shown
are over all loads (or stores) that experience the particular type of dependence. Note that since we use round-
ing, the sum of all three segments per dependence type does not necessarily add up to 100%. It can be seen
that there is no clear trend in how memory dependences are distributed. While a significant fraction of
dependences occurs via the stack, much of the dependence activity, and in some case most of the activity,
takes place through either the data or the heap segment. We should note that the occasional appearance of
heap memory dependences in floating programs is a side-effect of the use of the FORTRAN to C translator and
its implementation of FORTRAN built-in functions.

RAW RAR WAR

DATA HEAP STACK DATA HEAP STACK DATA HEAP STACK

LO
AD

S

099 72.5% 0.0% 27.5% 89.0% 0.0% 11.0% 66.8% 0.0% 33.2%

124 60.6% 13.6% 25.9% 81.0% 18.9% 0.1% 63.7% 1.2% 35.2%

126 11.6% 33.6% 54.8% 28.7% 47.4% 23.9% 9.1% 31.0% 60.0%

129 92.9% 0.0% 7.1% 100.0% 0.0% 0.0% 92.4% 0.0% 7.6%

130 18.8% 45.2% 36.1% 24.5% 70.9% 4.6% 14.3% 43.4% 42.2%

132 1.1% 71.5% 27.4% 6.4% 84.1% 9.5% 0.7% 70.2% 29.1%

134 11.6% 51.1% 37.4% 22.6% 70.6% 6.8% 11.2% 38.7% 50.1%

147 7.1% 31.4% 61.5% 19.8% 45.5% 34.7% 2.9% 18.3% 78.8%

101 0.6% 0.1% 99.2% 6.9% 0.1% 93.0% 0.6% 0.1% 99.2%

102 91.7% 0.0% 8.3% 100.0% 0.0% 0.0% 90.4% 0.0% 9.6%

103 38.3% 1.2% 60.5% 54.8% 0.8% 44.3% 15.9% 1.8% 82.3%

104 90.0% 0.9% 9.1% 93.9% 0.5% 5.6% 88.0% 1.0% 11.0%

107 87.6% 0.0% 12.4% 87.8% 0.0% 12.2% 86.5% 0.0% 13.5%

110 72.3% 0.0% 27.7% 79.1% 0.0% 20.9% 59.9% 0.0% 40.1%

125 21.7% 0.0% 78.3% 46.2% 0.0% 53.8% 16.1% 0.0% 83.9%

141 66.2% 0.1% 33.6% 71.8% 0.0% 28.2% 60.8% 0.2% 39.0%

145 47.5% 0.0% 52.5% 57.7% 0.0% 42.3% 46.9% 0.0% 53.1%

146 88.5% 0.0% 11.5% 93.0% 0.0% 7.0% 87.9% 0.0% 12.1%

Table 2.1: Address space distribution of memory dependences.

25

For reference we also present a breakdown of all load and stores accesses in terms of the address space
being accessed. This data is presented in Table 2.2. Note that in these results we measure fractions over all
executed loads and stores (in Table 2.1, we measured fractions over all executed load or stores that experi-
enced a dependence of a given type). To correlate the results of Table 2.2 with those of Table 2.1, the fre-
quency of the corresponding memory dependences (as reported in figures 2.4 and 2.5) must be taken into
account.

2.3.2.2 Dynamic Instruction Distance Distribution

We have seen that the majority of memory instructions experience memory dependences and that the dis-
tribution of these dependences over the stack, heap and data segments exhibits great variation. In this sec-
tion we measure how far apart are the instructions connected with dependences. We use dynamic instruction
distance as our metric. We define the dynamic instruction distance of a dependence to be the number of
instructions executed between the two dependent instructions. This metric provides an indication of the

RAW WAW WAR

DATA HEAP STACK DATA HEAP STACK DATA HEAP STACK

ST
O

RE
S

099 39.2% 0.0% 60.8% 39.3% 0.0% 60.7% 39.1% 0.0% 60.9%

124 55.6% 1.6% 42.7% 56.8% 1.9% 41.3% 55.9% 1.1% 43.0%

126 5.3% 6.0% 88.7% 11.8% 5.2% 83.0% 5.2% 5.1% 89.7%

129 86.8% 0.0% 13.2% 89.0% 0.0% 11.0% 86.6% 0.0% 13.4%

130 15.7% 15.8% 68.5% 14.2% 21.2% 64.6% 15.7% 15.8% 68.5%

132 1.0% 47.8% 51.2% 0.9% 55.1% 44.1% 0.9% 48.1% 50.9%

134 6.7% 32.0% 61.3% 11.0% 34.2% 54.8% 6.8% 30.6% 62.6%

147 0.8% 19.1% 80.1% 9.4% 22.5% 68.0% 0.8% 16.6% 82.6%

101 0.8% 0.5% 98.7% 1.1% 0.5% 98.4% 0.8% 0.5% 98.7%

102 72.0% 0.0% 28.0% 66.5% 0.0% 33.5% 69.6% 0.0% 30.4%

103 6.5% 4.1% 89.5% 6.9% 4.0% 89.1% 6.2% 4.1% 89.6%

104 79.5% 3.2% 17.3% 80.4% 3.0% 16.6% 79.2% 3.3% 17.5%

107 84.6% 0.0% 15.4% 85.2% 0.1% 14.7% 84.5% 0.0% 15.5%

110 58.5% 0.0% 41.5% 57.5% 0.0% 42.5% 58.1% 0.0% 41.9%

125 17.1% 0.0% 82.9% 14.4% 0.0% 85.6% 15.9% 0.0% 84.1%

141 63.7% 0.3% 36.0% 62.4% 0.3% 37.3% 63.7% 0.3% 36.0%

145 23.4% 0.0% 76.6% 38.0% 0.0% 61.9% 23.4% 0.0% 76.6%

146 84.2% 0.0% 15.8% 83.4% 0.0% 16.6% 84.0% 0.0% 16.0%

Table 2.1: Address space distribution of memory dependences.

26

number of dependences that are going to be observed from within the instruction window of an out-of-order
processor. We will use this information during Chapter 3 where we will be concerned with methods of
extracting and exploiting load-store parallelism. These measurements are also useful in estimating the frac-
tion of memory dependence activity that can be detected using existing load/store execution mechanisms
found in most modern, dynamically scheduled ILP processors (i.e., load/store queues).

Figure 2.1 shows the cumulative distribution of dynamic instruction distances for RAW and RAR depen-
dences. Samples are taken at the following distances: 8, 64, 512, 4K and 32K. In all four cases, we measure
distances at the point of the dependent load (sink). The percentages shown are over all loads that experience
dependences of the corresponding type. As we have discussed, a given dynamic load instance may experi-
ence multiple RAW and RAR dependences. We account for multiple dependences by including distance
measurements for the closest and the furthest away source instructions (a store for RAW dependences, a load
for RAR dependences). In the case of RAW dependences, virtually no difference was observed suggesting
that rarely loads experience multiple RAW dependences or that whenever they do the source stores are clus-
tered very close to each other in the execution stream. For this reason we only account for the closest source
store in our measurements. Loads with RAR dependences however, were sensitive to the selection of their
source load. For this reason we do include measurements for both the closest and the furthest away possible
source loads.

It can be observed that a noticeable fraction of loads experiences a RAW dependence with a store that is
more than 32K instructions away. This phenomenon is more pronounced for the floating point programs
where the common case is that very few loads have RAW dependences that are visible within a window of
even 32K instructions. However, floating point programs also exhibit great variation. At one extreme are

LOADS STORES

DATA HEAP STACK DATA HEAP STACK

099.go 73.2% 0.0% 26.8% 39.8% 0.0% 60.2%
124.m88ksim 69.3% 10.6% 20.1% 55.5% 4.2% 40.3%

126.gcc 19.3% 20.7% 50.0% 11.70% 5.8% 82.5%
129.compress 93.2% 0.0% 6.7% 89.2% 0.0% 10.8%

130.li 20.2% 44.3% 35.4% 14.2% 21.3% 64.5%
132.ijpeg 4.4% 69.1% 26.5% 0.9% 55.5% 43.6%
134.perl 14.4% 49.6% 36.1% 10.5% 37.0% 52.4%

147.vortex 9.2% 40.0% 59.8% 8.7% 28.2% 63.0%
101.tomcatv 5.2% 0.2% 94.5% 1.1% 0.5% 98.4%

102.swim 93.4% 0.0% 6.6% 69.0% 0.0% 31.0%
103.su2cor 40.9% 1.8% 57.3% 7.2% 3.9% 88.8%

104.hydro2d 90.2% 1.2% 8.6% 80.8% 3.0% 16.2%
107.mgrid 87.6% 0.0% 12.4% 85.4% 0.1% 14.5%
110.applu 74.0% 0.0% 26.0% 57.9% 0.0% 42.1%

125.turb3d 28.5% 0.0% 71.5% 16.7% 1.5% 90.0%
141.apsi 68.5% 0.2% 31.3% 62.3% 0.4% 37.2%

145.fpppp 48.2% 0.0% 51.8% 38.1% 0.0% 61.9%
146.wave5 89.3% 0.0% 10.7% 83.7% 0.0% 86.1%

Table 2.2: Address space distribution of load and store accesses. Fractions are reported over all executed
loads or stores.

27

programs like 102.swim and 104.hydro2d were roughly, only 6% and 8% respectively of loads with RAW
dependences experience a dependence within a 32K instruction window. At the other extreme are programs
like 145.fpppp and 141.apsi that demonstrate a steady increase of RAW dependences as longer distances are
considered. We take a closer look at those programs in order to better understand their behavior. In the case
of 102.swim the RAW dependences that are not visible in their vast majority are accesses to array elements.
102.swim repeats a series of loops. Each of these loops reads values from one set of arrays, producing val-
ues for a different set of arrays. No recurrences exist in these loops. As a result, the RAW dependences that
are observed are mostly across different loops. Given that these loops iterate many times, these RAW depen-
dences are spread over many instructions. For 102.swim, the few RAW dependences that are visible within
the instruction window range shown, are mostly the result of accesses to induction or other global variables
that were not register allocated. 104.hydro2d also experiences very few RAW dependences within the mea-
sured range. It is similar to 102.swim in that its computation proceeds in a series of loops that read a differ-
ent set of arrays than they update. This program however has loops with recurrences. However, these
recurrences are on non-array variables and are mostly register allocated. The loops of this program also
access loop-invariant values that are calculated just before the loop starts. Some of these variables are not
register allocated or are occasionally spilled to the stack, giving rise to the majority of the shorter distance
RAW dependences. 145.fpppp on the other hand spends most of its time in loop whose iterations consists of
a series of dependent calculations. These calculations use either stack allocated variables (often of aggregate
data types) or global data segment allocated ones. Because these values are used quickly after they are
updated, a significant number of RAW dependences are observed even in short distances.

It is also interesting to observe that in the range of modern instruction windows (less than 64 instructions
for most processors) most loads do not experience RAW dependences. However, for most programs there is

Figure 2.1: Cumulative dependence dynamic instruction distance distribution. Samples are taken at 8, 64,
512, 4K and 32K distances. (a) RAW dependences. (b) RAR dependences.

 Max. Distance Min. Distance

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

R
A

W
(b

)
R

A
R

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

100%

28

a rapid increase in RAW dependences as we move to larger distances. These results suggest that as proces-
sors become able to establish larger windows, the probability of having to access a value written by a pre-
ceding store within the same window will increase. We will make use of this result in Chapter 3, where we
will be interested in exploiting load/store parallelism.

Focusing on RAR dependences we can observe that great variation is exhibited in the distances of the
closest and the furthest away possible source loads. When the furthest possible source loads are considered,
results are very similar to those for RAW dependences. However, when the closest possible loads are con-
sidered we observe significantly higher levels of RAR dependences even in short distances. However, even
then there is a large fraction of RAR dependences that are not visible from within the range of a typical, cur-
rent generation instruction windows. We will use this result in Chapter 4, to motivate the use of distant RAR
dependences in providing faster access to memory values.

2.3.3 Memory Dependence Shape Characterization

 We next consider the shape memory dependences take. For the purposes of this study we define shape to
be the number of dependences of a given type experienced by a load or a store. We use two metrics: (1)
instance dependence set size which is the number of dependences of a given type experienced by a dynamic
instance of a load or a store., and (2) aggregate dependence set size, which is the number of distinct static
dependences of a given type that are experienced by a static load or a store when all dependences observed
by all dynamic instances of the particular instruction are taken into account. Informally, the instance depen-
dence set size of a load or a store provides an indication of the number of dependences we will have to pre-
dict if in our prediction we care about the exact dependences loads and stores have. The aggregate
dependence set size measurements do not directly pertain to memory dependence prediction and is presented
only to provide additional insight on the memory dependence behavior of programs.

Figure 2.2, part (b) shows an example instruction sequence that is helpful in clarifying the difference
between the two metrics (this sequence can be generated by an execution of the loop of part (a)). The
instance of store st1 at line 1 has a RAW instance dependence set size of 3 as it experiences three RAW
dependences with the loads of lines 2, 3 and 4. Each of these loads has a RAW instance dependence set of 1.
The instance of store st1 at line 5 has a RAW instance dependence set size of 1 as it experiences a single
RAW dependence with the load of line 6. The RAW aggregate dependence set size of st1 is 4 as its dynamic
instances (shown at lines 1 and 5) overall experienced 4 distinct static RAW dependences each with one of
the 4 static loads shown (ld1 to ld4). Note that the aggregate dependence set size represents the number of
distinct static dependences experienced dynamically by a given load or store for a particular run of the pro-
gram. It is not the number of all memory dependences that might appear if all possible execution paths are
taken into account.

 The shape memory dependences take has also implications on their representation. This is most relevant
for memory dependence predictors that attempt to predict the exact dependences an instruction has. For
example, if a store instance experiences multiple RAW dependences (i.e., multiple loads are reading the
value written by the store, e.g., store at line 1 of Figure 2.2, part (b)) then a memory dependence predictor
will have to somehow predict multiple dependences for that store. In general, we have noted that there are
two reasons why a load or a store may experience multiple dependences at any given instance: (1) a memory
value may be read multiple times after it has been written or before it is overwritten by a store, and (2) loads
and stores may be manipulating different data types.

In the sections that follow we first present measurements on the instance dependence set size (Section
2.3.3.1) and then on the aggregate dependence set size (Section 2.3.3.2).

29

2.3.3.1 Instance Dependence Set Size

 In this section we present measurements of the instance dependence set of instructions. We show results
for both the source and sink instructions of each dependence type. The results of these experiments are
shown in Figure 2.3 where we report the cumulative distribution of the dynamic instance dependence set per
dependence type and separately for the source and the sink instructions. Fractions are reported over all loads
or stores (depending on the dependence type and on whether the measurements apply to the source or the
sink instructions) that experienced a memory dependence of the given type. For example, in part (a) we
report the instance dependence set size distribution as a fraction of all stores (source) and of all loads (sink)
that experienced a RAW dependence.

Focusing first on RAW dependences (part (a)), it can be seen that virtually all loads (sink) observe a single
producing store for most programs. Only 126.gcc, 132.ijpeg, 134.perl and 147.vortex exhibit loads that
experience multiple producing stores. Even so, these loads represent a very small fraction of all loads with
RAW dependences (less then 4% in most cases). As expected, loads cannot experience more than 4 produc-
ing stores per instance (the largest data type is 4 bytes while the smallest is one byte). Stores with RAW
dependences (source) exhibit slightly different behavior. For the integer codes and for the most part, stores
see a single load consumer. However, a noticeable fraction sees more than one consuming load, a result sug-
gesting that stored values are often read more than once. This latter phenomenon is more pronounced for the
floating point programs. These result suggest, that a mechanism that represents RAW dependences explic-
itly (i.e., by enumerating all consuming loads) will have to represent multiple dependences per instance of
many stores.

The sink loads of RAR dependences for the most part observe a single source load. Only for
124.m88ksim, 126.gcc and 132.ijpeg is there a noticeable fraction of loads that see more than one source
loads as a result of accessing different data types. The source loads of RAR dependences on the other side
see more than one sink loads, suggesting that after a memory value is read once, it is often read again, multi-
ple times. As it was the case with RAW dependences, a mechanism that represents RAR dependences
explicitly will have to represent multiple RAR dependences per instance of source loads.

The dynamic shape of WAR dependences follows closely that of RAW dependences. Source loads see,
for the most part, a single sink store that overwrites them, while sink stores typically overwrite more than
one load. Finally, WAW dependences are for the most part one-on-one. While in some programs there are
either source or sink stores that experience multiple WAW dependences, these represent a very small frac-
tion of all stores with WAW dependences (less than 2% in all cases).

Figure 2.2: Example illustrating the difference between static dependence set size and instance dependence
set size.

1: st1 M(100)

2: ld1 M(100)

3: ld2 M(100)

4: ld3 M(100)

5: st1 M(101)

6: ld4 M(101)

(a) (b)

for i = 100 to 101

st1 M(i)
if (i == 100)

ld1 M(i)
ld2 M(i)
ld3 M(i)

else
ld4 M(i)

30

Figure 2.3: Shape of memory dependences: cumulative dynamic instance dependence set distribution.

0%
20%
40%
60%
80%

100%

90%
92%
94%
96%
98%

100%

0%
20%
40%
60%
80%

100%

60%
70%
80%
90%

100%

95%
96%
97%
98%
99%

100%

0%
20%
40%
60%
80%

100%

95%
96%
97%
98%
99%

100%

95%
96%
97%
98%
99%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

R
A

W
(b

)
R

A
R

(c
)

W
A

R
(d

)
W

A
W

 SOURCE SINK

31

2.3.3.2 Aggregate Dependence Set Size

In this section we consider the aggregate dependence set size of loads and stores. While these measure-
ments are not pertinent to dynamic history-based memory dependence prediction, they provide indications
on what would be necessary had we attempted to represent and convey dependence set information stati-
cally. For this purpose we measure the aggregate dependence set size of loads and stores which we defined
earlier. Figure 2.4 shows the cumulative distribution of aggregate dependence set size per dependence type.
We consider both source and sink instructions in this experiment and focus on RAW and RAR dependences.
The dependence set size range shown is 1 to 4 dependences. The Y axis reports the fraction of dynamic
instructions that experience the same dependence type that would have been covered if we considered
dynamic instances of only those static instructions that have static dependence set sizes less than or equal to
the value of the X-axis.

We can observe that a relatively large fraction of sink loads observe a single static dependence. However,
in most cases the majority of sink loads have more than one static dependence. In some cases a significant
fraction of loads have more than 4 static dependences. Aggregate memory dependence sets are relatively
higher for the source loads and stores. These results may seem discouraging for memory dependence pre-
diction. However, we note that as we will later demonstrate, the working set of memory dependences
observed per static load or store is relatively small. This phenomenon will allows us to predict memory
dependences without having to record all static dependences per load or store.

2.3.4 Working Set of Memory Dependences

History-based memory dependence prediction requires associating dependence history information with
the relevant instructions. In this context, an important consideration is whether we could expect to store this
information using structures of reasonable size. While determining the exact size of these structures is pos-
sible only given a specific prediction mechanism, it is desirable to define a metric that provides a rough esti-
mate of the amount of resources that will be required. For this purpose, we provide measurements of the
working set size of instructions with dependences of a given type. We do so by measuring the probability
that a load or a store that experiences a dependence of a given type is among the last n loads or stores that
experienced a dependence of the same type (another way of viewing this metric is as the hit rate of a fully-
associative load/store cache with LRU replacement). A relatively high probability provides an indication
that the working set is less than n. The results of these experiments are shown in Figure 2.5 and for the fol-
lowing values of n: 16, 256, 1K and 4K.

It can be seen that even when we consider just the last 16 instructions, we can capture a significant fraction
of memory dependence activity. Coverage increases sharply as we consider larger values of n and
approaches 100% when n is 4K. This result is especially encouraging as it applies even to those programs
that have relatively large instruction working sets (e.g., 126.gcc and 147.vortex). The only exception is
145.fpppp whose working set of RAW dependences is large enough to demonstrate a probability of approxi-
mately 0.7 (70%) even when n is 4K. 145.fpppp spends most of its time in loop iterations whose static size
is relatively large (several thousands of instructions). Most of these instructions are floating point loads and
stores which are used to read and modify a rather large number of stack allocated variables. The code used
to update these variables consists of a different load-store pair per variable. Since in most cases each of
these variables is updated once per iteration, a large number of dependences is encountered until the next
dynamic instance of the same static dependence.

32

The results of these experiments suggest that prediction structures with a reasonable number of entries
should be sufficient in covering most of the memory dependence activity (i.e., recording memory depen-
dence information for the majority of loads and stores with memory dependences).

2.3.5 Capturing Memory Dependence Activity

As we discussed in Section 2.2, a history-based memory dependence predictor requires a memory depen-
dence detection mechanism. Such a mechanism records a number of recent accesses and if necessary, the
identities of the instructions that performed these accesses. The number of accesses that can be recorded

Figure 2.4: Static memory dependence set size cumulative distribution. (a) Read-after-Write dependences.
(b) Read-after-Read dependences. Range shown is 1 to 4 dependences. Y axis reports fractions over all
executed instructions that experience the particular dependence type.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

R
A

W
(b

)
R

A
R

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 SOURCE SINK

0%
20%
40%
60%
80%

100%
0%

20%
40%
60%
80%

100%

0%

20%

40%

60%

80%

100%
0%

20%

40%

60%

80%

100%

33

sets a rough upper bound on the fraction of memory dependence activity that is visible to the predictor. We
have seen that relying on mechanisms bound by the number of instruction visible from within the instruction
windows of modern ILP processors does not allow us to capture much of the RAW and RAR memory
dependence activity (Section 2.3.2.2). To quantify the amount of information that is necessary to capture a
desired level of memory dependence activity, in this section we measure the address distance of memory
dependences. We define address distance as the number of unique addresses (word granularity) accessed in

Figure 2.5: Probability that a store or a load instruction that has a dependence has been among the n most
recent instructions that experienced a dependence of the same type. n values shown are: 16, 256, 1K and 4K
(left to right).

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a
)

R
A

W

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b
)

R
A

R
(d

)
W

A
W

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(d
)

W
A

R

0.0

0.2

0.4

0.6

0.8

1.0

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0.0

0.2

0.4

0.6

0.8

1.0

34

between two dependent instructions. Recording information about these addresses should allow us to collect
the desired dependence information. This metric is occasionally pessimistic since we do not need to record
all memory accesses to detect certain kinds of dependences. For example, to detect RAW dependences we
need to record only store accesses. This metric can also be optimistic when multiple dependences per
instance of a source or of a sink instruction have to be detected explicitly. However, we note that in the
applications of memory dependence prediction we present in latter chapters, we do not require this function-
ality. The address distance distribution is also useful in determining how much storage is required to keep
the data values touched. This information will be proven useful in chapters 4 and 5 where we use memory
dependence prediction to introduce novel memory value accessing and storage management mechanisms.

We present measurements for loads and stores separately, in figures 2.6 and 2.7 respectively. For this mea-
surements we take samples at address distances of 16, 256, 4K and 64K address windows. Also shown
(right-most sample) is the fraction of loads or stores that have dependences given an infinite address window
(Section 2.3.2).

Focusing first on the loads, we can observe that in most cases a 64K address window is sufficient to cap-
ture most of the dynamic memory dependences of a given type. This is not true for 102.swim and
104.hydro2d where most of the RAW and WAR dependences escape detection even when a 64K address
window is used. We can also observe that the integer programs exhibit a relatively high percentage of RAW
dependences that are detectable even with a 256-entry address window. In fact, it is typical to observe more
than 50% of all RAW dependences within this limit. This phenomenon is not observed in most of the float-
ing point programs where very few RAW dependences are detected even with a 4K address window. In con-

Figure 2.6: Cumulative address-distance distribution of memory dependences as seen by loads. Samples
are taken at address distances of 16, 256, 4K and 64K. Last value shown (right-most) reports all
dependences independently of distance.

 RAW

 RAR

 WAR

 RAW + RAR
0%

20%

40%

60%

80%

100%

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
0%

20%

40%

60%

80%

100%

35

trast, RAR dependences appear to be more frequent in floating point programs especially when the smaller
address windows are used. We can also observe that in most cases, the majority of loads with RAR depen-
dences detected also have RAW dependences detected for the larger address windows. However, when the
smaller address windows are used a considerable fraction of those RAW dependences escape detection. We
will use this observation to streamline accessing memory values in Chapter 4. All the aforementioned obser-
vations are for the given input data set, result may vary for different inputs. However, in Chapter 4 we will
show that as far a memory dependence prediction is concerned, using a different input data set does not
affect considerably the fraction of loads and stores that have RAW or RAR dependences detected and pre-
dicted correctly within relatively small address windows.

We can observe similar results for the store instructions that experience memory dependences. With few
exceptions, virtually all of memory dependence activity is captured with a 64K address window. As it was
the case with load instructions, most of the dependence activity is captured even with a relatively small
address window of 256 entries. Interestingly, a large fraction of stores experience WAW dependences within
the scope of this address window. We will exploit this phenomenon in Chapter 5 to reduce store traffic.

The results of this section suggest that for the programs we studied and for the given data sets a reasonable
fraction of memory dependence activity can be captured using relatively small structures. For example,
using a structure capable of recording information about the last 256 unique memory locations accessed we
can detect roughly 56% (integer codes) and 23% (floating point codes) of all RAW memory dependences
(measured on loads). With the same structure we can capture 44% (integer codes) and 53% (floating-point
codes) of all RAR memory dependences (measured on loads). While a noticeable fraction of memory

Figure 2.7: Cumulative Address-Distance Distribution of memory dependences as seen by stores. Samples
are taken at address distances of 16, 256, 4K and 64K. Last value shown (right-most) reports all
dependences independently of distance.

0%

20%

40%

60%

80%

100%

101 102 103 104 107 110 125 141 145 146

0%

20%

40%

60%

80%

100%

099 124 126 129 130 132 134 147

 RAW

 WAW

 WAR

36

dependence escapes detection even when we consider relatively large address distances, we note that for the
purposes of the applications we present in chapters 3 through 5 the fraction of loads and stores that have
dependences detected is sufficient.

2.3.6 Memory Dependence Status Locality

The most primitive piece of memory dependence information that we consider in this work is whether a
load or a store instance (1) will experience a dependence of a given type and, if so, (2) whether the instruc-
tion is the source or the sink. We will use the term memory dependence status (MDS) to refer to this piece of
information (which is a binary value). For this type of memory dependence information, the exact memory
dependences a load or a store has are not important, only whether such dependences exist is. For example,
in the case of RAW dependences, the memory dependence status of a load instance indicates whether the
load has a RAW dependence with a preceding store (which exact store is not important), while the RAW
memory dependence status of a store instance indicates whether the store has a RAW dependence with a
subsequent load (which exact load is not important). In the case of RAW and WAR dependences the infor-
mation on whether the store or the load is the sink or the source of the dependence is implied by the depen-
dence type. For RAR and WAW dependences however this information has to be provided explicitly. The
example code fragments of Figure 2.8 are useful in explaining why the memory dependence status of
instructions may vary over time. Shown in part (a) is a loop that contains a load of M(i) preceded by a condi-
tional Ñ based on the outcome of the call to foo(i)Ñ store to the same memory location. The memory
dependence status of the load is one only when foo(i) returns true, otherwise it is zero. The source RAW
memory dependence status of the store is always one, because whenever the store is executed a load to the
same memory location follows. Part (b) of the figure contains the same code except that the store has been
replaced by another load of M(i), ld1. In this case the sink RAR MDS of the second load (shown in bold) will
be one only when foo(i) returns true. The source RAR MDS of ld1 will be always one as whenever this
instruction is executed, a load to the same memory location follows. Finally, the sink RAR MDS of ld1 is
always 0 as no preceding load to same memory location is ever encountered.

In this section we seek to obtain an indication of whether memory dependence status is amenable to his-
tory-based prediction techniques, that is whether is exhibits sufficient regularity. We do so by measuring the
memory dependence status locality of loads and stores. We define the memory dependence status locality of
a load or a store, as the probability that the memory dependence status observed by an instance of the
instruction is the same as the one observed by the immediately preceding instance of the same static instruc-
tion. (Ignoring finite storage effects in the predictor implementation, the memory dependence status locality
is the equal to the prediction accuracy of a simple last-status predictor.) We emphasize the word ÒobservedÓ
in our definition of memory dependence status locality to signify that as defined, memory dependence status
locality is also a function of the mechanism used to detect memory dependences. We introduce this addi-
tional parameter in our treatment of memory dependence status locality since memory dependence status
prediction becomes more interesting from a practical perspective when instead of considering the whole pro-

Figure 2.8: Examples illustrating variation in the memory dependence status of a load.

for i = 0 to N

if (foo (i)) st M(i)

ld M(i)

for i = 0 to N

if (foo (i)) ld1 M(i)

ld M(i)

(a) (b)

37

gram we attempt to predict whether a load or a store has a dependence of a particular type under some con-
straint. This latter point will become apparent when we consider various applications of memory
dependence status prediction. For example, in Chapter 5 we will use memory dependence status prediction
to predict whether a load has a RAW or a RAR (sink) dependence within the last n unique memory addresses
touched. We will do so in order to map such loads onto a small and fast storage structure that can hold only
n memory values. Other constraints are both possible and interesting (for example, whether a load has a
RAW dependence within the last n instructions, a variant of which we make use in Chapter 3 during the
description of selective memory dependence speculation, where this information is used to delay the execu-
tion of loads with RAW memory dependences that are visible from within the active instruction window).

As our goal is to provide an indication that sufficient regularity exists, we present two types of measure-
ments of memory dependence status locality, each assuming a different memory dependence status detection
mechanism. These two mechanisms are the following: (1) an infinite address window where we consider the
whole program, and (2) limited address windows of various sizes. The results are shown in Figure 2.9 for all
four possible types of memory dependences. From left to right, we report the memory dependence status
locality for the following address windows: 16, 256, 4K, 64K and infinite.

It can be seen that dependence status locality is extremely strong even within the relatively small scope of
an address window of 16 entries. In almost all cases locality is above 90% and often approaches 100%.
These results suggest that provided that space is available to record the relevant information, memory depen-
dence status prediction should be fairly accurate. Note that prediction accuracy may exceed locality if we
make use of some form of hysteresis (e.g., confidence counters). Finally, we can observe that dependence
status locality is not directly correlated with the size of the address window. For example, in 129.compress
RAR status locality (at the sink loads) drops from approximately 99% to 95% when we move from an
address window of 256 to one of 4K. The reason is that in the latter case, many more dependences become
visible. These dependences are not necessarily as regular as the ones seen via the smaller address window.

2.3.7 Memory Dependence Locality

For certain applications it may be necessary to also predict the exact set of dependences of a given type an
instruction has. In contrast to the memory dependence status of loads and stores (Section 2.3.6) in this case
we are interested not only on whether such dependences exist, but also which exactly these dependences are.
In chapters 3 and 4 we will make use of such predictors for RAW and RAR dependences. Accordingly we
restrict our attention to those two dependence types. It is conceptually convenient to think of memory
dependence prediction as a two step process where first we predict the static instructions with which depen-
dences exist and then predict the particular dynamic instances of those instructions. For the purposes of this
study we focus on the first step as we will make use of different mechanisms to locate the appropriate
instances depending on the application under consideration. A description of the mechanisms used to locate
the appropriate instruction instances is given during the description of the specific applications in chapters 3
and 4.

To demonstrate that memory dependences may be amenable to history-based prediction we measure the
memory dependence locality of loads and stores. Informally, the memory dependence locality of an instruc-
tion is a metric of the likelihood that the same dependences (of a given type) are observed in two consecutive
executions of the same static instruction. Formally, we define memory dependence locality n for a given
type of memory dependences, as the probability that the same dependence of the given type has been
encountered within the last n dependences of the given type experienced by preceding instances of the same
static instruction. When each instance encounters a single dependence, locality is exactly the probability
that the same dependence has been encountered the last time an instance of the same static instruction was
encountered. When multiple dependences are encountered per dynamic instance, locality should be viewed

38

Figure 2.9: Memory dependence status locality as a function of address window size. Address windows
shown are: 16, 256, 4K, 64K and infinite (left to right).

(a
)

R
A

W
(b

)
R

A
R

(c
)

W
A

R
(d

)
W

A
W

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 SOURCE SINK

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%
70%

80%

90%

100%

80%
85%
90%
95%

100%

39

as a metric of how many dependences of the given type we have to remember per static instruction in order
to correctly predict all the dependences of the given type for the next instance of the same static instruction
(alternatively, locality in this case is a metric of the working set of the memory dependences of the given
type per static instruction). In Section 2.3.7.1 we consider RAW dependences, while in Section 2.3.7.2 we
consider RAR dependences.

2.3.7.1 Read-after-Write Dependences

In this section we measure the memory dependence locality of stores and loads that experience RAW
dependences. The results are shown in Figure 2.10 where we report fractions over all executed loads (sink
graph) or stores (source graph) that experience a RAW dependence. We report locality measurements in the
range of 1 to 4. Focusing first on the sink loads we observe that memory dependence locality is very strong.
In most programs, nearly 80% or more of all loads with RAW dependences experience the same exact
dependence as the last time they were encountered. When we can remember the last two dependences
observed by instances of each static load, locality raises above 80% for all programs except 099.go and
132.ijpeg. For those two programs locality remains below 80% even when we can remember the last 4
dependences experienced by instances of each load. There are two reasons why locality may be different
than one: (1) loads have more than one RAW dependences which alternate in the execution stream, and (2)
each dynamic instance of a load experiences multiple RAW dependences due to the use of different data
types (i.e., the load accesses a larger data type than the stores it depends upon). As we have seen in Section
2.3.3, with very few exceptions, load instances experience a single RAW dependence. This observation
suggests that the primary reason why locality is not always one is that loads have multiple static RAW
dependences which alternate in the execution stream. For this reason, it may be important (depending on the
level of memory dependence accuracy desired) to devise memory dependence predictors that are capable of
handling more than a single RAW dependence per load instruction. In Chapter 4 we will present such a pre-
dictor that uses a level of indirection to represent the memory dependences loads and stores have. Moreover,
in Chapter 3 we will validate this observation by demonstrating that for the purposes of memory dependence
speculation and synchronization it is important to track multiple RAW dependences per static load (Section
3.8.6).

Focusing on the source stores of RAW dependences, we can observe that locality is generally not as strong
as it was for the sink loads. The differences are relatively small for the integer programs while they are more
pronounced for the floating point programs. Again multiple RAW dependences are the cause of this phe-
nomenon. As we have seen in Section 2.3.3, a relatively large fraction of stores experiences multiple RAW
dependences as many loads read the value they write. In fact, we have seen that this phenomenon is more
pronounced for the floating point codes. This explains why locality is not as strong for those programs. To
a lesser extent, another reason why locality is not as strong is that different instances of the same static store
may experience different RAW dependences. The results of this experiment suggest that memory depen-
dence predictors that record and represent multiple dependences per store may be required especially for the
floating point codes. They also suggest that it might be more practical to design memory dependence pre-
dictors that let loads locate their producing stores rather than the other way around.

2.3.7.2 Read-after-Read Dependences

In this section we measure the memory dependence locality of loads with RAR dependences. For these
experiments we consider two different address window sizes: infinite and 4K. The reason is that RAR
dependences can be defined arbitrarily. Given a set of dynamic load instances that access a common mem-
ory location, any of the earlier loads can be identified as the source of a RAR dependence with any of the lat-
ter loads. As our goal is to provide indications that sufficient regularity for history-based prediction exists
we limit our attention to the two aforementioned address windows and to marking the earlier possible load

40

as the source of RAR dependences. This is the definition of RAR dependence we utilize in the mechanisms
presented in Chapter 4. In that chapter, we will also demonstrate that RAR dependence prediction is fairly
accurate for other choices of address window sizes and policies (we will not include those loads that have
RAW dependences).

The results of these experiments are shown in Figure 2.11 where we differentiate between loads that
appear as the sink of RAR dependences and loads that appear as the source of RAR dependences (as per our
definition of Section 2.1). Part (a) shows results with the infinite address window (the whole program is
considered) and part (b) shows results with the 4K address window. Locality range shown is 1 to 4, while
the Y axis reports fractions over all loads that have RAR dependences detected and they are the source
(source graph) or the sink (sink graph). Focusing first on the sink loads we observe that the majority of sink
loads observe the same dependence as they did the last they were executed (more than 50% of loads see a
locality value of 1). With the exception of 099.go and 126.gcc the fraction of loads that observe the same
dependence as last time is above 80%. This phenomenon is more pronounced for the floating point codes
were this fraction is above 90% with the 4K address window. Since we have seen (Section 2.3.3) that most
sink loads of RAR dependences see a single source load per dynamic instance, a locality value of more than
1 typically indicates that multiple source loads exist and that these alternate in the execution stream.

We see another interesting phenomenon when we compare the locality results with the infinite address
window with those with the finite address window. Surprisingly, for most programs locality improves with
the finite address window. This observation suggests that in choosing the source loads for RAR depen-
dences, close-by loads typically exhibit better locality. We will observe similar phenomena in Chapter 4
where we will also see that in some cases distant RAR dependences exhibit less regularity than close-by
RAR dependences.

Focusing on the source loads, locality is again strong though not as strong as it was for sink loads. One
explanation is that, typically, a particular instance of a source load sees multiple RAR dependences with var-

Figure 2.10: Memory dependence set locality of read-after-write dependences. Locality range shown is 1 to
4 (left to right).

0%
20%
40%
60%
80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%
20%
40%
60%
80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 SOURCE STORES SINK LOADS

41

ious instances of succeeding loads (i.e., many loads read the same location). We identified this phenomenon
in Section 2.3.3.1. While it might be that every time the source load is executed it experiences the very same
dependences, these dependences are more than 4. In conjunction with our previous measurements on the
shape of RAR dependences (i.e., how may RAR dependences each load instance experiences) we can make
another observation (Section 2.3.3.1). We have seen that in very few cases, RAR source loads experience a
single RAR dependence (Figure 2.3, part (b), source loads, on page 30). However, the results of this section
show that source loads with memory dependence set locality of 1 are much more frequent. These two obser-
vations suggest that in some cases an instance of a source load experiences dependences with many
instances of the same static load.

For the purposes of this analysis we do not consider any other characteristics of RAR dependences. The
results of Chapter 4 will provide additional indications that highly accurate prediction of RAR dependences
is possible. However, we note that the results of this section suggest that there is regularity in the RAR
dependence stream of the programs studied, suggesting that history-based prediction of RAR dependences
may be possible.

Figure 2.11: Memory Dependence Set locality of read-after-read dependences. Locality range shown is 1 to
4. (a) Infinite address window. (b) 4K entry address window.

0%
20%
40%
60%
80%

100%

40%
50%
60%
70%
80%
90%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

In
fin

ite
 W

in
do

w

 SOURCE LOADs SINK LOADs

0%
20%
40%
60%
80%

100%

40%
50%
60%
70%
80%
90%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

4k
 W

in
do

w

42

2.4 Summary

In this section we reviewed what memory dependences are, and discussed the general concepts underlying
a class of memory dependence predictors based on history. We were concerned with whether programs
exhibit sufficient regularity in their memory dependence stream and whether relatively small structures
should be sufficient to capture and predict memory dependence information. Briefly, our findings were:

1. Most loads and stores experience dependences. 90%-100% of all loads experience RAW depen-
dences. 45%-75% of loads experience RAR dependences. 45%-90% of all loads experience WAR
dependences. 50%-100% of all stores experience RAW and WAR dependences, while nearly all
stores are overwritten by a latter store (WAW dependences).

2. No single part of the memory address space is responsible for most of memory dependence activ-
ity (Section 2.3.2.1).

3. Most of RAW and RAR dependences are across many dynamic instructions (more than 4K - Sec-
tion 2.3.3.1).

4. (a) The instances of sink instructions of RAW and RAR dependences observe a single source store
or load respectively (see Section 2.1 for a definition of sink and source instructions), (b) significant
fractions of source stores of RAW dependences see multiple sink loads, and (c) the majority of
source loads of RAR dependences see more than one sink loads (Section 2.3.3.1). These observa-
tions suggest this in predicting memory dependences it may be convenient to devise schemes in
which the sink instructions attempt to predict the source instructions instead of the other way
around, as source instructions typically see many sink instructions.

5. A significant fraction of loads and stores with RAW and RAR dependences have relatively large
static dependence set sizes (i.e., more than 4 Ñ Section 2.3.3.2).

6. The working set of instructions with dependences is relatively small for all four dependence types
(i.e., less than 4K instructions in virtually all cases Ñ Section 2.3.4).

7. Relatively small structures can be used to capture reasonable fractions of memory dependence
activity. However, in some cases, a relatively large fraction of memory dependence activity escapes
detection even when we can record the last 64K unique memory addresses accessed (see Section
2.3.5 for detailed measurements).

8. The memory dependence status locality of both source and sink instructions for all dependence
types is relatively high (above 90% for an address window of 4K entries Ñ Section 2.3.6).

9. The memory dependence locality of source and sink instructions for RAW and RAR dependences
is high: 60%-100% for RAW sink loads, 58% -100% for RAR sink loads, 20%-95% for RAW
source stores and 18%-90% for RAR source loads. Locality is stronger for sink loads mostly
because source stores and loads experience multiple RAW or RAR dependences per dynamic
instance (Section 2.3.7).

The results of this study provide a first indication that history-based prediction of memory dependences
and of their status may be both practical and accurate.

43

Chapter 3

Dynamic Memory Dependence

Speculation and Synchronization

Given the relatively high frequency of memory reads (loads account for roughly 20%-30% of all instruc-
tions executed), memory latency, that is the time it takes for memory to respond to requests, can have a sig-
nificant impact on performance. The memory latency problem can be attacked directly. That is we may
employ techniques which aim at reducing the time it takes memory to respond to load requests. This is the
goal of traditional memory hierarchies where a collection of faster but smaller memory devices, commonly
referred to as caches, is used to provide faster access to a dynamically changing subset of memory data.
However, given the limited size of caches and imperfections in the caching policies, memory hierarchies
provide only a partial solution to the memory latency problem.

An alternative, yet orthogonal direction of attacking the memory latency problem seeks to tolerate mem-
ory latency. The goal here is to send loads to memory earlier, as far in advance from the instructions that
need the data that will be read. The net result this method hopes to achieve is overlapping memory latency
with other useful computation. Of course, the utility of this approach extends beyond tolerating memory
latency as performance may benefit by the parallel execution of instructions even when unit memory laten-
cies are observed. Sending loads to memory as early as possible requires moving loads up in the execution
order, placing them in a position that might be different than the one implied by the program. That is, it
requires the ability to extract and exploit load/store parallelism and to execute instructions out-of-order.
This motion of loads can be performed either statically or dynamically.

In this chapter we review previously proposed dynamic methods of executing memory operations out-of-
order, and demonstrate that higher performance is possible if memory dependence speculation is used. In
memory dependence speculation, a load may execute before a preceding store on which it may be data
dependent (i.e., the store may be writing the data needed by the load). We discuss the trade-offs involved in
using memory dependence speculation and explain that care must be taken to balance the benefits of correct

44

speculation against the net penalty incurred by erroneous speculation. We demonstrate that as dynamically-
scheduled ILP processors are able to schedule instructions over larger regions, the net performance loss of
erroneous memory dependence speculation (mispeculation) can become significant. Specifically, we dem-
onstrate the validity of this observation for the following two environments: (1) in a centralized, continuous
window processor when preceding store address information is not available or when it is too expensive to
look at, and (2) in a distributed, split-window processor even when loads can inspect the addresses of pre-
ceding stores before accessing memory.

Accordingly, we are concerned with methods of reducing net mispeculation penalty. Our focus is on
methods to improve the accuracy of memory dependence speculation. We propose and evaluate techniques
to: (i) predict those load instructions whose immediate execution would violate a true memory dependence,
and (ii) delay their execution only as long as it is necessary to avoid the mispeculation. When these two
goals are met, we succeed in avoiding mispeculations while retaining the benefits of aggressive out-of-order
execution. We consider a number of alternative techniques and demonstrate that for the distributed, split-
window processor, best performance is achieved when memory dependence speculation/synchronization is
used. In this novel technique, memory dependence prediction is used to identify those loads and stores that
have to be synchronized to avoid violating true memory dependences.

The rest of this chapter is organized as follows: in Section 3.1 we motivate the need for exploiting load/
store parallelism and discuss the challenges raised by ambiguous (i.e., temporarily unknown) memory
dependences. We use this discussion to motivate memory dependence speculation which we discuss in Sec-
tion 3.2. Here we review how memory dependence speculation is being used today and provide qualitative
arguments on why, techniques to improve the accuracy of memory dependence speculation might be useful.
In Section 3.3 we discuss a number of memory dependence speculation policies and argue for memory
dependence speculation and synchronization (speculation/synchronization for sort), a policy that aims at
mimicking what is ideally possible. In Section 3.4, we discuss the requirements of speculation/synchroniza-
tion. An implementation framework for our proposed technique we present in Section 3.5. We then address
a number of important from a practical perspective issues in Section 3.6. We review related work in Section
3.7. We provide experimental evidence in support of the utility of our proposed technique and of our obser-
vations in Sections 3.8 and 3.9. In Section 3.8, we focus on a distributed, split-window processing model
while in Section 3.9 we study memory dependence speculation under a centralized, continuous instruction
window processing model. Finally, we summarize our findings in Section 3.10.

3.1 Using Load/Store Parallelism To Improve Performance

Sequential programs are written with an implied, total order where instructions are meant to execute one
after the other and in the order specified by the program. However, the same results are produced if any two
instructions that have no true (RAW) data dependences between them are allowed to execute in any order,
possibly in parallel1. In this case, instruction-level parallelism exists in the program. We can exploit this
property to improve performance by executing instructions in an order different than that implied by the pro-
gram, possibly in parallel. This ability is also useful in tolerating slower memory devices by overlapping
the processing of load requests with other useful computation. Moving loads as far ahead of the instructions
that read their data, and in general exploiting instruction-level parallelism can be done statically (see related
work section) or dynamically. In this work we focus on dynamic, hardware based techniques.

1. Strictly speaking, program semantics are maintained so long as instructions read the same value as they
would in the original program implied order. This does not necessarily imply that a dependent pair of
instructions executes in the program implied order. We avoid making this distinction in the discussion of
this chapter for clarity.

45

Typical modern dynamically-scheduled ILP processors, exploit instruction-level parallelism by forging
ahead into the execution stream, building an instruction window, a set of instruction to execute. These pro-
cessors, then attempt to convert the total, program implied order within this set into a partial order. The
shape of the partial order and for that the performance improvements so obtained are heavily influenced by
the processorÕs ability to uncover the true data dependences among the instructions currently under consider-
ation. In the case of loads, the performance improvements obtained are determined by the processorÕs abil-
ity to send load requests to memory as early as possible without, however, allowing a load to access memory
before a preceding store with which a true data dependence exists. One way of doing so, is to first deter-
mine the true dependences a load has and then use that information to schedule its execution. With this
approach, we ensure that no true dependences are violated in the resulting execution order. In the case of
loads and stores the process of determining the data dependences they have is commonly referred to as dis-
ambiguation.

Determining the data dependences among the instructions in the instruction window requires inspection of
the named locations they access. Unfortunately, these named locations are not necessarily available immedi-
ately. This is typical for stores and loads which have to perform an address calculation to determine the
memory address they will be accessing. As a result, at any point during execution, memory dependences
may be unambiguous (i.e., a load consumes a value that is known to be created by a store preceding it in the
total order) or ambiguous (i.e., a load consumes a value that may be produced by a store preceding it in the
total order). During execution, an ambiguous dependence gets eventually resolved to either a true depen-
dence, or to no dependence. We will use the term false dependence to refer to an ambiguous dependence that
eventually gets resolved to no dependence. As we explain next, false dependences present a challenge to the
out-of-order execution of load instructions.

Ambiguous memory dependences may obscure some of the parallelism that is present. The reason is that
to maintain program semantics a load has to wait for a store with which an ambiguous dependence exist only
if a dependence really exists. If the ambiguous dependence is a false dependence, any execution order is
permissible, including ones that allow the load to execute before the store. This latter case, represents an
opportunity for parallelism and for higher performance. Unfortunately, the mere classification of a depen-
dence as ambiguous implies the inability to determine whether a true dependence exists without actually
waiting for the addresses accessed by both instructions to be calculated. Worse, in the absence of any
explicit memory dependence information (the common case today), a dynamically scheduled ILP processor
has to assume that ambiguous dependences exist among a load and any preceding store that has yet to calcu-
late its address (provided that no intervening store accesses the same address and has calculated its address).

As we will demonstrate in the evaluation section, significantly higher performance is possible if we could
make loads wait only for those ambiguous dependences that get resolved to true dependences. Moreover,
we demonstrate that this performance difference widens as the size of the instruction window increases. To
expose some of the parallelism that is hindered by ambiguous memory dependences, memory dependences
speculation can be used. This technique is the topic of the next section.

3.2 Memory Dependence Speculation

Memory dependence speculation aims at exposing the parallelism that is hindered by ambiguous memory
dependences. Under memory dependence speculation, we do not delay executing a load until all its ambig-
uous dependences are resolved. Instead, we guess whether the load has any true dependences. As a result, a
load may be allowed to obtain memory data speculatively before a store on which it is ambiguously depen-
dent executes. Eventually, when the ambiguous dependences of the load get resolved, a decision is made on
whether the resulting execution order was valid or not. If no true dependence has been violated, speculation
was successful. In this case, performance may have improved as the load executed earlier than it would had

46

it had to wait for its ambiguous dependences to be resolved. However, if a true dependence was violated, the
speculation was erroneous (i.e., a mispeculation). In the latter case, the effects of the speculation must be
undone. Consequently, some means are required for detecting erroneous speculation and for ensuring cor-
rect behavior. Several mechanisms that provide this functionality, in either software and/or hardware, have
been proposed [39,26,27,28,37,56,65,71]. The hardware techniques used today work by invalidating and re-
executing all instructions following the mispeculated load. We will use the term squash invalidation to refer
to this recovery method.

Though memory dependence speculation may improve performance when it is successful, it may as well
lead to performance degradation when it is wrong. We demonstrate either possibility with the example of
Figure 3.1. The reason is that a penalty is typically incurred on mispeculation. The penalty includes the fol-
lowing three components: (1) the work thrown away to recover from the mispeculation, which in the case of
squash invalidation, may include unrelated computations, (2) the time, if any, required to perform the invali-
dation, and finally (3) the opportunity cost associated with not executing some other instructions instead of
the mispeculated load and the instructions that used erroneous data. Consequently, in using memory depen-
dence speculation care must be taken to balance the performance benefits obtained when speculation is cor-
rect against the net penalty incurred by erroneous speculation. To gain the most out of memory dependence
speculation we would like to use it as aggressively as possible while keeping the net cost of mispeculation as
low as possible. Ideally, loads would execute as early as possible while mispeculations would be completely
avoided.

Prior to this work, memory dependence speculation was either not used at all or was used whenever the
opportunity to execute a load existed. In the latter case, a load with ambiguous dependences was always
allowed to access memory. We will use the term naive memory dependence speculation to refer to this form
of memory dependence speculation, in order to signify that no explicit attempt is made to guess whether a
load should wait. The reasons why memory dependence speculation was either not used or used without any
effort to reduce mispeculations include the following: (1) in the relatively small instruction windows of those
ILP processors there was often little to be gained from extracting load/store parallelism, and (2) the proba-
bility of a true memory dependence being violated when memory dependence speculation was used was rel-

Figure 3.1: Using memory dependence speculation may affect performance either way. (a) Code with an
ambiguous memory dependence. Continuous arrows indicate register dependences. Parts (b) through (d)
show how this code may execute in a dynamically-scheduled ILP processor capable of executing two
instructions per cycle. We assume that due to other dependences, the store may execute only after two cycles
have passed. (b) Execution order when no memory dependence speculation is used. (c) Memory dependence
speculation is used and the ambiguous dependence gets resolved to no dependence. (d) Memory dependence
speculation is used, and the ambiguous dependence gets resolved to a true dependence.

5
cy

cl
esload

store load

store

Instructions

Time

am
bi

gu
ou

s
de

pe
nd

en
ce

Correct Speculation

load

load

Mispeculation

A
B
C

A
B
C store

A
B
C
A
B
C

load
store

A
B
C

No Speculation

(a) (b)

3
cy

cl
es

6
cy

cl
es

(c) (d)

47

atively small. In this work we are interested on whether these observations change as we move toward larger
effective instruction window sizes.

As we demonstrate in Sections 3.8.2, 3.9.2 and 3.9.3, in most cases, naive memory dependence specula-
tion offers superior performance compared to having to wait until ambiguous dependences are resolved (i.e.,
no speculation). Moreover, we demonstrate that the benefits of memory dependence speculation increase as
the size of the instruction window also increases (sections 3.8.1 and 3.9.1). More importantly however, we
also demonstrate that further performance improvements are possible if we could avoid mispeculations.
Specifically, we demonstrate that further performance improvements are possible under the following two
execution models: (1) a centralized, continuous window ILP processor, and (2) in a distributed, split-window
ILP processor. In the centralized, continuous window processor, the net penalty of mispeculation becomes
significant when loads cannot inspect the addresses of preceding stores either because a mechanism is not
provided (to simplify the design) or because of the latency required to inspect store addresses. In the distrib-
uted, spit-window processor mispeculations are problematic independently of whether loads can inspect pre-
ceding store addresses. Moreover, we demonstrate that the potential benefits increase as the size of the
instruction window also increases in either processor environment.

At this point it is interesting to consider why, in the centralized, continuous-window execution model,
mispeculations can typically be avoided if loads are allowed to inspect preceding store addresses before
obtaining a memory value, while in the distributed, split-window execution model this technique proves
ineffective. For this purpose, we will use the example of Figure 3.2. Part (a) of the figure shows a loop with
a recurrence between the Òload a[i - 1]Ó of iteration i and the Òstore a[i]Ó of iteration i - 1. (While this code is
prone to static disambiguation, our goal here is not to demonstrate the power of dynamic memory depen-
dence speculation/synchronization.) Part (b) shows how two iterations of this loop might get executed under
the centralized, continuous window execution model. Under this model, instructions are fetched in order
and the window is filled up gradually. How fast the window fills up is determined by several factors includ-
ing the fetch bandwidth, the instruction cache characteristics, and branch prediction accuracy. In the partic-
ular processor we study in Section 3.9, the maximum fetch bandwidth is equal to the maximum execution
bandwidth, and moreover, a scheduler that gives priority to older instructions (in program order) is used. As
a result, by the time the dependent load (load a[i]) is encountered and calculates its address, the preceding
store (store a[i]) with which a true dependence exists has also been fetched, and has also calculated its
address. Under these conditions and provided that the load is allowed to inspect the addresses of preceding
stores, it finds that it should wait and not speculatively access memory. As we demonstrate in Section 3.9.3,
memory dependence mispeculations are virtually non-existent in this environment. We do argue however,
our techniques can be used as a potentially lower complexity, shorter clock cycle alternative to scheduling
load/stores by incorporating the load/store scheduling functionality in the existing register scheduler. While
memory dependence mispeculations are not an issue for a centralized, continous window processor, future
processors may utilize more aggressive front-ends and may have to rely on partitioning to balance between
short clock cycles and larger instruction windows [26, 82, 66, 44, 87, 90, 72, 25, 85, 32]. Under this differ-
ent set of assumptions, instructions are not necessarily fetched in program order, and moreover, enforcing
program order priority in the scheduler may not be possible. For this reason lets us now consider a distrib-
uted, split-window execution model. Under this model, the two iterations of the loop may get assigned to
different units, as shown in part (b) of Figure 3.2. As a result, the load may calculate its address long before
the store has had a chance to do so. For this reason, even if the load could inspect preceding store addresses
and even if that check could be done instantaneously, the mispeculation could not be avoided. (Information
about Multiscalar, the distributed, split-instruction window execution model we use in this work, is given in
Section 3.6.1.)

Motivated by the aforementioned observations, in this work we are concerned with techniques to mini-
mize the net penalty of mispeculation, while maintaining the performance benefits of aggressive memory
dependence speculation. We identify three possible directions: (1) minimizing the amount of work that is

48

lost on mispeculation, (2) reducing the time required to redo the work that is lost on mispeculation, and (3)
reducing the probability of mispeculation. In this work we consider the third alternative. We review tech-
niques that follow the other two directions in the related work section (Section 3.7).

3.3 Memory Dependence Speculation Policies

The ideal memory dependence speculation mechanism not only avoids mispeculations completely, but
also allows loads to execute as early as possible. That is, loads with no true dependences (within the instruc-
tion window) execute without delay, while loads that have true dependences are allowed to execute only
after the store (or the stores) that produces the necessary data has executed. It is implied that the ideal mem-
ory dependence speculation mechanism has perfect knowledge of all the relevant memory dependences.

An example of how the ideal memory dependence speculation mechanism affects execution is shown in
Figure 3.3. In part (b), we show how the code sequence of part (a) may execute under ideal memory depen-
dence speculation and in part (c) we show how the execution may progress under naive memory dependence
speculation. The example code sequence includes two store instructions, ST-1 and ST-2, that are followed by
two load instructions, LD-1 and LD-2. Ambiguous dependences exist among these four instructions as indi-
cated by the dotted arrows. During execution, however, only the dependence between ST-1 and LD-1 is
resolved to a true dependence (as indicated by the continuous arrow). Under ideal dependence speculation,
LD-2 is executed without delay, while LD-1 is forced to synchronize with ST-1.

In contrast to what is ideally possible, in a real implementation, the relevant data dependences are often
unknown. Therefore, if we are to mimic the ideal data dependence speculation mechanism, we have to
attempt: (1) to predict whether the immediate execution of a load is likely to violate a true data dependence,
and if so, (2) to predict the store (or stores) the load depends upon, and, (3) to enforce synchronization
between the dependent instructions.

However, since this scheme seems elaborate, it is only natural to attempt to simplify it. One possible sim-
plification is to use selective memory dependence speculation, i.e., carry out only the first part of the ideal 3-
part operation. In this scheme the loads that are likely to cause mispeculation are not speculated. Instead,
they wait until the all their ambiguous dependences are resolved; explicit synchronization is not performed.
We use the term selective memory dependence speculation (or selective speculation for short) to signify that
we make a decision on whether a load should be speculated or not. In contrast, in ideal dependence specula-

Figure 3.2: Executing a loop under: (b) a centralized, continuous-window execution model, and (c) a
distributed, split-window execution model.

for (i = 0; i < N; i++)
a[i] = a[i - 1] + foo ();

(a)

store a[i]

load a[i]

store a[i+1]

load a[i-1]

store a[i]

load a[i]

store a[i+1]

load a[i-1]

Ti
m

e

(b) Centralized, Continuous (c) Distributed, Split

unit 1 unit 2

49

tion, we make a decision on when is the right time to speculate a load. While selective memory dependence
speculation may avoid mispeculations, due to the lack of explicit synchronization, this prediction policy may
as well make loads wait longer than they should and for this reason may negatively impact performance.
This case we illustrate with the example shown in part (d) of Figure 3.3. In this example, LD-2 is speculated,
whereas LD-1 is not, since prediction correctly indicates that LD-2 has no true dependences while LD-1 does.
However, as shown LD-1 is delayed more than necessary as it has to wait not only for ST-1 but also for ST-2.
In practice, and as we demonstrate in Section 3.8.4, selective data dependence speculation can lead to infe-
rior performance when compared to naive speculation (part (c) of Figure 3.3) even when perfect prediction
of dependences is assumed, because, while this policy avoids mispeculations it often fails to delay loads only
as long as it is necessary.

Another possible simplification that has been proposed (see related work section) is the store barrier pol-
icy. In this technique a prediction is made on whether a store has a true dependence that would normally get
mispeculated. If it does, all loads following the store in question are made to wait until the store has posted
its address for disambiguation purposes. While the store barrier policy can be successful in (1) eliminating
mispeculations, and (2) delaying loads that should wait only as long as it is necessary, it may as well lead to
inferior performance since it may unnecessarily delay other unrelated loads that have no true dependences
that can be mispeculated. While, in the example of Figure 3.3, the store barrier policy is shown to perform
better than selective speculation, the opposite can also be true (for example, if other loads, following LD-1
existed they would too get delayed under the store barrier policy, while they wouldnÕt under the selective
policy). In the evaluation section, we do not consider the store barrier policy for two reasons: (1) as pro-

Figure 3.3: Example illustrating various memory dependence speculation policies. Arrows indicate
dependences. Dependences through memory are indicated by thicker lines. Dotted arrows indicate
ambiguous dependences that are resolved to no-dependence during execution.

I1

ST-1

I3

I4

ST-2

LD-1

I7

LD-2

I9

I1

ST-1

I3

I4

ST-2

LD-1

I7

I1

ST-1

I3

I4

LD-1

I7

LD-1

I7

LD-2

I9

I9

ST-2

I1

ST-1

I3

I4

ST-2
LD-1

I7

LD-2
I9

am
big

uo
us

de
pe

nd
en

ce
s

LD-2

I1

ST-1

I3

I4

ST-2

LD-1

I7

LD-2

I9(a) Instructions

(b) Ideal (c) Naive

(d) Selective (e) Store Barrier

T
im

e

5
cy

cl
es

7
cy

cl
es

8
cy

cl
es

7
cy

cl
es

T
im

e

50

posed it is not compatible with the distributed, split-window architecture we use in our evaluation (variants
may be possible however), and (2) it has been shown [17] (see related work section) that for a continuous
instruction window processor the performance so obtained is inferior to the technique we describe in the
next section.

Even though other simplifications to the 3-part ideal operation may be possible, in this work we restrict
our attention to dependence speculation schemes that attempt to mimic the ideal data dependence specula-
tion system. In the next section, we present dynamic memory dependence speculation/synchronization, a
technique that utilizes memory dependence prediction to identify those store-load pairs that ought to be syn-
chronized in order to avoid memory dependence violations while delaying load execution only as long as it
is necessary.

3.4 Mimicking Ideal Memory Dependence Speculation

To mimic the ideal data dependence speculation system, we need to implement all the 3 components of the
ideal system as described in the previous section. That is, we must: (1) dynamically identify the store-load
pairs that are likely to be data dependent and whose normal execution will result in a memory dependence
violation, (2) assign a synchronization mechanism to dynamic instances of these dependences, and (3) use
this mechanism to synchronize the store and the load instructions.

To identify the store-load pairs that need to be synchronized we may use history-based memory depen-
dence prediction. With this scheme, naive memory dependence speculation is initially used for all loads.
That is, a load is initially allowed to execute as soon as its address is calculated and memory resources are
available. With this policy, as execution progresses mispeculations will be encountered. Instead of discard-
ing the information available when a mispeculation occurs (as we would under naive memory dependence
speculation), we collect information about the instructions involved. For example, we may record the static
dependence that was violated, that is a (store PC, load PC) pair. The next time a load or a store that has pre-
viously incurred a mispeculation is encountered, we can use the recorded information to predict whether
synchronization has to take place in order to avoid a mispeculation. In the predictors we consider in this
work, mispeculation history is associated with the static loads and stores using their PC.

As explained in Chapter 2, for history-based memory dependence prediction to be possible for our pur-
poses, it is imperative that past mispeculation behavior to be indicative of future dependences that ought to
be synchronized. In Chapter 2 we have provided evidence that all RAW memory dependences exhibit rela-
tively high locality and small working sets, which both constitute strong indications that RAW memory
dependences may be amenable to history-based prediction. While, the two aforementioned results do not
constitute proof that similar behavior is exhibited when we restrict our attention to those dependences that
are mispeculated, they do provide a indication that this may be true. As the results presented in Sections
3.8.5 through 3.8.7 and in Section 3.9.4 imply, history-based prediction is both possible and accurate even
when we restrict our attention to only those dependences that would be mispeculated under naive memory
dependence speculation.

With a mechanism to predict whether a load or a store needs to be synchronized we next need: (1) a syn-
chronization mechanism, and (2) a method of having the appropriate dynamic instances of loads and stores
locate each other through the synchronization mechanism. In the rest of this section we first discuss a syn-
chronization mechanism. Then, we consider how load and store instances locate each other through this
synchronization mechanism.

An apt method of providing the required synchronization dynamically is to build an association between
the store-load instruction pair. Suppose this dynamic association is a condition variable on which only two

51

operations are defined: wait and signal, which test and set the condition variable respectively. These opera-
tions may be logically incorporated into the dynamic actions of the dependent load and store instructions to
achieve the necessary synchronization.

This concept we illustrate with the example of Figure 3.5 where we assume that some method exists to
dynamically associate store-load instruction pairs with condition variables (we discuss these means later in
this section). As shown in part (a), an earlier mispeculation results in the association of a condition variable
with a subsequent dynamic instance of the offending store-load instruction pair. With the condition variable
in place, consider the sequence of events in the two possible execution sequences of the load and store
instructions. In part (b), the load is ready to execute before the store. However, before the load executes, it
tests the condition variable; since the test of the condition variable fails, the load waits. After the store exe-
cutes, it sets the condition variable and signals the waiting load, which subsequently continues its execution
as shown. No mispeculation is observed, and the sequential order is preserved. In part (c), the order of exe-
cution is a store followed by a load. After the stores executes, it sets the condition variable and records a sig-
nal for the load. Before the load executes, it tests the condition variable; since the test of the condition
variable succeeds, the load continues its execution as shown (the condition variable is reset at this point).
One may wonder why synchronization is provided even when the execution order follows the program order
(i.e., store followed by load). This scenario represents the case where dependence prediction correctly indi-
cates that a dependence exists but fails to detect that the order of execution has changed. The order of execu-
tion may change, for example, either (1) in response to external events whose behavior is not easy or
desirable to track and predict, such as cache misses or resource conflicts, or (2) because of the successful
synchronization of another, unrelated dependence. Synchronization is desirable even in these cases since,
otherwise, the corresponding load will be delayed unnecessarily.

Once condition variables are provided, some means are required to assign a condition variable to a
dynamic instance of a store-load instruction pair that has to be synchronized. If synchronization is to occur
as planned, the mapping of condition variables to dynamic dependences has to be unique at any given point
of time. One approach is to use just the address of the memory location accessed by the store-load pair as a
handle. This method provides an indirect means of identifying the store and load instructions that are to be
synchronized. Unless the store location is accessed only by the corresponding store-load pair, the assign-
ment will not be unique.

Alternatively, we can use the dependence edge as a handle. The static dependence edge may be specified
using the (full or part of) instruction addresses (PCs) of the store-load pair in question. (Compared to using
addresses, a potential advantage of this approach is that PC information is available earlier in the pipeline.
This property could be exploited to reduce the effective latency of synchronization by having stores initiate
synchronization in parallel or prior to the completion or initiation of their memory access.) Unfortunately,

Figure 3.4: Example code sequence that illustrates that multiple instances of the same static dependence
can be active in the current instruction window. In parts (b), (c), and (d), the relevant store and load
instructions from four iterations of the loop of part (a) are shown.

for (i = 0; i < n; i++)

 a[i+c] = a[i] + k

(a)

STa[c+0]

LDa[c+1]

STa[c+1]

LDa[c+0]

(b)

0

1

c

c+1

iteration
STa[c+0]

LDa[c+1]

STa[c+1]

LDa[c+0]

(c)

a[c+0]

a[c+1]

STa[c+0]

LDa[c+1]

STa[c+1]

LDa[c+0]

(d)

1

2

c+1

c+2

instance #

c+1

c+2

?

?
? ?

52

as exemplified by the code sequence of Figure 3.4 part (b), using this information may not be sufficient to
capture the actual behavior of the dependence during execution; the pair (PCST, PCLD) matches against all
four edges shown even though the ones marked with dotted arrows should not be synchronized. A static
dependence between a given store-load pair may correspond to multiple dynamic dependences, which need
to be tracked simultaneously.

To distinguish between the different dynamic instances of the same static dependence edge, a tag (prefera-
bly unique) could be assigned to each instance. This tag, in addition to the instruction addresses of the store-
load pair, can be used to specify the dynamic dependence edge. In order to be of practical use, the tag must
be derived from information available during execution of the corresponding instructions. A possible source
of the tag for the dependent store and load instructions is the address of the memory location to be accessed,
as shown in Figure 3.4 part (c). An alternate way of generating tags is to have a load synchronize with the
closest preceding instance of the store identified by the static dependence. While this scheme may delay a
load more than it should (as in our example, where LDa[c+0] will wait for STa[0+1]), the performance impact
of this delay may not be large.

In this work, and as our focus is on a distributed, split-window execution model where instructions are not
fetched in order, we use an alternate way of generating instance tags. The scheme we use is an approxima-
tion of the scheme shown in part (d) of Figure 3.4, where dynamic store and load instruction instances are
numbered based on their PCs. The difference in the instance numbers of the instructions which are depen-
dent, referred to as the dependence distance, may be used to tag dynamic instances of the static dependence
edge (as may be seen for the example code, a dependence edge between STi and LDi+distance is tagged - in
addition to the instruction PCs - with the value i+distance). We approximate this scheme by using the dis-
tance in processing units between the instructions that are mispeculated. Though all the aforementioned tag-
ging schemes strive to provide unique tags, each may fall short of this goal under some circumstances (for
example, the dependence distance may change in a way that we fail to predict, or the address accessed may
remain constant across all instances of the same dependence).

In the rest of the discussion we restrict our attention to second scheme where the dependence distance is
used to tag dependences. We note from a practical perspective, several inconveniences exist in the scheme
we have just described (For example, how to track and predict multiple dependences per store or load). In
the discussion that follows and for clarity, we initially ignore these issues and present an implementation
framework in Section 3.5. With a basic understanding of how the support structures operate, we then, in
Section 3.6, address a number of important from a practical perspective issues.

Figure 3.5: Synchronization example

Load Store

Misspeculation

(a) (b)
Condition Variable

Store 1

Load Store

Load

2 Test

Set

3 Continue

(c)

Store

1

Load Store

Load

2
 Wait

Test

3 Set

4

Continue

Load

Store
3

2

1

53

3.5 Implementation Aspects

As we discussed in the previous section, in order to improve the accuracy of data dependence speculation,
we attempt: (1) to predict dynamically, based on the history of mispeculations, whether a store-load pair is
likely to be mispeculated and if so, (2) to synchronize the two instructions. In this section, we describe an
implementation framework for this technique. For the purposes of this section we assume a centralized
implementation, ignore the possibility of multiple dependences per load or store, and assume fully-associa-
tive structures. In Section 3.6, we address these issues.

We partition the support structures into two interdependent tables: a memory dependence prediction table
(MDPT) and a memory dependence synchronization table (MDST). The MDPT is used to identify, through
prediction, those instruction pairs that ought to be synchronized. The MDST provides a dynamic pool of
condition variables and the mechanisms necessary to associate them with dynamic store-load instruction
pairs to be synchronized. In the discussion that follows, we first describe the support structures and then pro-
ceed to explain their operation by means of an example. We present the support structures as separate, dis-
tinct components of the processor. Other implementations may be possible and desirable.

 MDPT: An entry of the MDPT identifies a static dependence and provides a prediction as to whether or
not subsequent dynamic instances of the corresponding static store-load pair will result in a mispeculation
(i.e., should the store and load instructions be synchronized). In particular, each entry of the MDPT consists
of the following fields: (1) valid flag (V), (2) load instruction address (LDPC), (3) store instruction address
(STPC), (4) dependence distance (DIST), and (5) optional prediction (not shown in any of the working
examples). The valid flag indicates if the entry is currently in use. The load and store instruction address
fields hold the program counter values of a pair of load and store instructions. This combination of fields
uniquely identifies the static instruction pair for which it has been allocated. The dependence distance
records the difference of the instance numbers of the store and load instructions whose mispeculation caused
the allocation of the entry (if we were to use a memory address to tag dependence instances this field would
not have been necessary). The purpose of the prediction field is to capture, in a reasonable way, the past
behavior of mispeculations for the instruction pair in order to aid in avoiding future mispeculations or
unnecessary delays. Many options are possible for the prediction field (for example an up-down counter or
dependence history based schemes). The prediction field is optional since, if omitted, we can always predict
that synchronization should take place. However, we note that in our experimentation we found that it is bet-
ter if synchronization is enforced only after a load has been mispeculated a couple of times (e.g., three
times).

MDST: An entry of the MDST supplies a condition variable and the mechanism necessary to synchronize
a dynamic instance of a static instruction pair (as predicted by the MDPT). In particular, each entry of the
MDST consists of the following fields: (1) valid flag (V), (2) load instruction address (LDPC), (3) store
instruction address (STPC), (4) load identifier (LDID), (5) store identifier (STID), (6) instance tag
(INSTANCE), and (7) full/empty flag (F/E). The valid flag indicates whether the entry is, or is not, in use.
The load and store instruction address fields serve the same purpose as in the MDPT. The load and store
identifiers have to uniquely identify, within the current instruction window, the dynamic instance of the load
or the store instruction respectively. These identifiers are used to allow proper communication between the
instruction scheduler and the speculation/synchronization structures. The exact encoding of these fields
depends on the implementation of the OoO (out-of-order) execution engine (for example, in a superscalar
machine that uses reservation stations we can use the index of the reservation station that holds the instruc-
tion as its LDID or STID, or if we want to support multiple loads per store, a level of indirection may be
used to represent all loads waiting for a particular store). The instance tag field is used to distinguish
between different dynamic instances of the same static dependence edge (in the working example that fol-

54

lows we show how to derive the value for this field). The full/empty flag provides the function of a condition
variable.

3.5.1 Working Example

The exact function and use of the fields in the MDPT and the MDST is best understood with an example.
In the discussion that follows we are using the working example of Figure 3.6. For the working example,
assume that execution takes place on a processor which: (1) issues multiple memory accesses per cycle from
a pool of load and store instructions and (2) provides a mechanism to detect and correct mispeculations due
to memory dependence speculation. For the sake of clarity, we assume that once an entry is allocated in the
MDPT it will always cause a synchronization to be predicted.

Consider the memory operations for three iterations of the loop, which constitute the active pool of load
and store instructions as shown in part (a) of the figure. Further, assume that child->parent points to the same
memory location for all values child takes. The dynamic instances of the load and store instructions are
shown numbered, and the true dependences are indicated as dashed arrows connecting the corresponding
instructions in part (a). The sequence of events that leads to the synchronization of the ST2-LD3 dependence
is shown in parts (b) through (d) of the figure. Initially, both tables are empty. As soon as a mispeculation
(ST1-LD2 dependence) is detected, a MDPT entry is allocated, and the addresses of the load and the store
instructions are recorded (action 1, part (b)). The DIST field of the newly allocated entry is set to 1, which is
the difference of the instance numbers of ST1 and LD2 (1 and 2 respectively). As we noted earlier, we
approximate the instance numbers using the distance in processing units (incidentally this is identical to the
instance distance in our example). As a result of the mispeculation, instructions following the load are
squashed and must be re-issued. We do not show the re-execution of LD2.

As execution continues, assume that the address of LD3 is calculated before the address of ST2. At this
point, LD3 may speculatively access the memory hierarchy. Before LD3 is allowed to do so, its instruction
address, its instance number (which is 3), and its assigned load identifier (the exact value of LDID is imma-
terial) are sent to the MDPT (action 2, part (c)). The instruction address of LD3 is matched against the con-
tents of all load instruction address fields of the MDPT (shown in grey). Since a match is found, the MDPT
inspects the entry predictor to determine if a synchronization is warranted. Assuming the predictor indicates
a synchronization, the MDPT allocates an entry in the MDST using the load instruction address, the store
instruction address, the instance number of LD3, and the LDID assigned to LD3 by the OoO core (action 3,
part (c)). At the same time, the full/empty flag of the newly allocated entry is set to empty. Finally, the
MDST returns the load identifier to the load/store pool indicating that the load must wait (action 4, part (c)).

When ST2 is ready to access the memory hierarchy, its instruction address and its instance number (which
is 2) are sent to the MDPT (action 5, part (d)). (We do not show the STID since, as we later explain, it is only
needed to support control speculation.) The instruction address of ST2 is matched against the contents of all
store instruction address fields of the MDPT (shown in grey). Since a match is found, the MDPT inspects the
contents of the entry and initiates a synchronization in the MDST. As a result, the MDPT adds the contents
of the DIST field to the instance number of the store (that is, 2 + 1) to determine the instance number of the
load that should be synchronized. It then uses this result, in combination with the load instruction address
and the store instruction address, to search through the MDST (action 6, part (d)), where it finds the allo-
cated synchronization entry. Consequently, the full/empty field is set to full, and the MDST returns the load
identifier to the load/store pool to signal the waiting load (action 7, part (d)). At this point, LD3 is free to
continue execution. Furthermore, since the synchronization is complete, the entry in the MDST is not
needed and may be freed (action 8, part (d)).

55

Figure 3.6: Synchronization of memory dependences.

O
oO

 C
or

e

LD3

LD2

LD1

ST1

LD2

ST2

LD3

ST3

LDPC STPC 1

0

MDPT

LDPC STPC 2 1 mispeculation

V

1

MDST F/E V
0

0

iteration 1 iteration 2 iteration 3

(a)

a a

DIST
1

INSTANCE

while (child != NULL)
child->parent->count++
child = child->next

LDi

Ð

STi

LD1
ST1

O
oO

 C
or

e

Instruction

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC LDID 3

LDPC STPC LDID 3 0

 LDID

4 wait

2

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC STPC LDID 3 0

5

+ 6

 LDID

7 signal

8
entry
release

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC STPC invalid 3 1

LDPC LDID 34

5

7
release
entry

 LDID

6 signal

(b)

(d)

(e) (f)

(c)

numbers

O
oO

 C
or

e

LD3
ST2

O
oO

 C
or

e

LD3

STPC 2

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC STPC invalid 3 1

2

+ 3

ST2

O
oO

 C
or

e

LD3

STPC 2

instance

56

If ST2 accesses the memory hierarchy before LD3, it is unnecessary for LD3 to be delayed. Accordingly,
the synchronization scheme allows LD3 to issue and execute without any delays. Consider the sequence of
relevant events shown in parts (e) and (f) of Figure 3.6. When ST2 is ready to access the memory hierarchy,
it passes through the MDPT as before with a match found (action 2, part (e)). Since a match is found, the
MDPT inspects the contents of the entry and initiates a synchronization in the MDST. However, no matching
entry is found there since LD3 has yet to be seen. Consequently, a new entry is allocated, and its full/empty
flag is set to full (action 3, part (e)). Later, when LD3 is ready to access the memory hierarchy, it passes
through the MDPT and determines that a synchronization is warranted as before (action 4, part (f)). The
MDPT searches the MDST, where it now finds an allocated entry with the full/empty flag set to full (action
5, part (f)). At this point, the MDST returns the load identifier to the load/store pool so the load may continue
execution immediately (action 6, part (f)). It also frees the MDST entry (action 7, part (f)).

3.6 Issues

We now discuss a few issues which relate to the implementation framework we have described. For the
most part we focus on the implementation of memory dependence speculation and synchronization under
the Multiscalar execution model. Detailed information about the Multiscalar architecture can be found in
[26,14,82,27,40,92,13]. A brief description of the Multiscalar execution model is given next, in Section
3.6.1. The rest of this section is organized as follows: In Section 3.6.2 we discuss where in a typical pipe-
line it may be possible to incorporate the speculation/synchronization functionality. In Section 3.6.3 we dis-
cuss what needs to be done when synchronization is incomplete. In Section 3.6.4 we discuss how a
confidence mechanism aimed at improving prediction accuracy can be incorporated into the speculation/
synchronization structures. In Section 3.6.5 we consider what support might be required when speculation/
synchronization is used in conjunction with control-speculation. In Section 3.6.6 we discuss support for pre-
dicting and synchronizing multiple dependences per load or store. Finally, in Section 3.6.7 we discuss two
distributed implementations of our speculation/synchronization method.

3.6.1 The Multiscalar Execution Model

For the purposes of this work it is sufficient to know that a Multiscalar processor relies on a combination
of hardware and software to extract parallelism from ordinary, sequential programs. The effect Multiscalar
aims to achieve is illustrated in Figure 3.7. Instead of relying on a large instruction window to scan through
the dynamic instruction trace, Multiscalar relies on a collection of smaller instructions windows that simul-
taneously scan through different parts of the dynamic execution stream. Multiscalar uses a combination of
software and hardware techniques to achieve this effect.

In this model of execution, the control flow graph (CFG) of a sequential program is partitioned by the
compiler into portions called tasks. These tasks may be control and data dependent. When executed, a task
corresponds to a continuous portion of the instructions stream that would have been generated if the program
was executed sequentially. A Multiscalar processor sequences through the CFG speculatively, a task at a
time, without pausing to inspect any of the instructions within a task. A task is assigned to one of a collec-
tion of processing units for execution by passing the initial program counter of the task. Multiple tasks exe-
cute in parallel on the processing units, resulting in an aggregate execution rate of multiple instructions per
cycle. In this organization, the instruction window is bounded by the first instruction in the earliest execut-
ing task (the head task) and the last instruction in the latest executing task (the tail task). The head and tail
task also define an order among the tasks currently executing which corresponds to the sequential, program
implied order.

57

To maintain program semantics while allowing the aggressive out-of-order execution of instructions, the
model of the Multiscalar we used in this work relies on a combination of software and hardware for detect-
ing data, that is register or memory dependences. To review these policies it is first important to note that
under the Multiscalar execution model, data dependences may be characterized as intra-task (within a task)
or inter-task (between individual tasks). For intra-task register dependences, Multiscalar relies on hardware
mechanisms similar to those found in a typical, dynamically scheduled ILP processor. For inter-task register
dependences, Multiscalar relies on compiler provided aggregate information about the registers read and
written by each task. For memory dependences, no information is provided by the compiler. The Multisca-
lar model we used, relies on address-based disambiguation of intra-task memory dependences. That is a
load may access memory only after it is determined that no ambiguous dependences exist with stores from
the same task. For inter-task memory dependences, as originally proposed, Multiscalar uses naive memory
dependence speculation. Support for inter-task memory dependence speculation and memory renaming, is
provided by the Address Resolution Buffer (ARB) [26, 27] or by the Speculative Versioning Cache [31]. We
use the ARB in our experimentation. Multiscalar uses squash invalidation to recover from memory depen-
dence mispeculations. In particular, the execution of all tasks starting from the one that contained the
offending load is invalidated. Each of these tasks has to resume execution from the very first instruction of
the corresponding task. This implies even work preceding the mispeculated load may be lost on a memory
dependence mispeculation.

In the discussion that follows we use the terms ÒunitÓ and ÒstageÓ interchangeably to refer to the process-
ing elements where individual tasks execute. We also use the terms Òmemory dependence mispeculationÓ,
Òmemory dependence violationÓ and ÒmispeculationÓ interchangeably. Finally, we use the terms Òspecula-
tionÓ and Òmemory dependence speculationÓ interchangeably.

Figure 3.7: The Multiscalar execution model. (a) Continuous, centralized instruction window (e.g., typical
dynamically scheduled superscalar). (b) MultilscalarÕs way of building a large instruction window.

Pr
og

ra
m

 O
rd

er

in
st

ru
ct

io
n

wi
nd

ow

(a)

instruction
trace

task A

task B

task C

(b)

58

3.6.2 Incorporating Speculation/Synchronization into a Pipeline

In the description of our proposed mechanism, we did not discuss where exactly in the pipeline of a
dynamically scheduled processor the prediction and synchronization actions should take place. Since our
predictor is PC-based, prediction can be initiated as soon as the PC of a store or a load becomes known.
Similarly, since the information used to allocate synchronization entries and perform synchronization is PC
based, allocation of synchronization entries can be done as early as desired, provided that the PC of the cor-
responding instruction is available. This property may be useful in overlapping synchronization with
address calculation in order to avoid increasing load latency when no dependences exist.

3.6.3 Incomplete Synchronization

So far, we have assumed that any load which waits on the full/empty flag of an entry in the MDST, eventu-
ally sees a matching store that signals to complete the synchronization. Since an MDPT entry only provides
a prediction, this expectation may not always be fulfilled. If this situation arises, the two main consider-
ations are: (1) to avoid deadlock and (2) to free the MDST entry allocated for a synchronization that will
never occur. The deadlock problem is solved if we assume that a load is always free to execute once all prior
stores are known to have executed. De-allocating the MDST entry can also be done at this point. Under the
Multiscalar execution model, the aforementioned actions can take place when the unit becomes the head
(i.e., the oldest executing task).

Under similar circumstances to those described above, a store may allocate an MDST entry for which no
matching load is ever seen. Since stores never delay their execution, there is no deadlock problem in this
case. However, it is still desirable to eventually free the MDST entry. Unfortunately, we cannot de-allocate
this entry when the store retires since this may in turn result in unnecessarily delaying a subsequent load (see
discussion of Section 3.4). Under a continuous instruction window execution model, this de-allocation can
take place when the next instance of the same static store is retired. In the implementations we consider
under the Multiscalar execution model, we de-allocate store entries when the task that is predicted to contain
the appropriate load instance commits.

3.6.4 Intelligent Prediction

Upon matching a MDPT entry, a determination must be made as to whether the instruction pair in ques-
tion warrants synchronization. The simplest approach is to assume that any matching entry ought to be syn-
chronized (i.e., the predictor field is optional). However, this approach may lead to unnecessary delays in
cases where the store-load instruction pairs are mispeculated only some of the time. Instead, a more intelli-
gent approach may be effective. Any of the plethora of known methods (counters, voting schemes, adaptive
predictors, etc.) used to provide the intelligent prediction of control dependences may be applied, to the pre-
diction of memory dependences. Regardless of the actual choice of mechanism, the prediction method
ought to exhibit the quality that it strengthens the prediction when speculation succeeds and weakens the
prediction when speculation fails. In this work we restrict our attention to either using counter-based confi-
dence mechanisms or to using non-adaptive confidence mechanisms. As we demonstrate in the evaluation
section (Sections 3.8.5 and 3.8.6), performance is superior when an adaptive confidence mechanism is incor-
porated with each MDPT entry.

To allow for adaptive predictors, we merge the MDST and the MDPT into a single structure, with a fixed
number of synchronization variables per MDPT entry. In particular we allow for one synchronization vari-
able per unit in each MDPT entry (the synchronization variables are implemented as a bit vector). Each of

59

the synchronization variables comprises three bits: wait, signal and sync. The wait bit is set when synchro-
nization is predicted on a load. The signal bit is set when synchronization is predicted on a store. The sync
bit is set when synchronization takes place, by either a store or a load. At task commit time, each MDPT
entry inspects the condition variable that corresponds to the specific unit adjusting the confidence automaton
accordingly. Merging the MDPT and the MDST permits this operation to be done locally at each MDPT/
MDST entry, thus allowing all MDPT entries to be updated in parallel. Had we used a split MDPT/MDST
design, a mechanism would be required to inspect each MDST entry and then propagate the changes to the
corresponding MDPT entry.

Unfortunately, and as we will explain in the Section 3.6.7, in a distributed implementation where the pre-
diction structure is replicated per processing unit, using adaptive predictors is inconvenient. It is so, as infor-
mation about the success of failure of any synchronization attempt may have to be propagated to all copies
of the prediction structure to keep them coherent. The potential bandwidth, the additional complexity and
time required to perform this action may prove prohibitive. For this reason, we will not make use of adaptive
predictors for the experiments that use a distributed memory dependence speculation and synchronization
mechanism.

3.6.5 Control Mispeculations

In the event of control or data mispeculation, it is desirable, although not necessary, to invalidate any
MDST entries that were allocated to instructions that are squashed. In the implementations we consider in
this work, we do not expose intra-unit control mispeculations to the MDST. In the event of an inter-unit con-
trol mispeculation however, all synchronization entries allocated for the units being squashed are de-allo-
cated. In a continuous, instruction window processor, it may possible to incorporate the synchronization
functionality in the scheduler used for register dependences (see Section 3.9.4). For example, this can be
done by using the id of the reservation station where the store resides to create an artificial, speculative
dependence between the store and the load that should wait. Depending on the register scheduler implemen-
tation, no additional support may be required to cleanup the synchronization tags on control mispeculations
(e.g., if the scheduler is implemented using the RUU model [81]).

3.6.6 Multiple Dependences Per Static Load or Store

Although not illustrated in the examples, it is possible for a load or a store to match multiple entries of the
MDPT and/or of the MDST. This case represents multiple memory dependences involving the same static
load and/or store instructions (for example in the code Òif (cond) store1 M else store2 M; load M,Ó there are two
dependences (store1, load) and (store2, load)) which may alternate in the dynamic execution stream. There are
three challenges from a practical perspective: (1) how to predict multiple dependences per load, (2) how to
allocate multiple MDST entries when multiple dependences are predicted on a single load, and (3) how to
wake-up a load forced to wait on multiple MDST entries. One solution would be to define the problem away
by tracking only a single dependence per store or load. However, as we will demonstrate in Section 3.8.6,
support for multiple dependences per static instruction is very important. We consider two ways of provid-
ing this support.

In the first, each MDPT and MDST entry is augmented to track a single load and a plurality of stores as
shown in Figure 3.8, part (a) (the use of the ÒTASK PCÓ fields is explained later on in this section. In this work
we evaluate designs with 2, 4 and 8 stores per entry. This allows us to predict and synchronize multiple
dependences per load by consulting a single MDPT entry and by using a single MDST entry. For stores we
use the following approach: a separate MDPT entry is allocated per store. No information about the loads
with which the store has to synchronize with is kept in the store entry. For synchronization purposes, a store

60

associatively searches through the MDST and synchronizes with any loads that are waiting for it. If no load
is waiting, a new entry is created in the MDST, marking that the particular store instance has executed. In
Section 3.8.6, we demonstrate that this implementation offers performance very close to the one that does
not limit the number of dependences per static instruction. An additional advantage of this implementation
is that it does not require associative lookups in the MDPT as a single entry exists per store or load. How-
ever, associative lookups are still required the MDST.

The second scheme uses a level of indirection to represent the set of all dependences that have a common
store or load (for example in the code Òif (cond) store1M; else store2M); load M);Ó both the (store1, load) and the
(store2, load) dependences will be represented using a common tag). This approach was suggested in
[62,17]. In this scheme, separate entries for loads and stores are allocated in the MDPT. The format of these
entries is shown in part (b) of Figure 3.8. (Note that a split MDPT and MDST is illustrated in the figure. As
we will explain in the next section, we utilize this split organization for a distributed implementation of our
proposed mechanism.) As shown, in these entries, we do not record the dependences the corresponding
instructions have. Instead we use a tag, to which we will refer to as a synonym. Synonyms are assigned
using a global counter when mispeculations occur. If no synonym has been assigned to either the static load
or the static store, a new synonym is generated using the global counter and is assigned to both instructions.
If a synonym has been already assigned to only one of the instructions (as the result of mispeculating a dif-
ferent static dependence involving that instruction), the same synonym is assigned to the other instruction. If
both instructions already have synonyms assigned to them which are different, the smallest one is assigned
to both instructions. In this case, and if we were to be precise about the representation of dependences, we
would have to replace all instances of the larger synonym with the new synonym (as suggested in our ealier
work [62] and under the context of the applications we describe in Chapter 4). However, as this action
would probably require an associative search and as suggested by Chrysos and Emer [17], we do not do so.
Because the smallest tag is used to resolve conflicts, sooner or later all active dependences that share a load
or a store will be assigned the same synonym.

A final consideration is whether a load that has multiple dependences predicted should wait for all or for
just one of them. Although we do not report experimental data in support of this observation, we found that

Figure 3.8: Two schemes of supporting multiple static dependences per load or store. (a) Combined MDPT/
MDST with multiple stores per load. (b) Split MDPT/MDST using a level of indirection to represent
dependence sets.

LOAD PC STORE PC

TASK PC

Distance

STORE PC

TASK PC

Distance

Stores Per Load

S W O S W O S W O

Stages

Signal Wait Sync

(a)

MDPT/MDST

LD/ST PC Synonym

Distance

MDPT
S W O

Signal Wait Sync

Synonym

Distance

MDST

(b)

61

allowing loads to execute as soon as one of their predicted dependences is synchronized increases the num-
ber of mispeculations observed. This is possible when in the original program order, multiple stores write to
the same memory location before the load reads from it. In this case, the load should wait for the last in pro-
gram order store. However, dynamically, these stores may appear in any order. For this reason, allowing the
load to execute as soon as one of these stores has executed may not help in avoiding the mispeculation.
Accordingly, we evaluate mechanisms in which a load waits for all dependences predicted. However, this
scheme is not without problems. We found that while it is very effective in avoiding mispeculations, it often
fails to allow loads to execute as early as possible. This primarily happens when the load has multiple
dependences which appear through different control flow paths. In this case, the load should wait only for
those dependences that are currently active. We found that an effective solution to this problem is to main-
tain minimal control flow information with each load-store pair. In the case of Multiscalar we augmented
the MDPT entries to record the storeÕs task PC in addition to the (load PC, store PC) pair and the unit dis-
tance as shown in part (a) of Figure 3.8. In this case, synchronization is predicted only when the task at the
predicted unit distance matches that recorded on the prediction table entry. All experiments reported that
use the Multiscalar execution model make use of this optimization.

3.6.7 Centralized Versus Distributed Structures

So far we have been assuming that the MDPT and the MDST are centralized structures. However, as
greater levels of instruction-level parallelism are exploited, greater numbers of concurrent memory accesses
must be sustained. Under such conditions, it is important to assure that neither structure becomes a bottle-
neck. In the case of a distributed window processor, it is desirable to also partition both the prediction and
the synchronization structures. We do consider such an option in this work. In particular, we use an organi-
zation where identical copies of the MDPT and the MDST are provided at each processing unit. In this case,
the speculation/synchronization mechanism operates as follows: When a mispeculation occurs, the static
dependence edge (store PC, load PC), along with the unit distance is sent to all copies of the MDPT. Each
copy of the MDPT allocates the appropriate entries (if they do not already exist), one for the load and one for
the store, as a centralized organization would do. Since, at any given cycle a single mispeculation can be
signaled, a relatively low bandwidth mechanism should be sufficient for this purpose. In the implementa-
tions we evaluate we use a bus for this purpose.

When a load is ready to access memory, the local copy of the MDPT is consulted. If a prediction is made
that synchronization should take place, the local copy of the MDST is consulted next. The MDST is
searched to determine whether the predicted store Ñ represented by either a (store PC, unit id) or a (syn-
onym, unit id) Ñ has already executed. If so, the load is allowed to access memory. If the store has not exe-
cuted yet, a new entry is allocated in the MDST to indicate that a load of this unit is waiting for the particular
store instance. When a store is ready to write to memory, it also consults the local MDPT copy. If synchro-
nization is predicted, the storeÕs identity Ñ as either a (store PC, unit id) or a (synonym, unit id) pair Ñ is
send to all copies of the MDST. If loads are found waiting for the particular store, they may now proceed to
access memory. If no loads are found waiting, an entry for the store is created in every MDST copy. In the
models we consider in the evaluation section we use a bus to signal store execution. Finally, when a task
commits it cleans up all local MDST entries.

As we noted in Section 3.6.4, using adaptive predictors in a distributed organization is inconvenient. The
reason is that if we were to keep all MDPT copies coherent we would have to broadcast all changes done
locally to every other copy of the MDPT. While support for such an approach might be possible, for the pur-
poses of this work we restrict our attention to non-adaptive confidence mechanisms in the distributed MDPT.
In particular, we simply use a 2-bit saturating counter that is updated when mispeculations occur (a system
wide event). If synchronization fails, no attempt is made to adjust the confidence predictor.

62

3.7 Related Work

Ultimately, the goal of the techniques we proposed is to allow loads to access memory as early as possible,
by scheduling its execution as far in advance from the instructions that need the memory data. The same
effect can also be achieved by appropriately scheduling the code at compile time. At the core of all software
based load scheduling techniques are static disambiguation or alias analysis techniques. The goal of these
methods is to prove whether a given load and store can be data dependent during run-time. A plethora of
techniques has been proposed. Initially research focused primarily on array variables [4,22,10], while
recently methods have been proposed for dynamically allocated data types [23, 97].

A plethora of memory dependence speculation techniques has also been proposed. These techniques dif-
fer in whether software or hardware is used to: (1) perform load motion, (2) detect dependence violations
and (3) recover from dependence violations. Nicolau proposed run-time disambiguation [65], a software
only approach to dependence speculation. In his technique, loads can be speculatively scheduled before a
preceding store with which an ambiguous dependence exists. Code is inserted after the store to detect
whether a true dependence is violated (this is done by comparing the addresses accessed by the store and the
load), and repair code is also inserted to recover from memory dependence violations. Another software
only approach was proposed by Moudgill and Moreno [64]. Their approach differs from NicolauÕs in that
they compare values rather than addresses to detect violation of program semantics.

Gallagher, Chen, Mahlke, Gyllenhaal and Hwu [28, 16] proposed the Memory Conflict Buffer (MCB), a
software-hardware hybrid approach. In their technique, load motion and mispeculation recovery are done in
software while mispeculation detection is done in hardware. Two copies of each speculated load are exe-
cuted, one at the original program order (non-speculative) and the other as early as desired (speculative).
Speculative loads record their addresses in the MCB. Intervening stores also post their addresses to the
MCB, so that dependence violations are detected. The non-speculative load checks the appropriate entry in
the MCB (the target register of the load is used as a handle), and if any dependence was violated, control is
transferred to recovery code. Huang, Slavenburg and Shen proposed speculative disambiguation [36]
another hybrid approach to memory dependence speculation. In their technique multiple versions of the
same code are generated, one with speculation enabled and another with speculation disabled. These ver-
sions are then scheduled together using predication. Hardware similar to that used for boosting [78, 77] is
used to invalidate all but the appropriate path during execution.

Naive memory dependence speculation was proposed for the Multiscalar architecture [26]. Support for
dependence mispeculation detection and recovery was proposed in the form of the Address Resolution
Buffer (ARB) [27] which also implements memory renaming. Other recently proposed techniques to sup-
port speculation of memory dependences, memory renaming and memory dependence mispeculation detec-
tion are presented in [31, 32]. Naive memory dependence speculation was used in the PA8000 processor
[38] and in the Power 620 processor [1,50]. Knight also proposed using memory dependence speculation
along with a hardware-based mispeculation detection mechanism in the context of speculative, parallel exe-
cution of otherwise sequential Lisp programs [47].

Finally, several hardware-based techniques have been proposed that aim at improving accuracy over naive
memory dependence speculation. There are two closely related proposals. In the first proposal by Steely,
Sager and Fite [84], mispeculated loads and stores are given tags derived from the addresses via which the
mispeculation occur. These tags are used by the out-of-order scheduler to restrict load execution. Hesson,
LeBlanc and Ciavaglia [33] describe the store barrier cache and the store barrier approach. An implemen-
tation of the store barrier cache was also presented [3]. The techniques we describe in this chapter were also
reported [63,61].

63

Selective speculation is implemented in the Alpha 21264 processor [45] where an independence predictor
is used to predict whether a load can execute freely. Finally, Chrysos and Emer proposed using a level of
indirection for the purposes of memory dependence speculation/synchronization. In their store set approach
a tag is used to represent the set of all stores that a load has had a memory dependence mispeculation. They
proposed the incremental approach we also utilize to build memory dependence sets. Synchronization takes
place through a separate table, and moreover, to preclude ordering problems on dependences with non-unit
distances and to attain a simple synchronization table design, stores that have been assigned to the same
store set (i.e., synonym) are executed in-order.

As we noted in Section 3.2, to reduce the net penalty of mispeculation we could alternatively utilize tech-
niques to either (1) minimize the amount of work lost on mispeculation or (2) reduce the time required to
redo the work lost on mispeculation. In the second category falls instruction reuse [79]. The applicability of
this technique on distributed, split-window processing models is still under investigation. A technique to
reduce the amount of work lost on mispeculation is selective invalidation. Selective invalidation aims at
invalidating only those instruction that used erroneous data and has been first proposed in the context of load
value prediction [54] and for a centralized, continuous instruction window processor. As we demonstrate in
the evaluation section, under these assumptions memory dependence mispeculations are virtually non-exis-
tent, hence there is no problem with mispeculations and no need for a selective invalidation mechanism. In
Chapter 4, we describe a selective invalidation mechanism and use it for a different purpose (i.e., speculating
on the origin of load values).

3.8 Evaluation - Distributed, Spit-Window Processor Model

In this section we study our proposed methods using a model of the Multiscalar architecture. This section
is organized as follows: we first demonstrate that exploiting load/store parallelism has the potential to
improve performance significantly (Section 3.8.1). In Section 3.8.2, we demonstrate that naive memory
dependence speculation can be used to extract some of the parallelism that is present, but also demonstrate
that the net mispeculation penalty is high. Then, in Section 3.8.3, we consider using an address-based
scheduler to extract and exploit load/store parallelism and demonstrate that even if such a device could be
incorporated into our processor model, memory dependence mispeculations remain frequent and the net
penalty of mispeculation though lower, remains high. For this reason, we next consider techniques to
improve the accuracy of memory dependence speculation. In Section 3.8.4, we consider selective memory
dependence speculation and demonstrate that even if perfect memory dependence prediction was possible,
this technique is not robust. We use the aforementioned results to motivate the use of memory dependence
speculation/synchronization. Initially, we consider a centralized implementation that explicitly tracks all
memory dependences per static load or store (as detailed in Section 3.5). Having shown that such a mecha-
nism is very effective in reducing memory dependence speculations while maintaining the benefits of
aggressive speculation we then consider the two more practical distributed implementations of our proposed
mechanism we discussed in sections 3.6.6 and 3.6.7.

Before we proceed into presenting our findings, it is important to discuss: (1) the exact memory depen-
dence speculation model and the compiler support used in our experiments, (2) the methodology we fol-
lowed to approximate ideal memory dependence speculation.

In all experiments reported in this section, intra-task memory data dependences are not speculated. That
is, mispeculations may only occur for store-load pairs whose dependence edge crosses task boundaries. Fur-
thermore, the results reflect execution with no compiler supported disambiguation of these memory depen-
dences. This detail implies that even in cases where an unambiguous memory dependence exists, it is
treated no differently than an ambiguous memory dependence during execution. At first glance, the reader
may be tempted to conclude that the results of this section are not very useful since many dependences could

64

be classified as unambiguous, even with a rudimentary compiler. However, this conclusion is not necessarily
correct. Multiscalar, as other dynamically scheduled ILP processors, dynamically converts the sequential
program order into a parallel execution order. In this environment, the only condition that prevents the OoO
execution of two instructions is the existence of a dependence that the OoO execution engine can detect
without executing the instructions. This implies that even if the compiler knows that a particular memory
dependence exists, nothing prevents the dynamic speculation of the corresponding load instruction. Conse-
quently, to prevent the speculation of a dependence, the compiler has either: (1) to identify by some means
(for example through ISA extensions) that a load should not be speculated immediately and to enforce syn-
chronization between dependent instructions (perhaps by using signal and wait operations on compiler gen-
erated synchronization variables or via full/empty bits), or (2) make assumptions about the scheduling
properties of the target OoO engine and delay load execution somehow (probably via the use of ad-hoc tech-
niques).

In the experiments that follow we make extensive use of an oracle memory dependence speculation mech-
anism. The intention is to simulate a mechanism that has perfect, advance knowledge of all dependences
and that is capable of utilizing this information to achieve the highest possible performance (i.e., the ideal
memory dependence speculation mechanism of Section 3.3). However, we should point out that even when
perfect dependence information is available deciding exactly which execution order will result in best per-
formance is a very challenging task, even theoretically (it amounts to scheduling). For this reason, the oracle
mechanism we simulated should only be viewed as an approximation of its ideal counterpart. In practice,
we simulated the oracle mechanism as follows: (1) loads appearing on the correct control path were allowed
to execute as soon as all their dependences were satisfied (i.e., either no dependence exists, or the appropri-
ate store has written its data to memory), and (2) loads on an incorrect control speculated path were allowed
to access memory freely as we found this has a prefetching effect that can be significant in terms of perfor-
mance (control paths tend to re-converge quickly). Even with this policy, we found that primarily for
102.swim and 104.hydro2d other speculation mechanisms that used imperfect dependence information
exhibited better performance. One reason why this is so, is that control speculation and the loads that appear
on incorrect control speculated paths may be different for different speculation policies Another cause of
this anomaly can be traced to the access combining that takes place in the simulated memory system. In our
simulatorÕs memory model [13], loads to the same cache bank and block are combined into a single request
when they appear simultaneously on the bus. This combining may help performance as it reduces the num-
ber of data cache requests and hence contention for data cache ports. Sometimes, delaying load execution
by a couple of cycles increases the probability that combining will take place. Unfortunately, we found no
straightforward way of predicting which particular execution schedule will (1) allow loads to execute as
early as possible, (2) increase combining as much as possible, and (3) send those load requests on incor-
rectly control speculated paths that have a prefetching effect. To compensate for this limitation in our exper-
iments we calculated the performance of the oracle speculation mechanism by taking the maximum
performance obtained with any of the policies studied.

3.8.1 Performance Potential of Load/Store Parallelism

In this section we demonstrate that significant performance improvements are possible if we can exploit
load/store parallelism. To do so, we compare the performance of (1) a configuration that makes loads wait
until it is known that all preceding stores have executed (i.e., it does not speculate on memory dependences),
and (2) the performance possible with an oracle dependence speculation mechanism. With the first policy, a
load is allowed to access memory under the following two conditions: (a) preceding stores from the same
task can supply the data needed by the load, and (b) if (a) is not true, when the loadÕs task is the head task.
Figure 3.9 reports the relative performance with oracle disambiguation compared to the configuration that
does not exploit load/store parallelism. Two configurations are studied, one with 4-units and one with 8-
units (these configurations were detailed in Chapter 1). We can observe that exploiting load/store parallel-

65

ism has the potential for significant performance improvements, which are larger for the larger instruction
window machine (8 stages). We can also observe that the performance improvements are typically higher
for the floating-point programs. This behavior can be attributed to the frequency of RAW dependences that
are visible from within the instruction window. As we have seen in Chapter 2 (Section 2.3.2.2), the fre-
quency of RAW dependences is typically much lower for the floating-point codes when we consider rela-
tively short instruction distances. The performance potential of exploiting load/store parallelism is higher in
this case, as more load/store parallelism exists.

The metrics reported in Table 3.1 provide additional insight on the performance behavior shown in Figure
3.9. In this table we report the IPC and the frequency of false memory dependences for the base configura-
tion, i.e., the one that does not speculate on memory dependences. We account for false dependences once
per committed load and at the time the load has calculated its address, has resolved all local dependences
and could otherwise access memory. At this point we check whether a true dependence exists with a store
from a preceding unit that has yet to write to memory (the store may have not been encountered yet). If no
such store exists, we count a false dependence as no true dependence would have been violated if the load
was allowed to execute immediately. We report false dependences as a fraction over all committed loads.

Comparing the IPC of the 4-unit configuration with that of the 8-unit configuration we can observe that
virtually no improvement results from a larger instruction window when load/store parallelism is not
exploited. This in part is the reason why the performance potential of oracle dependence speculation is sig-
nificantly higher for the 8-unit configuration. Focusing on the false dependence frequency measurements we
can observe that they are relatively high, which in part explains why the no-speculation configuration is low
performing. A phenomenon, which may seem surprising, is that the frequency of false dependences some-
times drops when we move to the 8-unit configuration. What happens, is that in the 8-unit configuration
many more memory dependences become visible from within the instruction window. For this reason, more
loads do have a true dependence at the time they could otherwise access memory. This observation provides
a hint on why speculation/synchronization might be more useful Ñas opposed to selective speculationÑ as
the instruction window increases. With a larger instruction window, more loads have dependences, and most
of these dependences are between stores and loads that are quite distant. Simply not speculating loads with

Figure 3.9: Comparing no speculation with oracle speculation. Shown are the speedups obtained with
oracle memory dependence speculation over no speculation.

0%

100%

200%

300%

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

 8-STAGES 4-STAGES

int fp all

HM

367%

66

dependences (i.e., selective speculation) may result in many loads waiting for significantly longer then they
should.

3.8.2 Naive Memory Dependence Speculation

In this section we study how naive memory dependence speculation affects performance. Specifically, we
demonstrate that: (1) naive speculation can be used to exploit some of the load/store parallelism offering
most the performance benefits possible with oracle speculation, and (2) the performance difference between
naive and oracle speculation can be significant especially for a wider instruction window configuration.

Figure 3.1 reports the performance improvements obtained when naive memory dependence speculation
is used over the same configuration that does not speculate memory dependences (Òno speculationÓ configu-
ration of the previous section). Also shown are the performance improvements possible with oracle specula-
tion. We can observe that naive memory dependence speculation is quite effective. For most programs,
naive speculation offers most of the performance improvements possible with oracle speculation. However,
the difference between naive and oracle is significant. The latter observation is more clearly shown in Table
3.2 where we report: (1) the speedups possible with oracle speculation over naive speculation, and (2) the
memory dependence mispeculation rates with naive speculation. We measure the memory dependence mis-
peculation rate by diving the number of all observed memory dependence mispeculations with the number
of all committed loads. In this calculation we do not include mispeculations encountered on loads that
appear on incorrectly speculated control paths.

We observe that the performance difference between naive and oracle speculation can become significant.
Moreover, this performance difference is larger for the 8-stage configuration. As we have noted earlier, the
net penalty of dependence mispeculations is the cause of this phenomenon. As it can be seen there is not

False Dependences%
Base
IPC

False Dependences%
Base
IPC

4 8 4 8 4 8 4 8

099 33.1% 32.7% 1.00 1.01 101 16.6% 16.6% 1.12 1.12

124 75.8% 77.3% 1.45 1.49 102 21.1% 21.1% 1.09 1.09

126 51.7% 47.3% 1.12 1.15 103 15.9% 15.8% 1.10 1.10

129 45.4% 40.9% 1.13 1.13 104 53.0% 53.2% 1.00 1.01

130 61.0% 58.3% 0.97 0.98 107 3.29% 1.27% 1.27 1.27

132 35.4% 43.0% 1.42 1.43 110 21.7% 21.9% 1.17 1.18

134 54.7% 49.4% 1.21 1.22 125 50.2% 50.7% 1.26 1.26

147 55.8% 45.1% 1.18 1.24 141 35.2% 34.2% 1.10 1.11

145 27.2% 25.6% 1.03 1.03

146 33.22% 32.77% 1.17 1.17

Table 3.1: Characteristics of the no-speculation configurations. Shown are the frequency of false
dependences, and the IPC. Two configurations are shown with 4 and 8 units respectively.

67

necessarily a direct correlation between the mispeculation rate and the performance difference between ora-
cle and naive. The reason is that the mispeculation frequency only indicates how often mispeculations hap-
pen. It does not however indicate the amount of work lost or the performance improvement possible via
exploiting load/store parallelism. For example, consider 099.go and 146.wave5 on the 8-stage configuration.
While 099.go exhibits a mispeculation rate of 3.6% had we avoided these mispeculations we could have
improved performance by 8.11%. In contrast, performance for 146.wave5 would improve by 29.20% even
though the mispeculation rate is a mere 0.9%. These two programs exhibit quite different execution charac-
teristics. 099.go has relatively poor control prediction behavior and moderate levels of load/store parallel-
ism. 146.wave5 on the other hand, exhibits excellent control prediction behavior and the potential benefits
from load/store parallelism are much higher (roughly 2 times as much compared to 099.go).

The results of this section suggest that while naive speculation can be used to extract most of the perfor-
mance benefits possible by exploiting load/store parallelism, it also suffers from the net penalty incurred due
to dependence mispeculations. For this reason, techniques that aim at improving the accuracy of memory
dependence speculation, as the ones we have earlier proposed have the potential of improving performance,
often significantly. Moreover, the results of this section suggest that the potential performance improve-
ments increase for larger instruction window processors.

3.8.3 Using Store Address Information To Improve Speculation Accuracy

So far, we have been assuming that loads cannot inspect the addresses of stores from other units. How-
ever, if that information was available somehow, some of the memory dependence mispeculations could be
avoided. For the purposes of this experiment, we are not concerned whether building such a mechanism is
possible and if so what implications such a mechanism might have on clock cycle, load latency and design
complexity. Rather, we optimistically assume that store addresses can be made visible to all other units with
an 1 cycle delay. No limit is imposed on the number of stores that can post their addresses every cycle or on
the number of loads that can inspect store addresses. Moreover, posting a storeÕs address does not consume
any resources. A load is allowed to execute as soon as its address becomes available and there is no preced-
ing store that writes to the same memory address. However, a load may execute if there are preceding stores

Figure 3.1: Performance with naive memory dependence speculation relative to no-speculation.

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6 int fp all

HM
 8-STAGES ORACLE 4-STAGES ORACLE 8-STAGES NAIVE 4-STAGES NAIVE

0%

100%

200%

300%
337% / 367%

68

that have yet to calculate their address. (Note that since tasks are fetched and executed in parallel, it possible
to issue a load before a preceding in program store has even been fetched.) We make use of these optimistic
assumptions about store address availability in order to demonstrate that memory dependence mispecula-
tions remain frequent enough to justify the use intelligent memory dependence speculation techniques such
as those we propose.

The results of this experiment are shown in Table 3.3. The ÒAVÓ columns report relative performance over
naive speculation when store addresses are available for load inspection. The ÒoracleÓ columns report the
speedups possible with the oracle speculation mechanism. Two processor configurations are simulated. The
first is the default 8-unit configuration we have been using in all preceding experiments. The processing
units in this configuration are equipped each with a 16-entry window, an 8-entry scheduler, 1 memory port
and 2 copies of all other functional units. This configuration is marked as Ò1x8Ó in the table. The other con-
figuration, which is marked as Ò4x8Ó, has also 8-units, but its units have 32-entry windows (all entries are
visible to the scheduler) and four copies of all functional units (4 memory ports also). Moreover, the band-
width of the L1-data cache and the ARB is quadrupled. We include this second configuration to increase
confidence on the observations we make in this section. In particular, we aim to address the concern on
whether, the relatively small instruction window sizes used in by our default configuration (16 instructions
and 8 instruction scheduler) impose artificial delays on store address calculation latency. With such small
instruction windows, it is possible for a store that could otherwise calculate its address to get delayed just
because there isnÕt enough space in the local instruction scheduler.

From the results shown in Table 3.3 we can observe that exposing store addresses has the potential of
reducing mispeculations and improving performance over naive speculation. However, when compared
with the performance potential of oracle speculation, we can observe that for most programs there is still a

Speedup%
Oracle over Naive

MR%
Speedup%

Oracle over Naive
MR%

Stages 4 8 4 8 Stages 4 8 4 8

099 3.97% 8.11% 2.4% 3.6% 101 12.20% 24.56% 1.6% 2.1%

124 2.44% 10.64% 1.8% 3.1% 102 0.00% 2.67% 0.2% 0.2%

126 4.03% 13.33% 2.8% 4.3% 103 2.60% 4.35% 0.4% 0.5%

129 8.3% 22.90% 5.6% 9.3% 104 0.00% 0.00% 0.4% 0.5%

130 10.07% 69.23% 4.9% 7.0% 107 0.00% 6.80% 0.1% 0.3%

132 12.45% 20.45% 2.8% 3.2% 110 6.90% 62.39% 1.5% 1.6%

134 10.25% 27.56% 4.3% 6.3% 125 0.00 1.91% 0.1% 0.1%

147 34.78% 77.92% 6.8% 7.3% 141 9.83% 27.27% 1.4% 2.0%

HM int 10.05% 31.21% 145 7.59% 29.20% 0.9% 1.2%

146 13.57% 14.68% 0.7% 0.9%

HM fp 4.37% 17.35%

Table 3.2: Comparing naive and oracle speculation. Shown are the speedups possible over naive
speculation with oracle speculation and the frequency of memory dependence mispeculations (MR%
columns).

69

significant performance difference. This is can also be seen by the average (harmonic mean) speedups pos-
sible for the two policies. For example, with the Ò4x8Ó configuration the performance improvements when
store addresses are exposed are 16.2% and 4.6% for the integer and the floating-point programs respectively.
With oracle speculation the performance improvements rise to 24.2% and 10.3% respectively.

Before we proceed to the next section we should explain why an anomaly is observed for 104.hydro2d and
the Ò1x8Ó configuration. In this case, performance when store addresses are exposed is slightly (i.e., 0.3%)
higher compared to oracle speculation. A slight increase in the number of memory accesses that are com-
bined in the memory system are the cause of this behavior. Since when store addresses are exposed, some
loads may get delayed, accesses that would otherwise proceed at different times may now proceed simulta-
neously benefiting for the combining that takes places at the bank of the simulated memory system (see dis-
cussion of Section 3.8, last paragraph). Even so, the difference in performance is extremely small. Another
anomaly is observed for 102.swim and for the 4x8 configuration, where a small performance degradation is
observed when store addresses are exposed. The probable cause of this phenomenon is delayed or no execu-
tion of loads as the result of control speculation. A load may get delayed by a store that is on an incorrectly
speculated intra-unit control path. In this case, the load may get unnecessarily delayed until that store is
squashed locally at its unit. The same applies when both a store and a load are on an incorrectly speculated
control path (inter-unit). In this case, the load which is later squashed could have a prefetching effect if it

Speedup% over Naive Speedup% over Naive

1x8 4x8 1x8 4x8

AV oracle AV oracle AV oracle AV oracle

099 0.7% 8.1% 4.5% 8.5% 101 8.1% 24.6% 8.9% 25.6%

124 1.8% 10.6% 6.4% 8.1% 102 0.5% 2.7% -0.6% 0.0%

126 3.3% 13.3% 8.7% 12.6% 103 0.3% 4.3% 0.0% 2.9%

129 5.6% 22.9% 13.4% 24.1% 104 0.3% 0.0% 0.9% 0.9%

130 44.6% 69.2% 27.3% 36.8% 107 1.3% 6.8% 0.3% 0.8%

132 13.6% 20.5% 22.2% 27.0% 110 3.4% 62.4% 17.2% 30.4%

134 6.5% 27.6% 12.3% 26.1% 125 0.0% 1.9% 2.1% 2.4%

147 5.2% 77.9% 44.1% 70.3% 141 4.3% 27.3% 13.6% 26.9%

HM int 8.8% 31.2% 16.2% 24.2% 145 6.4% 29.2% 4.8% 22.2%

146 5.9% 14.6% 2.4% 3.6%

HM fp 3.0% 17.3% 4.6% 10.3%

HM all 5.5% 23.5% 9.5% 16.1%

Table 3.3: Impact of exposing store addresses on performance. Relative performance over naive speculation
is shown. The ÒAVÓ columns report performance when store addresses are visible and the ÒoracleÓ
columns report performance with oracle speculation. Two processor configurations are simulated per
policy. The Ò1x8Ó is the configuration we have used in all previous experiments, while the Ò4x8Ó uses a
memory system that has four times more bandwidth, and uses units that have 32 entry windows and 4 copies
of all functional units including memory ports.

70

was allowed to execute before the corresponding store (as it could be the case when no address information
is available).

3.8.4 Selective Memory Dependence Speculation

In this section we demonstrate that selective memory dependence speculation is not a robust technique.
For this purpose we assume perfect memory dependence prediction and demonstrate that even under such
optimistic assumptions about prediction accuracy, selective speculation may result in lower performance
compared to naive speculation. As we explained in Section 3.3, under this policy, a load that has a depen-
dence is forced to wait for all preceding stores. As a result, the load may get delayed unnecessarily. Figure
3.1 reports the relative performance of selective speculation over naive speculation. We can observe that
while selective speculation improves performance for some of the programs, for most of them it either does
not affect performance by much or results in performance degradation. For the latter programs it is often the
case that it takes less time to incur a mispeculation and re-execute the code rather than having to wait until
all previous tasks commit. For 130.li and 147.vortex, selective speculation improves performance signifi-
cantly. As we have seen (Table 3.2) these two programs exhibit relatively high mispeculation rates (7.0%
and 7.3% respectively for the 8-unit configuration) and also the potential benefits are quite high (approxi-
mately 69% and 78% respectively). For most floating point programs selective speculation often results in
significant performance degradation. As we have seen, these programs exhibit relatively low mispeculation
rates. Avoiding those few mispeculations by stalling the corresponding loads, often results in stalling execu-
tion in the corresponding unit. This is mostly the result of: (1) the relatively small instruction windows
employed in each unit, and (2) the relatively larger task sizes for the floating-point programs [92].

Even though we do not report this result here, we have found [61] that in a configuration that used rela-
tively larger local instruction windows (i.e., 64-entry per unit where all entries were visible to the scheduler)
and for the integer programs of SPEC92, performance with selective speculation was often better compared

Figure 3.1: Relative performance of selective memory dependence speculation over naive memory
dependence speculation.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-50%

-25%

0%

25%

50%

int fp all

HM

 8-STAGES SELECTIVE 4-STAGES SELECTIVE

71

to naive. However, even then selective speculation sometimes resulted in inferior to naive speculation per-
formance supporting our observation that selective speculation is not a robust technique. This observation
provides an indication that the performance degradation observed with selective speculation might also be
the result of stalling execution due to the limited size of the unit instruction schedulers used in our configura-
tion.

The results of this section suggest that while selective memory dependence speculation can potentially
reduce the number of mispeculations observed, it falls short of the second goal of memory dependence spec-
ulation which is to delay loads only as long as it is necessary.

3.8.5 Speculation/Synchronization - Centralized Mechanism

Motivated by the observations that (1) the net penalty of mispeculation with naive speculation is signifi-
cant, and (2) selective speculation is not robust, in this section we study performance under our proposed
speculation/synchronization technique. In particular, we demonstrate that a centralized implementation of
this technique can be used to attain performance that is very close to that possible with oracle speculation.
The rest of this section is organized as follows: first we provide information on the operation and organiza-
tion of the mechanism we simulated. Then we present a breakdown of the memory dependence status pre-
diction on loads. This result indicates whether we correctly identify if a load should wait or not. We next
report the mispeculation rates observed with speculation/synchronization mechanism. This result indicates
whether we successfully avoid mispeculations on those loads that have dependences predicted. Finally, we
report performance results as ultimately the utility of the proposed technique can only be judged when per-
formance is taken into consideration. This result provides an indication on whether we successfully syn-
chronize with the appropriate store (or stores) and attain the performance benefits of aggressive out-of-order
execution of loads and stores. In the experiments that follow we first study an implementation capable of
recording up to 256 load/store pairs. At the end of this section we study how performance varies for other
prediction table sizes. All MDPT/MDST structures we consider in this section are fully-associative. In Sec-
tion 3.8.6, we consider an implementation that uses a 2-way set-associative structures.

The mechanisms we study in this section employ a combined MDPT and MDST in which a vector of syn-
chronization bits are associated with each static dependence as explained in Section 3.6.4. Along with each
entry, a 3-bit saturating counter with a threshold value of three is used for prediction purposes; synchroniza-
tion is enforced only when the counter is above three. Counter updates occur when memory dependence
violations are detected, or when a task commits by inspecting the corresponding wait, signal and sync bits
and as explained in Section 3.6.4. Along with each static dependence we also record the distance in units
between the corresponding store and load. This information is recorded when a memory dependence viola-
tion is serviced. Also, recorded is the task PC of the store instruction which is used to avoiding predicting
synchronization on dependences that cannot possibly appear on the currently predicted control path (as
explained in Section 3.6.6). Moreover, the structure is fully-associative and uses LRU replacement. Finally,
in all experiments that follow we restrict our attention to the 8-unit configuration where both the potential for
performance improvement and the number of mispeculations observed is higher (i.e., more strain is placed
on the prediction and synchronization mechanisms).

We first report results on the prediction accuracy of the memory dependence predictor used. In this case
we are interested on whether the predictor correctly predicts the dependence status of loads instructions.
This is the first step in speculation/synchronization. While memory dependence status prediction is a binary
decision problem as is, for example, branch prediction, a single number is not very useful in interpreting
memory dependence prediction results. The reason is that, when prediction is incorrect there are two possi-
bilities: (1) either we will make a load wait for more than it should, or (2) we will fail to make a load wait
and thus incur a memory dependence mispeculation. Accordingly, we present prediction accuracy results

72

into which predictions are classified into four categories depending on whether: (1) a dependence is pre-
dicted, and (2) a dependence really exists. In the results shown we include the predictions made on those
loads that were either committed or were invalidated as the result of a dependence mispeculation. We do not
include the predictions made on those loads that were squashed by control mispeculations. Predictions are
recorded once per dynamic load and at the time the load is ready to access the memory hierarchy. Further-
more, for those loads on which a dependence is predicted, the prediction is recorded after we have checked
the synchronization entries for the first time (as we discussed in Section 3.4, stores enable the synchroniza-
tion bit even when no load is currently waiting). Table 3.4 reports the breakdown of predictions in the form
ÒPredicted/ActualÓ. Correct predictions fall under the ÒY/YÓ and ÒN/NÓ categories. False dependences cor-
respond to the ÒY/NÓ category. We should explain that when compared to the number of mispeculation
observed with naive speculation (Table 3.2) these results may be different. The reason is the execution now
progresses in a different manner. Some mispeculations are avoided and as a result more dependences are
exposed which may or may not get mispeculated. We can observe that the particular memory dependence
predictor correctly predicts most of the loads that do have dependences (ÒY/YÓ vs. ÒN/YÓ). As it can be
seen, the fraction of loads that have dependences and this predictor misses (ÒN/YÓ column) is less than
0.26% for all programs. Moreover, false dependences are rather infrequent.

Predicting whether a load has a dependence is the first step in speculation/synchronization. The next is
avoiding a dependence mispeculation by synchronizing with the appropriate store. A metric of how success-
ful our mechanisms is at attaining this goal is the dependence mispeculation rate. These results are shown in
Table 3.5. Also shown are the mispeculation rates with naive speculation. We can observe that the synchro-
nization/speculation mechanism reduces mispeculations by at least an order of magnitude for all programs
except 099.go, 126.gcc, 147.vortex, 103.su2cor and 104.hydro2d. As we shall demonstrate later in this sec-
tion, for the first three of these programs, most of the mispeculations that are not avoided are the result of
limited space in the prediction/synchronization structure. These three programs have larger dependence
working sets. Most of the mispeculations that are not avoided in 103.su2cor and 104.hydro2d are mostly the
result of incorrectly synchronizing loads with an earlier instance of the corresponding store. However, the
absolute mispeculation rates for these two programs are extremely small to start with.

Predicted/Actual % Predicted/Actual %

N/N N/Y Y/N Y/Y N/N N/Y Y/N Y/Y

099 93.886 0.126 3.253 2.735 101 95.458 0.009 0.955 3.578

124 95.728 0.144 0.091 4.037 102 97.484 0.000 2.148 0.368

126 91.726 0.028 2.139 6.107 103 98.831 0.001 0.256 0.912

129 89.350 0.017 0.114 10.519 104 96.445 0.000 3.197 0.358

130 89.177 0.026 0.100 10.696 107 97.588 0.002 1.340 1.071

132 94.913 0.112 0.083 4.892 110 96.535 0.047 0.268 3.150

134 91.230 0.058 0.030 8.682 125 99.622 0.000 0.216 0.162

147 81.147 0.019 1.954 16.880 141 96.320 0.068 0.853 2.759

145 95.263 0.001 0.975 3.761

146 97.874 0.260 0.268 1.597

Table 3.4: Breakdown of memory dependence status prediction on loads.

73

We finally measure the performance improvements obtained through the use of our mechanism and com-
pare it against the performance potential of oracle speculation. Figure 3.1 reports speedups over naive spec-
ulation for our mechanism (ÒsynchronizationÓ) and oracle speculation. We can observe that for most
programs, our mechanism is capable of extracting most of the performance potential of oracle speculation.
However, for 099.go, 126.gcc, 147.vortex, and to a lesser extent for 103.su2cor, 141.apsi, and 145.fpppp, our
mechanism is not as close to oracle speculation. As will we observe next most of this potential is lost due to
limited space in the prediction tables.

Finally, we study how the performance of our proposed mechanism varies as a function of the number of
static dependences it can track. Figure 3.2 shows the relative performance of speculation/synchronization
with respect to oracle speculation for various predictor sizes. We vary the number of the MDPT/MDST
entries from 64 to up to 2048 (shown from left to right, grey bar marks the 64-entry table). We can observe
that even with a 64-entry table performance is close to the oracle speculation for most programs. The only
programs that seem to be quite sensitive to the number of static dependences we can track are 099.go,
126.gcc, 147.vortex, 141.apsi and 145.fpppp. These programs benefit from larger prediction/synchroniza-
tion structures. With the exception of 141.apsi performance is within 1.5% of oracle speculation with the
2K-entry table for these programs. Performance for 141.apsi levels off at roughly 2% lower of oracle for
tables with 1K entries or more. Similar behavior is exhibited by other programs. There are two reasons why
this is so: (1) sometimes a load is forced to wait although no dependence exists, and (2) prediction may fail
to properly identify the appropriate store instance a load should wait for. In these two cases, loads are forced
to wait for more than they should.

The results of this section demonstrate that a centralized implementation of our proposed mechanism,
capable of tracking up to 256 dependences can be used to improve the accuracy of naive speculation and
attain some and for the majority of the programs studied, most of the performance benefits possible with ora-
cle speculation.

MISPECULATION RATE MISPECULATION RATE

SYNCHRONIZATION NAIVE SYNCHRONIZATION NAIVE

099 2.1% 3.6% 101 0.1% 2.1%

124 0.029% 3.1% 102 0.0022% 0.2%

126 1.1% 4.3% 103 0.2% 0.5%

129 0.5% 9.3% 104 0.2% 0.5%

130 0.014% 7.0% 107 0.025% 0.3%

132 0.041% 3.2% 110 0.012% 1.6%

134 0.013% 6.3% 125 0.0059% 0.1%

147 1.0% 7.3% 141 0.3% 2.0%

145 0.3% 1.2%

146 0.008% 0.9%

Table 3.5: Memory dependence mispeculation rates as a percentage over all committed loads with
speculation/synchronization (ÒSynchronizationÓ column) and naive speculation.

74

Figure 3.1: Performance improvements over naive speculation with our speculation/synchronization
mechanism capable of tracking 256 dependences (dark bars) and with oracle speculation (grey bars).

Figure 3.2: Relative performance of speculation/synchronization with respect to oracle speculation and as a
function of the number of entries in the MDPT/MDST. Range shown is 64 to 2K entries, from left to right in
steps that are powers of two. The gray bar (left-most per benchmark) marks the 64-entry table.

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6 int fp all

HM ORACLE SYNCHRONIZATION

0%

20%

40%

60%

80%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-10%

-8%

-6%

-4%

-2%

0%

-14%

75

3.8.6 Speculation/Synchronization - Distributed Mechanisms

In the previous section we studied the characteristics of a centralized, fully-associative implementation of
our proposed technique. As discussed in Section 3.6, this mechanism has a number of features that are
undesirable from a practical perspective. In this section we study the two distributed organizations of our
proposed technique we discussed in Sections 3.6.6 and 3.6.7. The first mechanism differs from the one we
used in the previous section in that: (1) a local copy of the combined MDPT/MDST structure is placed in
every unit, (2) separate entries are allocated for loads and stores, (3) multiple stores can be recorded per load,
(4) system-wide, only one store can signal for synchronization purposes every cycle (so that a bus can be
used Ñ while do not report this result we note that for the configuration studied no noticeable difference in
performance was observed when we limited store signal bandwidth to one per cycle in the centralized imple-
mentation), and (5) a non-adaptive counter (i.e., it only counts up) is utilized for prediction purposes (thresh-
old is 3). The second mechanism has the following characteristics: (1) it utilizes a level of indirection to
identify the set of static dependences each load or store has, (2) it also uses the same 2-bit non-adaptive
counters per prediction table entry, (3) it also limits the number of stores that can signal synchronization to
one per cycle, and (4) uses separate MDPT and MDST structures.

Table 3.6 reports the relative performance of the first distributed mechanism over its centralized counter-
part. Both the distributed and the centralized mechanisms use 256-entry combined MDPT/MDST struc-
tures. We include results for four different predictors which are capable of recording, 1, 2, 4 or 8
dependences per static load respectively. We can observe that the predictor that can record just one depen-
dence per load does not perform very well for most of the programs. However, as we increase the number of
dependences that can be recorded per load, performance improves. Some programs are very sensitive to the
number of static dependences that can be tracked per load (for example, 147.vortex and 110.applu). For the
integer codes, most of this sensitivity can be attributed to loads that have multiple dependences that appear
on different control paths. For 110.applu the sensitivity is mostly the result of loop unrolling. This program
spends a significant portion of its time executing a multi-nested loop that exhibits a recurrence. The distance
among the iterations that are dependent through this recurrence varies over time. As a result of loop unroll-
ing the static load and store involved are copied multiple times, and this in turn results in dependences
between every copy of the load and store.

The experiments with the first distributed implementation of our synchronization/speculation mechanism
suggest that performance is most sensitive to the number of dependences that can be tracked per load and not
so much to the distribution of the prediction and synchronization structures. We have shown that a distrib-
uted implementation capable of tracking of up to 4 static dependences per load, resulted in performance that
was only 3.17% in the worst case and 0.76% on the average, less than that attained with a centralized imple-
mentation.

We next report performance results with the second distributed implementation that utilizes a level of indi-
rection to represent the set of all possible dependences per store or load. The particular mechanism we sim-
ulated includes a 4K 2-way set associative MDPT and a 64-entry 2-way set associative MDST. Table 3.7
reports performance with respect to the centralized mechanism of the previous section that has 256-entries.
It can be seen that for most programs the performance degradation is typically higher when compared to the
first distributed mechanism that can track two static dependences per load. The cause can be traced to loads
that have multiple dependences that appear at different unit-distances. Since the second mechanism records
a single unit distance per static load it fails to synchronize with the appropriate store when the latter appears
at unit distances that vary over time. In those cases, the load is either eagerly synchronized with an earlier
store, or the load is forced to wait for a store that never appears (i.e., in this case our mechanism degenerates
to selective speculation). A potential solution to this problem would be to keep a distance vector along with
each entry to allow for multiple unit distances to be predicted. However, we do not investigate this possibil-

76

ity as our goal is to demonstrate that a relatively straightforward implementation of synchronization/specula-
tion can offer most of the performance benefits of oracle speculation (that this mechanism offers most of the
potential performance benefits is shown in Section 3.8.7).

The results of the experiments with the second distributed mechanism suggest that while it performs
worse than the other two mechanisms we studied, it still offers performance that is for most programs close
to that possible with the centralized mechanism. Provided that this mechanism seems to be the most
straightforward and less costly to implement, it may still be a good choice.

3.8.7 Comparison of Speculation/Synchronization Mechanism

Finally, we summarize our performance analysis by reporting, in Table 3.8 the relative over naive specula-
tion performance of the following mechanisms: (1) centralized 256-entry combined MDPT/MDST
(ÒCENTÓ columns), (2) distributed 256-entry combined MDPT/MDST with 2 stores per load (ÒD1Ó col-
umns), and (4) the last distributed mechanism we studied (ÒD2Ó columns) which utilizes a level of indirec-
tion to represent dependence sets. Focusing on the harmonic means we can observe that the centralized
mechanism performs best and offers performance very close to that possible with oracle speculation. The
first distributed implementations performs slightly worse, but the difference is relatively small. Finally, the
second distributed implementation still offers most of the performance improvements of oracle speculation.
However, the performance difference is rather large. However, this last mechanism seems to have the advan-
tage of being the most simple to implement.

Stores Per Load Stores Per Load

1 2 4 8 1 2 4 8

099 -1.31% -0.65% 0.00% 0.00% 101 -6.55% -1.71% -0.57% -0.57%

124 -3.21% -0.32% 0.00% 0.00% 102 0.00% 0.00% 0.00% 0.00%

126 -2.53% -1.01% -0.51% 0.00% 103 -0.53% -1.33% -0.27% -0.27%

129 -9.63% -2.75% 0.00% 0.00% 104 0.00% 0.00% 0.00% 0.00%

130 -5.91% -3.64% -2.27% 0.00% 107 -5.22% -3.87% -2.02% 0.00%

132 -4.59% -2.43% -0.81% 0.00% 110 -37.89% -18.42% -1.05% -0.26%

134 -9.01% -2.15% -1.72% 0.00% 125 -0.42% -0.21% 0.00% 0.00%

147 -21.43% -16.67% -3.17% -1.19% 141 -8.70% -1.58% -0.79% -0.40%

HM -6.89% -3.48% -1.05% -0.15% 145 -1.63% -1.31% -0.33% -0.33%

146 -6.72% -3.23% -0.25% -0.00%

HM -5.87% -2.93% -.052% -0.18%

HM
all

-6.32% -3.17% -0.76% -0.17%

Table 3.6: Performance of the first distributed mechanism over the centralized mechanism that uses a 265-
entry MDPT/MDST.

77

3.9 Evaluation - Centralized, Continuous -Window Processor Model

In this section, we study various methods of extracting load/store parallelism and their interaction with
memory dependence speculation under a centralized, continuous instruction window execution model. Spe-
cifically: (1) we demonstrate that higher performance is possible if we could extract load/store parallelism
and that the performance improvements are higher when the instruction window is larger (Section 3.9.1).
(2) We demonstrate that naive memory dependence speculation can be used to attain some of the perfor-
mance benefits possible. However, we also demonstrate that the net penalty of mispeculation is significant
(Section 3.9.2). (3) We consider using an address-based scheduler to extract this parallelism and show that
higher performance is possible than when naive memory dependence speculation is used (Section 3.9.3). In
an address-based scheduler, loads and stores post their addresses as soon as possible, and loads are allowed
to inspect the addresses of preceding stores before obtaining a memory value. (4) We show that performance
drops rapidly when inspecting preceding store addresses increases load execution latency (i.e., when going
through the address-based scheduler increases load latency Ñ Section 3.9.3). (5) We demonstrate that an
organization where memory dependence prediction is used to schedule load/store execution Ñinstead of
using an address-based schedulerÑ offers performance similar to that possible had we had perfect in-
advance knowledge of all memory dependences (Section 3.9.4).

We note that the various load/store execution models we consider in this section are derived from mean-
ingful combinations of the following parameters: (1) whether loads are allowed to inspect preceding store
addresses before obtaining a value from memory, (2) whether stores wait for both data and base registers to
become available before posting their addresses for loads to inspect, (3) whether loads with ambiguous
dependences can issue (i.e., whether memory dependence speculation is used).

Slowdown Slowdown

099 0.00% 101 -2.85%

124 -1.60% 102 0.00%

126 -1.01% 103 -2.92%

129 -7.80% 104 0.00%

130 -4.09% 107 -5.89%

132 -5.68% 110 -23.95%

134 -7.30% 125 -0.21%

147 -16.67% 141 -5.53%

HM int -5.29% 145 1.31%

146 -6.47%

HM fp -4.53%

HM all -4.87%

Table 3.7: Performance of the second distributed mechanism over the centralized mechanism that uses a
265-entry MDPT/MDST.

78

3.9.1 Performance Potential of Load/Store Parallelism

An initial consideration with the techniques we proposed is whether exploiting load-store parallelism can
yield significant performance improvements. The reason is that in order to determine or predict memory
dependences we need additional functionality: (1) To determine memory dependences we need a mechanism
where loads and stores can post their addresses and execute accordingly to the dependences detected, that is,
we need an address-based scheduler. (2) To predict memory dependences we need a memory dependence
predictor and also a synchronization mechanism. For this reason an important consideration is whether this
additional functionality is justified. Accordingly, we motivate the importance of exploiting load-store paral-
lelism by comparing a model of a typical dynamically-scheduled ILP processor that does not attempt to
determine and exploit load-store parallelism with one that is identical except in that it includes an oracle
load-store disambiguation mechanism. Under this model, execution proceeds as follows: After an instruc-
tion is fetched, it is decoded and entered into the instruction window where its register dependences and
availability are determined. If the instruction is a store, an entry is also allocated in a store buffer to support
memory renaming and speculative execution. All instructions except loads can execute (i.e., issue) as soon
as their register inputs become available. Stores wait for both data and address calculation operands before
issuing. Loads wait in addition for all preceding stores to issue. As a result, loads may execute out-of-order
only with respect to other loads and non-store instructions. The second configuration includes an oracle dis-
ambiguation mechanism that identifies load-store dependences as soon as instructions are entered into the
instruction window. In this configuration, loads may execute as soon as their register and memory depen-
dences (RAW) are satisfied. Since an oracle disambiguator is used, a load may execute out-of-order with

Policy/Mechanism Policy/Mechanism

Oracle CENT D1 D2 Oracle CENT D1 D2

099 8.11 3.38 3.37 3.37 101 24.56 23.17 22.45 19.65

124 10.64 10.64 10.64 8.86 102 2.67 2.13 2.13 2.13

126 13.33 10.00 9.44 8.89 103 4.35 2.44 2.17 -0.54

129 22.90 21.78 21.78 12.29 104 0.00 0.00 0.00 0.00

130 69.23 69.23 65.38 62.31 107 6.80 6.80 4.67 0.54

132 20.45 20.13 19.15 13.31 110 62.39 62.39 60.68 23.50

134 27.56 25.94 23.78 16.76 125 1.91 0.63 0.63 0.42

147 77.92 63.63 58.44 36.36 141 27.27 21.05 20.09 14.35

HM int 31.21 28.04 22.49 20.24 145 29.20 22.40 22.00 24.00

146 14.68 13.55% 13.27 6.21

HM fp 17.35 15.43 10.96 9.01

HM all 23.50 21.03 16.08 14.00

Table 3.8: Comparison of four speculation policies/mechanism: (1) oracle, (2) ÒCENTÓ centralized 256-
entry MDPT/MDST (Section 3.8.5), (3) ÒD1Ó first distributed mechanism of Section 3.8.6, 4 stores per load,
and (4) ÒD2Ó second distributed mechanism of Section 3.8.6 (level of indirection). Reported are speedups
(%) over naive speculation.

79

respect to stores and does not need to wait for all preceding stores to calculate their addresses or write their
data.

Figure 3.1 reports the performance improvements possible when perfect memory dependence information
is available. We consider two base configurations, one with a 64-entry instruction window and one with a
128-entry window. For all programs, exploiting load/store parallelism has the potential for significant per-
formance improvements. Furthermore, we can observe that when loads wait for all preceding store (ÒNOÓ
bars) increasing the window size from 64 to 128 results in very small improvements. However, when the
oracle disambiguator is used, performance increases sharply. This observation suggests that the ability to
extract load/store parallelism becomes increasingly important performance wise as the instruction window
increases.

When loads are forced to wait for all preceding stores to execute it is false dependences that limit perfor-
mance. The fraction of loads that are delayed as the result of false dependences along with the average false
dependence resolution latency are given in Table 3.9. We report false dependences as a fraction over all
committed loads. We account for false dependences once per executed load and the time the load has calcu-
lated its address and could otherwise access memory. If the load is forced to wait because a preceding store
has yet to access memory, we check to see if a true dependence with a preceding yet un-executed store
exists. If no true dependence exists, we include this load in our false dependence ratio (this is done only for
loads on the correct control path). We define, false dependence resolution latency to be the time, in cycles, a
load that could otherwise access memory is stalled, waiting for all its ambiguous memory dependences to
get resolved (i.e., all preceding stores have executed). We can observe that the execution of many loads and
in some cases of most loads, is delayed due to false dependences and often for many cycles.

Figure 3.1: Performance (as IPC) with and without exploiting load/store parallelism. Notation used is
Òinstruction window sizeÓ/Óload/store execution modelÓ. Speedups of ORACLE speculation over NO
speculation are given on top of each bar.

0

1

2

3

4

5

6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 64/NO 64/ORACLE 128/NO 128/ORACLE

16
.1

 %
22

.1
 %

16
.3

 %
31

.3
 %

28
.7

5
%

43
.5

 %
30

.2
 %

53
.0

 %
20

.2
 %

34
.6

 %
65

.1
 %

12
2.

4
%

39
.3

 %
66

.7
 %

12
8.

6
%

12
8.

0
%

61
.6

 %
11

5.
6

%
11

0.
2

%
15

2.
5

%
11

7.
3

%
22

3.
1

%
68

.4
 %

10
9.

5
%

47
.6

 %
10

5.
3

%
92

.8
 %

18
8.

9
%

78
.6

 %
17

6.
6

%
92

.8
 %

18
8.

9
%

69
.1

 %
19

5.
3

%
87

.7
 %

18
5.

9
%

Harmonic Mean ORACLE over NO SPECULATION:
 INT: 36.56% FP: 78.95% ALL : 57.26% INT: 54.93% FP: 154.41% ALL : 97.93%

80

3.9.2 Performance with Naive Memory Dependence Speculation

As we have seen, extracting load/store parallelism can result in significant performance improvements. In
this section we measure what fraction of these performance improvements naive memory dependence spec-
ulation can offer. For this purpose, we assume the same processor model assumed in the previous section
but we allow loads to speculatively access memory as soon as their address operands become available. All
speculative load accesses are recorded in a separate structure, so that preceding in the program order stores
can detect whether a true memory dependence was violated by a speculatively issued load. Figure 3.1, part
(a) reports performance (as IPC) for the 128-entry processor model when, from left to right, no speculation
is used, when oracle dependence information is available and when naive memory dependence speculation is
used. We can observe, that for all programs naive memory dependence speculation results in higher perfor-
mance compared to no speculation. However, the performance difference between naive memory depen-
dence speculation and the oracle mechanism is significant, supporting our claim that the net penalty of
mispeculation can become significant. Memory dependence mispeculations are at fault. The frequency of
memory dependence mispeculations is shown in part (b) of Figure 3.1. We measure mispeculation fre-
quency as a percentage over all committed loads. A breakdown in terms of the address-space through which
the mispeculation occurs is also shown. We can observe, that though loads cannot inspect preceding store
addresses, mispeculations are rare. Nevertheless, the impact mispeculations have on performance is large.

In this context, the memory dependence speculation/synchronization methods we proposed could be used
to reduce the net performance penalty due to memory dependence mispeculations. However, before we con-
sider this possibility (which we do in Section 3.9.4) we first investigate using an address-based scheduler to
extract load/store parallelism and its interaction with memory dependence speculation.

False Dependences%
Resolution

Latency
False Dependences%

Resolution
Latency

099 26.4% 13.7 101 61.2% 36.3

124 59.9% 14.8 102 91.0% 5.4

126 39.0% 47.3 103 79.6% 91.2

129 70.3% 18.5 104 85.2% 9.7

130 44.2% 39.1 107 45.4% 26.6

132 70.3% 22.9 110 45.4% 26.6

134 59.8% 39.1 125 77.0% 55.6

147 67.2% 54.5 141 77.5% 78.7

145 88.7% 51.4

146 83.6% 9.7

Table 3.9: Fraction of loads with false dependences and average false dependence resolution latency
(cycles) for the 128-entry instruction window processor.

81

3.9.3 Using Address-Based Scheduling to Extract Load/Store Parallelism

We have seen that using oracle memory dependence information to schedule load/store execution has the
potential for significant performance improvements. In this section we consider using address-based depen-
dence information to exploit load/store parallelism. In particular we consider an organization where an
address-based scheduler is used to compare the addresses of loads and stores and to guide load execution.
We confirm that even in this context, memory dependence speculation offers superior performance com-

Figure 3.1: Naive memory dependence speculation. (a) Performance results (IPC). (b) Memory dependence
mispeculation frequency.

0

1

2

3

4

5

6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 128/NO 128/ORACLE 128/NAIVE

(a)

0%

2%

4%

6%

8%

 DATA HEAP STACK
09

9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

(b)

Harmonic Mean NAIVE over NO: INT: 29.67% FP: 113% ALL : 65.68%

Harmonic Mean ORACLE over NAIVE: INT: 20.91% FP: 20.38% ALL : 20.61%

82

pared to not speculating loads. However, we also demonstrate that when having to inspect addresses
increases load execution latency, performance drops compared to the organization where oracle dependence
information is available in advance (which we evaluated in the preceding section).

In the processor models we assume, stores and loads are allowed to post their addresses for disambigua-
tion purposes as soon as possible. That is, stores do not wait for their data before calculating an address.
Furthermore, loads are allowed to inspect preceding store addresses before accessing memory. If a true
dependence is found the load always wait. When naive memory dependence speculation is used, a mispecu-
lation is signaled only when: (1) a load has read a value from memory, (2) the value has been propagated to
other instructions, and (3) the value is different than the one written by the preceding store that signals the
mispeculation. As we noted earlier, under this processor model mispeculations are virtually non-existent.
There are three reasons why this is so: (1) loads get either delayed because they can detect that a true depen-
dence exists with a preceding store, (2) loads with unresolved dependences that correspond to true depen-
dences are allowed to access memory but before they have a chance of propagating the value read from
memory they receive a value from a preceding store, or (3) loads are delayed because preceding stores con-
sume resources to have their addresses calculated and posted for disambiguation purposes.

Figure 3.2 reports how performance varies when naive memory dependence speculation is used compared
to the same configuration that performs no speculation of memory dependences. For these experiments we
use an 128-entry window processor model. We also measure how performance varies in terms of the time it
takes for loads and stores to go through the address-based scheduler. We vary this delay from 0 to up to 2
cycles. In the calculation of the relative performance with naive speculation of part (a) of the figure, we
should note that the base configuration is different for each bar. The absolute performance (i.e., the IPC) of
the corresponding base configuration is reported in part (b). It can be seen that, for most programs, naive
memory dependence speculation is still a win. Performance differences are not as drastic as they were for
the model where loads could not inspect preceding store addresses, yet they are still significant. More
importantly the performance difference between no speculation and memory dependence speculation
increases as the latency through the load/store scheduler also increases. For some programs, naive memory
dependence speculation results in performance degradation. These programs are 147.vortex for all schedul-
ing latencies and 145.fpppp when the scheduling latency is 0. It is not mispeculations that cause this degra-
dation. This phenomenon can be attributed to loads with ambiguous dependences that get to access
memory speculatively only to receive a new value from a preceding store before they had a chance to propa-
gate the value they read from memory. These loads consume memory resources that could otherwise be
used more productively. This phenomenon supports our earlier claim that there is an opportunity cost asso-
ciated with erroneous speculation.

While including an address-based scheduler does help in exploiting some of the load/store parallelism, a
load may still be delayed even when naive memory dependence speculation is used. The reason is that in a
real implementation for preceding stores to calculate their addresses and post them for scheduling purposes,
they must consume resources. These resources include issue bandwidth, address calculation adders and
load/store scheduler ports. The same applies to loads that should wait for preceding stores. If perfect
knowledge of dependences was available in advance, stores would consume resources only when both their
data and address calculation operands become available. For this reason, we next compare the absolute per-
formance of the processor models that use an address-based scheduler to that of the processor model that uti-
lizes oracle dependence information to schedule load execution (Section 3.9.1).

Figure 3.3 reports relative performance compared to the configuration that uses no speculation but utilizes
an address-based scheduler with 0 cycle latency (the IPC of this configuration was reported in Figure 3.2,
part (b), 0-CYCLE configuration). From left to right, the four bars per program report performance with: (1)
oracle disambiguation and no address-based scheduler (Section 3.9.1), (2) through (4) naive memory depen-
dence speculation and address-based scheduler with a latency of 0, 1 and 2 cycles respectively (which we

83

evaluated earlier in this section). We can observe that, with few exceptions, the 0-cycle address-based
scheduler that uses naive speculation and the oracle mechanism perform equally well. Interestingly, the ora-
cle configuration performance significantly better for 147.vortex and 145.fpppp supporting our earlier claim
about resource contention and the opportunity cost associated with erroneous speculation. We can also

Figure 3.2: (a) Relative performance of naive memory dependence speculation as a function of the address-
based scheduler latency. Performance variation is reported with respect to the same processor model that
does not use memory dependence speculation. Base performance (IPC) is shown in part (b).

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 0 CYCLES 1 CYCLE 2 CYCLES

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

38
 %

41
 %

43
 %

(a)

0

1

2

3

4

5

6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

IP
C

(b)

Harmonic Mean NAIVE over NO SPECULATION:

 INT: 4.66% FP: 5.35% ALL : 5.04%

 INT: 6.71% FP: 6.74% ALL : 6.72%

 INT: 6.10% FP: 6.08% ALL : 6.09%

84

observe that once it takes 1 or more cycles to go through address-based disambiguation the oracle configura-
tion has a clear advantage. The only exception is 104.hydro2d where the oracle configuration does signifi-
cantly worse. This result may come as a surprise, however it is an artifact of our euphemistic use of the term
ÒoracleÓ. In the oracle model we assume, a store is allowed to issue only after both its data and address oper-
ands become available. As a result, dependent loads always observe the latency associated with store
address calculation, which in this case is 1 cycle to fetch register operands and 1 cycle to do the addition.
Under these conditions, dependent loads can access the store value only after 3 cycles the store has issued.
When the address-based scheduler is in place, a store may calculate its address long before its data is avail-
able and dependent loads can access the storeÕs value immediately. In an actual implementation, it may be
possible to overlap store address calculation and store data reception without using an address-based sched-
uler (e.g., [34, 84]).

3.9.4 Speculation/Synchronization

In this section we consider using an implementation of our speculation/synchronization approach to
improve accuracy over naive memory dependence speculation. As we have observed in the previous chap-
ter, in a continuous window processor that utilizes an address-based load/store scheduler along with naive
memory dependence speculation, mispeculations are virtually non-existent. In such an environment there is

Figure 3.3: Comparing oracle disambiguation and address-based scheduling plus naive memory
dependence speculation.

 ORACLE NAIVE 0-CYCLES NAIVE 1-CYCLE NAIVE 2-CYCLES

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-20%

-10%

0%

10%

20%

30%

40%

Harmonic Mean NAIVE over NO SPECULATION 0-CYCLE:

 INT: 6.64% FP: 6.51% ALL : 6.57% INT: -2.75% FP: 3.63% ALL : 0.79%

 INT: 4.81% FP: 6.26% ALL : 5.61% INT: -9.68% FP: 1.13% ALL : -3.68%

85

no need for our speculation/synchronization method. However, as we observed in Section 3.9.2, if an
address-based scheduler is not present then the net penalty of mispeculation resulting from naive memory
dependence speculation is significant. Moreover, and as we have seen in the previous section, the perfor-
mance potential of a method such a speculation/synchronization (oracle configuration of Figure 3.3) is often
close or exceeds the performance possible with an address-based scheduler with 0 cycle latency. Accord-
ingly, in this section we restrict our attention to a configuration that does not use an address-based load/store
scheduler. In the rest of this section we first provide the details of the speculation/synchronization mecha-
nism we simulated and then proceed to evaluate its performance.

The speculation/synchronization mechanism we used in these experiments comprises a 4K, 2-way set
associative MDPT in which separate entries are allocated for stores and loads. Dependences are represented
using synonyms, i.e., a level of indirection. The algorithm used to generate synonyms is the one described
in Section 3.6.6 with the only difference being that no unit distance is associated with each synonym (units
distances were used in the Multiscalar execution model). It is implied that a load is synchronized with the
last preceding store instance that has been assigned the same synonym. MDPT entries are allocated Ñif
they donÕt exist alreadyÑ upon the detection of a memory dependence violation for both offending instruc-
tions. No confidence mechanism is associated with each MDPT entry; once an entry is allocated, synchroni-
zation is always enforced. However, we flush the MDPT every million cycles to reduce the frequency of
false dependences (this method was proposed in [17]). The functionality of the MDST is incorporated into
the register-scheduler, which we assume to follow the RUU model [81]. This is done as follows: an addi-
tional register identifier is introduced per RUU entry to allow the introduction of speculative dependences
for the purposes of speculation/synchronization. Stores that have dependences predicted use that register
identifier to mark themselves as producers of the MDPT supplied synonym. Loads that have dependences
predicted by the MDPT, use that register identifier to mark themselves as consumers of the MDPT supplied
synonym. Synchronization is achieved by: (1) making loads wait for the immediately preceding store (if
there is any) that is marked as the producer of the same synonym, and (2) having stores broadcast their syn-
onym once they issue, releasing any waiting loads. A waiting load is free to issue one cycle after the store it
speculatively depends upon issues.

Figure 3.4, part (a) reports performance results relative to naive memory dependence speculation (Section
3.9.2). As it can be seen our speculation/synchronization mechanism offers most of the performance
improvements that are possible had we had perfect in advance knowledge of all memory dependences (ora-
cle). This is more clearly shown in part (b) of the same figure, where we report the relative over our specu-
lation/synchronization mechanism performance of oracle speculation. On the average, the performance
obtained by the use of our mechanism is within 1.001% of that possible with the oracle mechanism. For four
programs (126.gcc, 101.tomcatv, 102.swim and 107.mgrid) our mechanism results in performance that is
virtually identical to that possible with oracle speculation. For the rest of the programs the differences are
relatively minor (3% in the worst case) when compared to the performance improvements obtained over
naive speculation. To help in interpreting these differences we also present the mispeculation rates exhibited
when our mechanism is in place. These results are shown in Table 3.10 (reported is the number of mispecu-
lations over all committed loads). As it can be seen, mispeculations are virtually non-existent. This obser-
vation suggests that for the most part the performance differences compared to oracle speculation are the
result of either (1) false dependences, or (2) of failing to identify the appropriate store instance with which a
load has to synchronize with. False dependences are experienced when our mechanism incorrectly predicts
that a load should wait although no store is actually going to write to the same memory location. In some
cases and even when prediction correctly indicates that a dependence exists, our mechanism may fail to
properly identify the appropriate store instance. This is the case for memory dependences that exhibit non-
unit instance distances (e.g., a[i] = a[i - 2]). In such cases, a load is delayed unnecessarily as it is forced to
wait for the very last preceding store instance that has been assigned the same synonym.

86

The results of this section suggest that our speculation/synchronization method can offer performance that
is very close to that possible had we had perfect, in advance knowledge of all memory dependences. How-
ever, further investigation is required to determine how selective speculation and the store barrier policy
would perform under this processor model.

Figure 3.4: Performance of an implementation of speculation/synchronization.(a) Performance
improvements over naive speculation. (b) Relative performance of oracle speculation over our speculation/
synchronization.

0%

10%

20%

30%

40%

50%

 ORACLE SYNC

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

Harmonic Mean ORACLE over NAIVE: INT: 20.91% FP: 20.38% ALL : 20.61%

Harmonic Mean SYNC over NAIVE: INT: 19.71% FP: 19.09% ALL : 19.37%

0%

1%

2%

3%

(a)

(b)

Harmonic Mean O RACLE over SYNC: INT: 0.928% FP: 1.06% ALL : 1.001%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

87

3.10 Chapter Summary

In this chapter we studied how naive memory dependence speculation will interact with future, wide-win-
dow dynamically scheduled processors. Under naive memory dependence speculation a load is always
allowed to access memory when ambiguous dependences with preceding stores exist. We have shown that
as instruction windows get larger, the net penalty of dependence mispeculations can become significant. We
used this result to motivate techniques that aim at improving the accuracy of memory dependence specula-
tion. Moreover, we argued that the goals of these techniques should not only be (1) to reduce mispecula-
tions, but also (2) to delay loads only as long as it is necessary to avoid mispeculation. Accordingly, we
proposed memory dependence speculation and synchronization, a technique that uses history-based memory
dependence prediction to enforce synchronization of those load-store pairs that are otherwise mispeculated.

We have studied various memory dependence speculation policies using timing simulation of two proces-
sor models. The first utilized a distributed, split-window approach to establish a wide window (Multiscalar).
The second used a centralized window (typical, modern superscalar).

For the distributed, split-window processor model our findings were:
1. Naive memory dependence speculation offers significant performance improvements over no spec-

ulation. Speedups of roughly 50% and 180% were observed for the integer and floating point pro-
grams and for an 8-unit configuration.

2. Perfect knowledge of all memory dependences could potentially lead to a 31% (integer) and 17%
(floating-point) performance improvement over naive speculation (for the 8-stage configuration).

3. Using store address information to detect memory dependences and avoid mispeculations could
help if it was made available. The potential performance improvements were 8.8% (integer) and
3.0%. However, the net penalty of dependence mispeculations was still high.

4. Selective speculation, i.e., using prediction to avoid speculating on those loads that would other-
wise cause a mispeculation, is not a robust technique. In fact, for most programs it performed worse

Mispeculation Rate% Mispeculation Rate%

NAIVE SYNC NAIVE SYNC

099 2.5% 0.0301% 101 1.0% 0.0001%

124 1.0% 0.0030% 102 0.9% 0.0017%

126 1.3% 0.0028% 103 2.4% 0.0741%

129 7.8% 0.0034% 104 5.5% 0.0740%

130 3.2% 0.0035% 107 0.1% 0.0019%

132 0.8% 0.0090% 110 1.4% 0.0039%

134 2.9% 0.0029% 125 0.7% 0.0009%

147 3.2% 0.0286% 141 2.1% 0.0148%

145 1.4% 0.0096%

146 2.0% 0.0034%

Table 3.10: Memory dependence mispeculation rate with our speculation/synchronization mechanism
(ÒSYNCÓ columns) and with naive speculation (ÒNAIVEÓ columns).

88

than naive speculation.
5. We evaluated three alternative implementations of our dependence speculation and synchroniza-

tion technique and found that they could offer most of the performance benefits possible with per-
fect knowledge of all memory dependences. The speedups over naive speculation were: (1) 28%
and 15% (integer and floating-point), (2) 22% and 11% and (3) 20% and 9%, for the three mecha-
nisms respectively.

For the centralized, continuous window processor model that employed fetch and execution mechanisms
of equal bandwidth and a program order priority scheduler, our findings were:

1. Naive memory dependence speculation can improve performance over not speculating memory
dependences independently on whether loads can inspect preceding store addresses.

2. Exposing store addresses can eliminate virtually all memory dependence mispeculations. Perfor-
mance is close to that possible with perfect knowledge of all memory dependences if it takes no time
to inspect store addresses before performing a load. However, performance degrades when load
latency is increased.

3. The memory dependence speculation and synchronization technique we proposed could be useful
in a design that does not use an address-based scheduler to extract load/store parallelism. In this
environment, memory dependence mispeculations are frequent and the performance improvements
possible over naive speculation are rather large. Had we had perfect knowledge of all memory
dependences, performance would improve by 20.9% (integer) and 20.4% (floating-point). An
implementation of our speculation/synchronization method offers most of this potential, as it
resulted in performance improvements of 19.7% (integer) and 19.1% (floating-point). The potential
advantage of this design is that it may incorporate the load/store scheduling functionality over the
existing register dependence scheduler.

While most modern processors utilize a centralized, instruction window it is not unlikely that future pro-
cessors will have to resort to distributed, split-window organizations. As many argue, the reason is that the
existing, centralized methods may not scale well for future technologies and larger instruction windows
(e.g., [66]). An example were techniques similar to those we presented have been put to use already exists:
the Alpha 21264 processor utilizes both a split-instruction window approach and selective memory depen-
dence speculation to reduce the net penalty of dependence mispeculations [45]. As our results indicate,
techniques to predict and synchronize memory dependences can greatly improve the performance of future
split-window processors, allowing them to tolerate slower memory devices by aggressively moving loads up
in time while avoiding the negative effects of memory dependence mispeculations. Moreover, speculation/
synchronization may be used as a potentially lower complexity/faster clock cycle alternative to using an
address-based load/store scheduler for exploiting load/store parallelism.

89

Chapter 4

Speculative Memory Cloaking and Bypassing

In the previous chapter, we were concerned with techniques to send load requests to memory as early as
possible. Our goal was to exploit instruction level parallelism, tolerating slower memory devices by over-
lapping memory latency with other useful work. In this chapter we investigate a different, yet orthogonal
approach in our attempt to meet the latency and bandwidth requirements of high performance processing.
We observe that memory can be treated differently depending on whether it is viewed from the perspective
of single instruction or from the perspective of the program as a whole. From the perspective of a single
instruction memory appears simply as storage. However, when viewed from the perspective of the program
as a whole, memory can be treated as an interface used to synthesize a desired, possibly elaborate action.
This observation suggests another direction of improving performance: identifying what the intended action
is (i.e., what is memory being used for), and if possible, developing methods to perform the same action
faster.

In this chapter we identify two common uses of memory. The first is inter-operation communication
where a store writes a value to memory so that loads may later read it. The second is data-sharing where
memory is used to hold data which is read repeatedly. In both cases, we argue that the traditional, address-
based memory interface introduces both overheads Ñ in the form of address-calculation and disambiguation
Ñ and inconveniences in managing the storage structures used to implement memory. However, we also
observe that the traditional address-based way of expressing both actions is not the only possible way and in
particular, we argue that an explicit specification of either action has advantages. Specifically, in an explicit
representation of inter-operation communication the identity of the producing store is known by the consum-
ing loads and vice versa. As a result, values can flow directly from stores to loads without address calcula-
tion and disambiguation being necessary. Similarly, an explicit representation of data-sharing loads can
identify an earlier load that accesses the same data. This information can be used to place the repeatedly
read data into a separate name space where it can be accessed directly (i.e., by identifying the earlier load
that accessed it), without incurring the overheads associated with the traditional address-based memory.

Motivated by the aforementioned observations, we focus on methods of converting the traditional,
address-based specification of inter-operation communication and of data-sharing into an explicit form.

90

Observing that inter-operation communication between a store and a load manifests as a RAW dependence
and that repeated read accesses manifest as RAR dependences, we propose speculative memory cloaking
(cloaking for short), a technique that dynamically, and in an architecturally transparent way converts the tra-
ditional implicit specification of the two aforementioned actions into an explicit, albeit speculative specifica-
tion. In this technique, memory dependence prediction is used to transparently create a new, speculative
name space free of aliases. Via this new name space, (1) stores may pass values directly to the loads that
need it, and (2) loads may access data by identifying a preceding load that also read it. Since we make use of
memory dependence prediction, the proposed technique is speculative and so are the values obtained
through its use. Accordingly, value verification through the traditional memory name space is necessary.
However, as this verification can take place while the speculative values are used for further processing, the
observed memory latency is reduced; instructions that would otherwise wait for the traditional memory hier-
archy to provide a value may now execute earlier, possibly even before the memory access is initiated.

Aiming at further reducing memory value access latency, we observe that loads and stores typically do not
change the data they read or write respectively. These instructions are really used as agents retrieving or
placing memory data that other instructions produce or consume; the value written by a store is produced by
another instruction, while the value read by a load is passed to other instructions. Motivated by this observa-
tion we propose speculative memory bypassing (bypassing for clarity), a conceptually straightforward exten-
sion to cloaking. This technique speculatively bypasses loads and stores, linking producing and consuming
instructions directly. When inter-operation communication takes place, bypassing converts DEF-STORE-
LOAD-USE chains into DEF-USE ones, while when data sharing occurs, this technique consolidates a series of
LOAD1-USE1...LOADN-USEN chains into a single LOAD1-USE1...USEN producer-consumer graph. As with cloak-
ing, bypassing requires verification of the speculatively communicated values.

The rest of this chapter is organized as follows. In Section 4.1 we discuss the two common uses of mem-
ory that concern us and review the implications a traditional address-based interface has on performing
either of them. Here we describe the rationale for our proposed approach. In Section 4.2 we describe spec-
ulative memory cloaking and its requirements. In Section 4.3 we introduce speculative memory bypassing.
In Sections 4.2 and 4.3 we focus on inter-operation communication. Having described how cloaking and
bypassing works for inter-operation communication, we briefly explain how these techniques can be
extended to support data sharing. We do so in Section 4.4. In Section 4.5 we comment on related work. A
quantitative assessment of the proposed techniques is presented in Section 4.6. Finally, a summary of the
chapter is given in Section 4.7.

4.1 Two Common Uses of Memory

From the perspective of a single instruction, memory can be viewed as a storage mechanism: an instruc-
tion may read data from memory or write data to it. A simple interface is provided for both reading and
writing: instructions have to first calculate an address and then use it to access the corresponding memory
location. Although this is a simple interface it is also quite powerful and when viewed from the perspective
of the program as a while, memory can be used to synthesize elaborate actions. One common use of mem-
ory is inter-operation communication, where a memory location is used to pass a value from one instruction
to another. This inter-operation communication is performed using a store and a load: the store binds the
value to an address and the load has to access the value using the same address. Memory may also be used
to hold data that is read repeatedly by the program (data sharing). In this case, every time the value is
needed, a load instruction is used to bring it into a register so that other instructions can access it.

While the traditional memory address-based interface is simple and powerful, it is also general and as
such, it may introduce unnecessary overheads or inconveniences when used to express the aforementioned
actions. In the Sections 4.1.1 and 4.1.2, we discuss how the traditional memory interface impacts inter-oper-

91

ation communication and data sharing. In Section 4.1.3 we use this discussion to argue when an explicit
specification of these actions has advantages.

4.1.1 Memory as an Inter-operation Communication Agent

As we have seen in Chapter 2 a large fraction of all executed loads read a value written by a preceding
store. This observation suggests that memory is often used as an inter-operation communication agent pass-
ing values from stores to loads. Faster processing however, requires faster inter-operation communication
(latency). This is especially important for future wide-issue instruction-level-parallel processors, where
even a single cycle will correspond to many instruction issue opportunities. Furthermore, to support a
higher-degree of instruction level parallel execution, the mechanisms used to implement inter-operation
communication need to also support multiple simultaneous operations (bandwidth).

In the traditional, address-based memory interface, memory communication is expressed implicitly. The
load or the store provide no indication of the communication that has to happen. To detect the communica-
tion and establish the communication link both the store and the load have to calculate their address and go
through disambiguation. The latter action entails comparing the addresses of stores and loads taking pro-
gram order into account; a store and a load communicate if (1) they access the same address, and (2) no
intervening store (in the program order) accesses the same address. Both address calculation and disambig-
uation introduce overheads as the value may be available long before either action completes. An example is
shown in Figure 4.1 where communication is to take place between the STORE and LOAD instructions of
the code fragment shown in part (a). Part (b) shows a possible sequence events during execution. Initially
the store is fetched, its address is calculated and later the store data becomes available. Later on, the load is
encountered. At this point both instructions that need to communicate have been encountered and the value
is available. Yet, communication is delayed until LOAD has calculated its address and has passed through
disambiguation to establish the dependence with STORE. Depending on whether memory dependence
speculation is used (see Chapter 3), accessing the memory value may be further delayed until it is estab-
lished that no other intervening store accesses the same memory location. For example, LOAD may get
delayed until STORE1 also calculates its address and goes through disambiguation.

Even when the value becomes available after both the load and the store complete address-calculation and
disambiguation, we will still observe the latency associated with accessing the value through the memory

Figure 4.1: An example of inter-operation memory communication. (a) Program segment with a store and a
load that will communicate. (b) Timeline of execution. With an implicit specification, communication cam
take place after address-calculation and disambiguation. With an explicit specification communication can
take place as soon as the two instructions are encountered and the value becomes available.

STORE

STORE1

LOAD

P
ro

gr
am

 O
rd

er

STORE

STORE ADDRESS
STORE DATA

LOAD

LOAD ADDRESS

STORE1 ADDRESS

explicit

implicit

Execution Timeline

(a) (b)

92

hierarchy, i.e., through the store buffer or the data cache. It is likely that the memory hierarchy latency will
be higher for future wide-issue long instruction window processors. Here are a few reasons why this might
be the case. Store buffers may be slower as these processors will have to establish and scan through a larger
instruction window which will include more stores. Accessing the data cache may require more cycles as a
result of two trends. The first is the working set of typical programs which traditionally increases with time.
If caches have to increase in size to compensate for larger working sets, they may become relatively slower
[98]. The second is implementation technology. Many argue that as feature sizes decrease, wire lengths will
dominate [57] and this in turn may result in caches being slower. Finally, unless an increased number of
memory ports is provided, the lack of additional cache access bandwidth may manifest as an increase in
cache access latency.

4.1.2 Memory As A Value Place Holder

In Chapter 2 we have seen that many memory values are read multiple times. This is no surprise as after
all the temporal locality exhibited by programs can give rise to this phenomenon. As we demonstrate later
on however, locality is stronger when viewed in terms of the read-after-read dependences formed when two
or more loads access the same memory location. That is, if at some point we observe two loads accessing a
common memory location, chances are the same loads will soon access a common, but possibly different
memory location. As with inter-operation communication, overheads are introduced by the traditional
memory interface when accessing values repeatedly. Even though the value is not changed, the correspond-
ing loads have to calculate an address and go through disambiguation. The latency associated with access-
ing the value from the memory hierarchy is also incurred and the discussion of the previous section applies
in this case also. (While the mechanisms introduced in Chapter 3 can be used to avoid incurring the disam-
biguation latency before accessing memory all loads will still have to calculate an address and go through
the memory hierarchy to obtain their value.)

4.1.3 Using Memory Dependence Prediction To Streamline Memory Accesses

The overheads introduced by the traditional memory interface when performing inter-operation communi-
cation and when data sharing occurs can be eliminated if we opt for an explicit representation of both
actions. In an explicit representation of inter-operation communication the producing store and the consum-
ing load both know that communication will take place and can locate each other. As a result, communica-
tion can take place as soon as the two instructions are encountered and the value becomes available. Since
both instructions can locate each other, there is no need for address-calculation and disambiguation. Simi-
larly, in an explicit representation of data sharing, all loads that access a common memory location have
knowledge of this fact and can locate each other. As a result, loads may initiate their access by identifying
the first load in program order that accessed the common memory location. If that load has completed its
access, the value is available immediately without having to first calculate an address to locate it.

Both inter-operation communication and data-sharing give rise to dependences. Inter-operation commu-
nication gives rise to true (RAW) dependences and data-sharing gives rise to RAR dependences. An explicit
representation of either action requires a representation of the corresponding dependences. We could
attempt to determine and specify these memory dependences statically as for example, was done in dataflow
machines [18, 91]. Even though this is an interesting option, we will not consider it further for two main
reasons. First, a static representation would involve changing the program representation and would create a
legacy issue for future processor generations. Second, a static approach may have difficulty in identifying
that inter-operation communication or data-sharing takes place either because the dependences cannot be
determined statically (i.e., they are ambiguous) or because they are transient (i.e., do not occur every time).

93

For these reasons, we opt for a dynamic approach in which the conversion is done dynamically while the
program is running using architecturally invisible structures.

In the sections that follow we introduce cloaking where we utilize memory dependence prediction to
dynamically annotate loads and stores with the information necessary to identify inter-operation communi-
cation and data-sharing, allowing them to establish direct communication links. We do so as follows: the
first time a RAW or a RAR dependence is encountered we record the identities of the dependent instructions.
We use this dynamically collected dependence information to create a new, speculative name space and to
associate its names with the dependent instructions directly. This allows subsequent instances of the depen-
dent loads and stores to derive the corresponding name based solely on their identity (e.g., PC) and to locate
each other without having to perform address-calculation and go through disambiguation. As an additional
benefit, the name space created via memory dependence prediction, being more compact, can be mapped
onto a relatively small and for that, fast, storage structure. As we rely on speculative dependence informa-
tion any values obtained through our technique have to be eventually verified via the traditional memory
name space. This implies that the proposed technique does not eliminate the need to access a value via an
address. Even so, when speculation is successful, the proposed technique may reduce the latency observed
by those instructions that use the communicated value. This is possible when the value is available long
before the address-based access completes through the traditional memory hierarchy.

While cloaking may reduce memory access latency, inter-operation communication still occurs via stores
and loads and every access to shared data requires a separate load. Taking a closer look at inter-operation
memory communication we can observe that the store and load instructions used do not change the values
communicated (ignoring sign-extension and data-type conversions). They too are part of the memory inter-
face acting as agents that write and read values from memory locations. The value written by a store is actu-
ally produced by another instruction and passed to the store via a register. The value read by a load is not
consumed by the load itself, rather it is propagated to other instructions that use it for further processing.
These observations suggest that further reduction in communication latency may be possible if we bypass
the load and store instructions, linking the producing and consuming instructions directly. Similar observa-
tions apply to data-sharing, where multiple loads are used to propagate the same memory value to multiple
consuming instructions. This observation suggests that further reduction in memory latency may be possible
if we bypass all but the first load, linking all the consumers of the accessed memory value directly with the
first load. To link producing and consuming instructions directly, bypassing loads and stores, we introduce
speculative memory bypassing.

Figure 4.2: Speculative Memory Cloaking and Bypassing. (a) Inter-operation communication: exploiting
read-after-write dependences. (b) Data sharing: exploiting read-after-read dependences.

LOAD RY

USE RY

Cloaking

B
yp

as
si

ng

Memory

(a)

LOAD RZ

USE RY

USE RZ

Cloaking
Byp

as
sin

g
DEF RX

STORE RX

LOAD RY

(b)

94

Figure 4.2 illustrates the effect we aim to achieve with cloaking and bypassing. As shown, cloaking per-
mits loads to obtain a speculative value by locating a preceding store or load that wrote or read it respec-
tively. In the case of inter-operation memory communication, bypassing links directly the actual producer
and consumer of a value. In the case of data sharing, bypassing links one of the loads with all the consumers
of shared memory value.

The rest of this chapter is organized as follows. In Section 4.2 we describe cloaking and then in Section
4.3 we present bypassing. Initially, we describe both techniques in the context of inter-operation communi-
cation. With an understanding of what is involved in streamlining inter-operation communication via cloak-
ing and bypassing, we describe how these techniques can be extended to also handle data sharing in Section
4.4.

It should be noted that the discussion that follows and the mechanisms presented are geared toward a con-
tinuous instruction window instruction-level parallel processor. However, cloaking and bypassing may be
applicable in other environments where inter-operation communication and data-sharing through memory
occurs (e.g., split-window processing models as Multiscalar or explicitly parallel processing models).
Changes may be required in the schemes producers and consumers use to locate each other in those environ-
ments. For example, in Chapter 3 we saw how a different naming scheme was used in the Multiscalar archi-
tecture Ñnon-continuous, split window Ñ to identify instances of loads and stores (we used a PC, stage
number pair). Nevertheless, the concepts that underline these techniques may still apply.

4.2 Speculative Memory Cloaking

The purpose of cloaking is to streamline memory communication by dynamically converting the implicit
specification of communication into an explicit form. In cloaking, memory dependence prediction is used to
identify loads and stores that are likely dependent. The high-degree of locality found in the dynamic depen-
dence stream of the programs we studied (Chapter 2) suggests that such an approach may be successful. In
cloaking, once a dependence is deemed predictable, the dependent load and store are explicitly linked via a
new name, a synonym which uniquely identifies the dependence (e.g., the synonym can be the (load PC,
store PC) pair). One may wonder how using a different name may help in streamlining the actual communi-
cation. After all, data addresses and synonyms are just names that the dependent instructions use to link to
each other. The answer lies in the nature of the association between the name and the instructions that use it
and in the information associated with the existence of the name itself. In contrast to an address, the syn-
onym is intended to uniquely identify the dependent instruction pair. This allows the load and the store to
derive the synonym based solely on their identity (PC) locating the appropriate value without having to first
perform an address calculation and go through disambiguation. Furthermore, the mere association of a syn-
onym with a load or a store is intended to indicate that the instruction is involved in inter-operation commu-
nication.

The process of cloaking is illustrated in Figure 4.3. As shown in part (a), detecting a load-store depen-
dence results in an association among the load, the store and a function that can be used to derive preferably
unique synonyms for future instances of the dependence. When a subsequent instance of the store instruc-
tion is brought into the instruction window and a dependence is predicted (part (b), action 1), this association
results in the generation of a synonym and in the allocation of physical storage for this synonym (action 2).
Storage for the synonym is preferably provided in the Synonym File (SF) which is a small, low latency/high
bandwidth storage structure. The storage element is initially marked as empty, indicating that no value is yet
available. When the store obtains its value, it also updates the synonym file entry marking it as full (action
3). Finally, when the store computes its address, the value is also written to the traditional memory system
(action 4). When the appropriate instance of the load is encountered, the memory dependence prediction
mechanism is probed. Provided that the dependence is predicted correctly, the association is used again to

95

derive the synonym (part (c), action 5) and consequently, to locate the appropriate element in the synonym
file (part (c), action 6). Instructions that use the load value may at this point execute speculatively using the
value found in the synonym file (action 7). When the loadÕs address becomes available, the memory system
is accessed to read the actual value (action 8). The memory value is compared with the value obtained ear-
lier via the cloaking mechanism. If the two values are the same, cloaking was successful and no further
action is required. Otherwise, data value mispeculation occurs, and any instructions that used wrong data
have to be re-executed. It should be noted that the above discussion covers one possible sequence of events.
In practice, events may occur in a order different than the one just described. For example, the load may be
encountered before the store writes a value in the synonym file. In any case, cloaking still provides the ben-
efit of establishing a communication link early without requiring address-calculation and disambiguation.

We use the term memory cloaking to signify that the original address-based specification of memory com-
munication and the mechanisms used to implement memory itself are hidden when values are communi-
cated via cloaking. With this technique, communication takes place through a dynamically created name
space and without knowledge of the address used by the program. No association between the storage used
by the synonym and the address is ever built. Furthermore, we clarify the technique as speculative since the
use of speculative dependence information makes communication via cloaking speculative.

Speculative memory cloaking requires the following functionality: (1) predicting dependences, (2) creat-
ing synonyms, associating them with the dependent instructions and assigning storage for the communica-
tion, and (3) verifying the speculatively communicated values. In Sections 4.2.1 through 4.2.3 we discuss
each of these requirements in detail. Finally, we present an implementation of cloaking in Section 4.2.4.

Figure 4.3: Streamlining memory communication via cloaking: (a) Detecting a read-after-write dependence
results in an association between the dependent load and store. (b) A subsequent instance of the store
creates a synonym. (c) A subsequent instance of the load locates the synonym and uses its data speculatively.

Traditional Memory
Hierarchy

load

store load
association

 f: synonym

Synonym File

 synonym
address

5

6
8

7

Traditional Memory
Hierarchy

address

store

load

Dependence

Traditional Memory
Hierarchy

store

store load

association

 f: synonym

Synonym File

1

2

synonym
3

4

addressstore load

association

 f: synonym

(c)

(a) (b)

96

Before we proceed with our description we should note that in the discussion that follows we make the
assumption that the value read by a load is always produced by a single store. However, since loads and
stores may operate on different data types, this might not be always the case. While support for memory
communication among loads and stores that operate on different data types might be possible [62] we do not
consider such options here because as we have seen in Chapter 2, such dependences rarely occur in practice.

4.2.1 Detection and Prediction of Dependences

For cloaking to be successful, we have to be able to predict memory dependences. As the results of Chap-
ter 2 indicate, programs behavior is such that history-based prediction could potentially be used to predict
memory dependences with high accuracy. For history-based prediction to be possible we need: (1) a mech-
anism to detect RAW dependences, and (2) a mechanism to record information about detected RAW depen-
dences and to use this information for prediction purposes. In the rest of this section we first discuss a
mechanism that can be used to detect RAW memory dependences and then discuss a history-based RAW
memory dependence predictor.

Since history-based predictors rely on information about past behavior to make their predictions, we first
need a mechanism to detect store-load dependences. There are two considerations: (1) how dependences
should be reported by the detection mechanism, and (2) what is the desired scope of this mechanism (i.e.,
how many loads and stores it should detect dependences for). Given that we have decided to associate pre-
dictions with the instructions themselves (a property that allows us to access values using instruction-based
information), the detection mechanism should provide sufficient information to identify the two dependent
instructions. For the purposes of this work we require that the dependence detection mechanism indicates
dependences using the PCs of the dependent instructions by reporting dependences as (store PC, load PC)
pairs. Moreover, for the purposes of cloaking it is desirable to predict dependences on as many loads and
stores as possible (in contrast to the applications we presented in Chapter 3, where we only cared about those
loads and stores that are mispeculated). As the analysis of Chapter 2 suggests, to capture a large fraction of
the dynamic dependences we need to be able to detect dependences over several addresses (e.g., 256), pref-
erably over regions that most likely exceed the instruction window used. This is possible if we maintain a
record of recent stores (e.g., their PC) along with the memory address each touched. Dependences can be
detected when loads access memory by inspecting these records to determine which was the last store, if any
that updated the particular memory location. At this point the identities of both the load and the store are
known. A relatively inexpensive and straightforward implementation is via a Dependence Detection Table
(DDT) which is nothing more than a regular but very small cache that records the PC of the store that last
touched each recorded address. Note that since the information collected by the detection mechanism is
used only for prediction purposes, relatively long detection latencies and detection errors may be tolerable.

With a dependence detection mechanism in place, the next step is devising a history-based dependence
prediction scheme. The most straightforward prediction scheme is to record and predict dependences as
(load PC, store PC) pairs. Unfortunately, such a scheme may have to predict among many possible depen-
dences since, as we have seen in Chapter 2, different instances of the same static store often observe depen-
dences with instances of different static loads and vice versa. Furthermore, with such a scheme we may have
to predict multiple dependences per dynamic store when its value is used by many loads. For these reasons,
it is conceptually convenient to treat dependence prediction as a two step process. In the first step, a predic-
tion is made on whether the given load or store has a dependence (i.e., the dependence status of the instruc-
tion), and in the second step, a prediction is made to decide with which load or store the dependence is with.

In Chapter 2 we have seen that the dependence status of instructions rarely changes. This observation sug-
gests that in predicting whether a dependence exists, high-accuracy should be possible. Predicting the actual
dependence however, requires more effort. Although it is conceivable and desirable to design a predictor

97

that attempts to predict the actual dependence directly, we found it sufficient for the purposes of this work to
use a level of indirection in representing dependences. To do so we use a scheme which assigns a common
tag to all dependences that have common producers (stores) or consumers (loads) and uses that tag to iden-
tify all these dependences collectively. We can then determine which of all the possible dependences is cur-
rently observed by a mere inspection of the incoming instruction stream (this is similar to what is done for
register dependences). Assignment of these tags can be done using an incremental approach. We explain
this method using the example code fragment of Figure 4.4 part (a). There are two read-after-write depen-
dences in this code: (STORE1, LOAD) and (STORE2, LOAD). The first time the loop iterates, one of the depen-
dences, for example the (STORE1, LOAD), is detected. A new tag is allocated and associated with both
STORE1 and LOAD. When later the (STORE2, LOAD) dependence is detected, we associate the same tag with
STORE2 also (the tag is readily available as it is associated with LOAD). When this method is used it is possi-
ble to encounter a case where a dependent store and load have different tags assigned to them. Consider for
example the code fragment of Figure 4.4, part (b). There are four possible dependences among the two store
and the two load instructions. It is possible to encounter dependences in the following order: first (STORE1,
LOAD1), then (STORE2, LOAD2), and finally, (STORE1, LOAD2). When the first two dependences are detected,
two different tags are assigned to each of them as they share no instructions. As a result, when the third
dependence is encountered, STORE1 and LOAD2 already have tags assigned to them which, unfortunately are
different. At this point it is desirable to merge all dependences together by assigning one common tag to all
four instructions. One way of achieving this is by replacing all instances of one tag with the other [62].
Doing so would probably require a broadcast mechanism, an undesired feature. Alternatively, we could use
an incremental approach as the one suggested by Chrysos and Emer in the context of speculation/synchroni-
zation [17] (we have described this approach in Section 3.6.6). Throughout the evaluation of cloaking and
bypassing we make use of this incremental approach noting that we observed virtually no difference com-
pared to a full merge mechanism.

4.2.2 Synonym Generation and Communication

In this section we discuss methods of generating synonyms for predicted dependences and how these syn-
onyms are used by loads and stores to perform speculative communication. In cloaking, stores initiate the
communication by generating a synonym in reaction to the prediction of a dependence. The synonym has a
dual role: (i) it identifies the specific instance of the dependence (or dependences in the case of multiple con-
sumers), and (ii) it is used as a handle by the dependent instructions to locate the storage element through
which the communication will take place.

The exact encoding of the synonym is not important. However, it is desirable for the naming scheme used
to provide different synonyms for unrelated communication at any given point of time. This may require
generating different synonyms for different instances of the same static dependence when these instances are
simultaneously active (e.g., the values have not been consumed yet). We approach this issue by separating
memory dependences into two categories: (1) those dependences whose instance lifetimes are distinct in the

Figure 4.4: Code fragments that have multiple true dependences.

loop:
if (cond) STORE1 Ma
else STORE2 Ma
LOAD Ma

loop:
if (cond) STORE1 Ma
else STORE2 Ma
if (cond1) LOAD1 Ma
else LOAD2 Ma(a)

(b)

98

original program order, and (2) those dependences whose instance lifetimes overlap in the original program
order. Figure 4.5 shows examples illustrating these two cases: parts (a) and (b) show dependences that fall
into the first category, while parts (c) and (d) show dependences that fall under the second category. As
shown in part (b) dependence lifetimes do not overlap when the loop of part (a) is executed, however, as
shown in part (d), when the loop of part (c) is executed, dependence lifetimes do overlap. The key distinc-
tion between the two categories is that in the second category, in between the dependent store and load, other
instances of the store may be encountered (as shown in part (d) of Figure 4.5, the Òstore a[11]Ó appears in
between the dependence (store a[10], load a[10])). In either case, assigning a new synonym to every instance
of the store instruction is straightforward and can be done in numerous ways (for example, using a global
counter). The challenging part is having the instances of the corresponding loads locate the appropriate syn-
onym also. For dependences of the first category the functionality is similar to that used for register renam-
ing (ignoring the potential size of the synonym name space). All we need to do is record the last synonym
associated with each dependence. This can be done when the synonym is created by associating the tag rep-
resenting the dependence with the synonym. The load can then locate the synonym and the corresponding
store by using the dependence tag supplied by the memory dependence predictor.

For dependences that fall into the second category just recording the very last synonym assigned to the
dependence is not sufficient. Instead, loads will have to determine which of all synonyms is the appropriate
one. For example, in part (d) of Figure 4.5, Òload a[10]Ó will have to locate the synonym assigned to Òstore
a[10]Ó and not to Òstore a[11]Ó. While support for these kind of dependences may be possible (i.e., providing
a mechanism that allows loads to select among multiple instances of a store), we note that providing this
support is not a requirement as it represents only a potential for increased performance. Accordingly, in this
work we restrict our attention to synonym generation schemes that work correctly only for dependences
whose instance lifetimes do not overlap (i.e., exhibit unit instance distances). However, even though we do
not report these results, we note that we have experimented with a prediction mechanism that attempted to
guess instance distances greater than one using an incremental approach (i.e., initially a dependence distance
of 1 is tried and if that fails, a dependence distance of 2 is tried and so on). We found that while this mecha-
nism was successful in handling cases where instance distances remained constant, it couldnÕt distinguish

Figure 4.5: Examples illustrating dependences whose lifetimes do not overlap (part (a)) or do overlap (part
(b)). Dependences are marked with thick arrows. Dependence lifetimes are marked with thin arrows.

for (i = 1; i < N; i++)

a[i] = a[i - 1]

(a)
store

load

for (i = 1; i < N; i++)

a[i] = a[i - 2]

(c)
store

load

load a[10]

store a[11]

load a[11]

store a[10]

load a[9]

store a[11]

load a[10]

store a[10]

Pr
og

ra
m

 O
rd

er

Pr
og

ra
m

 O
rd

er

(b) (d)

dependence

lifetime

99

between incorrect instance distance predictions and dependence mispredictions. As a result, for virtually all
programs prediction accuracy dropped significantly.

To perform the communication, physical storage has also to be provided for synonyms. The storage ele-
ments should provide space for the data value and an indication on whether the value is currently available.
Finally, mapping synonyms to storage elements can be done in a variety of ways (e.g., using a direct mapped
or a fully associative organization).

4.2.3 Verification

Because the communication that takes place in cloaking is based on dependence prediction, any values so
obtained are speculative and have to be verified. This can be done by letting the dependent instructions also
communicate via memory. The support required for invalidating and re-executing instructions that used
incorrect data is no different than that required for memory dependence or value speculation [54]. Two
options have been proposed to date: (i) squash or (ii) selective invalidation. In squash invalidation, all
instructions after the mispeculation point are invalidated and re-executed. In selective invalidation only
those instructions that used incorrect data are re-executed. While squash invalidation requires no more hard-
ware than what is typically found in modern processors (it is also used to support control speculation) its
performance penalty is relatively high. Selective invalidation on the other side offers relatively low perfor-
mance penalty at the expense of added hardware cost and complexity. In fact, support for selective invalida-
tion is in our opinion still in an experimental phase and whether such mechanisms are practically possible is
still unknown.

4.2.4 Implementation Aspects

In this section we describe an implementation of the speculative memory cloaking technique and explain
its operation by means of an example. Our goal is to demonstrate the feasibility of the required mechanisms
and to provide insight about their complexity. A discussion of how the various components can be inte-
grated in a typical pipeline is given in Section 4.6.6, where we discuss the exact mechanism we used to eval-
uate the performance impact of cloaking.

We partition the support structures in the following: (a) dependence detection table (DDT), (b) depen-
dence prediction and naming table (DPNT), and (c) synonym file (SF). As we explained earlier, the DDT is
used to detect dependences. An entry of this table consists of the following fields: (1) Data Address
(ADDR), (2) Store PC (STPC) and (3) a valid bit. This information identifies the store that last updated the
given word data address. The DPNT is used to identify, through prediction, those loads and stores that have
dependences. It also provides the tags that are used to create synonyms for the dependences. An entry of this
table comprises the following fields: (1) instruction address (PC), (2) dependence predictor (PRED), (3)
dependence tag (DTAG), and (4) a valid bit. The instruction address identifies the load or the store this entry
corresponds to. The purpose of the dependence predictor field is to provide an indication on whether a
dependence exists. Finally, the dependence tag field is used to identify the dependences of this instruction.
The SF is used to provide storage for synonyms. SF entries have the following fields: (1) name, (2) value, (3)
full/empty bit, (4) valid bit. Based on the exact configuration used, some of the fields may not be required
(e.g., we may not use a name field in a direct mapped SF) and some structures can be combined (e.g., we can
merge the DPNT and the SF, or the register file and the SF).

The exact function and use of the support structures is best understood by means of an example. In the
discussion that follows we use the working example of Figure 4.6 to demonstrate how an earlier detection of
a dependence between a store and a load results in the streamlining of the inter-operation communication the

100

next time the same dependence is encountered. In the discussion that follows we assume that the dynamic
dependences result from the execution of the loop shown in part (a). Dynamically, a series of dependences
will be observed between instances of the marked load and store. Each of the dynamic dependences will
map to a different memory address (we assume that new space is allocated for each token).

In parts (b) and (c) we show the actions that lead to the detection of the dependence. In part (b), the first
instance of the store executes and records in the DDT its PC and the data address it updated (action 1). Later
on, in part (c), the first instance of the load using its data address probes the DDT (action 2) and determines
that a dependence exists with the recorded the store. In reaction to this detection, two entries are allocated in
the DPNT one for the load and one for the store (action 3). In addition, a tag is created for the dependence,
and it is recorded in both entries. (Since the operation of the DDT has been described in steps 1 through 3, it
is not shown in the remaining parts of the figure.)

In parts (d) through (f) the actions that lead to the cloaking of a later instance of the dependence recorded
in part (c) are shown. Cloaking is initiated when, as shown in part (d), a later instance of the store enters the

Figure 4.6: Speculative Memory Cloaking: working example.

LDPC Pred DTAG 1
STPC Pred DTAG 1
LDPC Pred DTAG 1

DPNT

0
0

SF
DTAG 0 empty

f/e

store

4

5

STPC Pred DTAG 1
LDPC Pred DTAG 1

DPNT

0
0

SF
DTAG 1 value

f/e

store

6

STPC Pred DTAG 1
LDPC Pred DTAG 1

DPNT

0
0

SF
DTAG 1 value

f/e

load

8

9

store

load

loop:

t = AllocateToken()

SetToken(t)
...

ActOnToken(t)
...

SetToken(t):
t->type = ...

ActOnToken(t):

switch (t->type)
...

...

DPNT

0
0

1

ADDR STPC
DDT

STPC Pred DTAG 1
DPNT

0
0

3

ADDR STPC

DDT

0
0

2

Memory
Hierarchy

Memory
Hierarchy

Memory
Hierarchy

7
10

11

valid

(a)

(c)

(e)(f)

(d)

(b)

store

load

101

instruction window. The PC of the store is used to probe the DPNT for a matching entry (action (4)), and
since one is found, its predictor is used to determine whether cloaking should occur. Assuming that the pre-
dictor indicates so, a synonym is generated based on the tag recorded in the DPNT entry (for the purposes of
this discussion the tag of the DPNT and the synonym are the same), and it is used to allocate space in the SF
(action 5). The full/empty bit of the SF entry is set to empty to indicate that the value is not yet available,
whereas, the store also records the location of the SF entry since the actual data value, when it becomes
available, will have to be written in the SF entry (part (e), action 6). Eventually, the store also accesses the
traditional memory hierarchy (part (e), action 7).

When the next instance of the load enters the window (part (f)), as it was done previously with the store,
its PC is used to probe the DPNT (action 8). After a match is found and a dependence status prediction is
made, the tag recorded in the DPNT entry leads to the generation of the same synonym generated previously
for the store. This synonym is used to access the appropriate SF entry (action 9) and to obtain the data left
there by the store. At this point the load may use this data to execute speculatively (action 10). Later on,
when the data address becomes available, the load accesses the traditional memory hierarchy to obtain the
actual data value (action 11). This value is compared against the value read previously from the SF and
appropriate action is taken if the two values differ. At this point we may also update the predictors in the
DPNT entries for both the load and the store (to locate the DPNT entry for the store the SF entry will have to
record the storeÕs PC).

4.3 Speculative Memory Bypassing

With cloaking, values can flow quickly from stores to loads. However, in typical load/store architectures,
stores and loads do not compute values. Loads and stores are simply used to pass the values that some other
instructions produce to some other instructions that consume them. Which is to say that loads and stores are
part of the memory interface acting as agents between the register and memory name spaces. It is interesting
to consider why memory is used for the communication instead of registers. One reason is that the register
name space is relatively small. When there are more live values than registers, memory is used. Another
reason is programming conventions (for example, caller- and callee-saved registers). Another reason is that
in some cases the compiler is unable to establish the dependence statically. Finally, because of the limited
addressability of registers, memory has to be used to implement many commonly used data structures.

In this section we present speculative memory bypassing, a conceptually straightforward extension to
speculative memory cloaking that aims at eliminating the overheads associated with performing memory
communication via loads and stores. Speculative memory bypassing converts DEF-store-load-USE chains
into DEFÐUSE chains whenever the load-store dependence is predicted and the DEF and USE instructions co-
exist in the instruction window. In this case, the value can speculatively flow directly from the actual pro-
ducer (DEF) to the actual consumer (USE). This concept we illustrate in Figure 4.7 using the DEFÐstoreÐ
loadÐUSE chain shown in part (a). Even though cloaking may allow the value to be speculatively communi-
cated between the store and the load, the value will still have to travel through these two instructions before
it can reach USE. However, as shown in part (b) with speculative memory bypassing, the value can be sent
directly from DEF to USE. As was the case with cloaking, this communication is speculative and has to be
verified via the traditional memory name space. This does not necessarily imply that we have to access the
memory system. (For example, we might be able to establish that the value is correct by comparing the
addresses of loads and stores. In this case, bypassing and cloaking may also help in reducing data cache
bandwidth. However, we do not investigate this option.)

Speculative memory bypassing can be implemented as a straightforward extension to speculative memory
cloaking. We explain the exact process using the working example of Figure 4.7, part (c). At step (1),
instruction DEF is decoded and register renaming creates a new name, TAG1, for the target register R1. At

102

step (2), the store instruction is decoded and as part of register renaming determines the current name TAG1
of its source register R1. In parallel, via the use of cloaking, a synonym is created for the memory commu-
nication. To perform bypassing, at this point we associate the synonym with the current name TAG1 of the
storeÕs source register R1 (this association can be done by recording the register in the synonym file). At
step (3), the load instruction is decoded and register renaming creates a new name TAG2 for the destination
register R2. In parallel, via the use of cloaking, the load locates the synonym and hence determines the name
TAG1 of the storeÕs source register R1. In doing so, the load has determined the storage (e.g., physical regis-
ter or reservation station) where the actual producer DEF will place or has placed the value. This name is
speculatively associated with the target of the load R2. This way, when at step (4) USE is decoded, it can
determine that its source register R2 has two names: one actual TAG2 and one speculative TAG1. By using
the speculative name TAG1, DEF can link directly to use and execute speculatively as soon as DEF produces
its value. Later on, after the load has accessed memory, the integrity of the communication can be verified.

Note that speculative memory bypassing naturally extends for dependence chains that include more than
one memory dependence; whenever a store detects that its source register has a speculative name, it can opti-
mistically pass it via the synonym. However, we do not study such an extension in our evaluation. More-
over, speculative memory bypassing becomes more attractive when a store has multiple dependences as it
may help in further reducing latency compared to cloaking when write-back bandwidth is limited. In such
cases and when only cloaking is used, each of the loads that get a value from cloaking will need to individu-
ally propagate this value to their dependent instructions. When write-back bandwidth is limited (for exam-
ple the store had dependences with four loads and there are only two write-back ports available) propagating

Figure 4.7: Speculative Memory Bypassing. (a) Communication path followed when the traditional memory
interface is used. (b) Communication path followed when speculative memory bypassing is in use. (c) How
the store and the load are taken off the communication path. (d) Simultaneous bypassing of multiple RAW
dependences.

STORE R1

DEF R1

USE R2

LOAD R2

DEF R1

USE R2

STORE R1

LOAD R2

(1) Bypass

(2) Verify

DEF R1
STORE R1

1 2

 R2 TAG1 TAG2

3 4synonym

LOAD R2
USE R2

R1 TAG1

 TAG1

(a)

(c)

(b)

Cloaking

STORE R1

DEF R1

USE R2

LOAD R2

Cloaking

LOAD R3

USE R3

Bypassing

(d)

103

the speculative value will be delayed. When bypassing is used, all dependent instructions will obtain a spec-
ulative value as soon as the actual producer executes.

Finally, bypassing can also be used to eliminate the need for an explicit synonym file at the expense of
reduced coverage. In such a design, prediction will have to be restricted to only those dependences that are
visible from within the instruction window. In this case, no synonym file is required as bypassing associates
synonyms with pre-existing storage elements (i.e., physical registers or reservation stations).

4.4 Extending Cloaking and Bypassing to Support Data-Sharing

Having presented how cloaking and bypassing can be used to reduce the overheads associated with com-
municating values through the traditional memory name space, in this section we explain how these methods
can be extended to also streamline data-sharing through memory. Data-sharing occurs when a memory
value is accessed more than once. Data-sharing is possible even when the value was written by a store. The
case that interests us here is when no producing store is visible through the dependence detection and predic-
tion mechanisms. This is possible when: (1) the value was produced outside the scope the program (for
example via a system call or the value is a constant), (2) the store that wrote the value has executed long ago
escaping detection, and (3) when the store-load dependences are not stable enough to facilitate prediction.

Extending cloaking and bypassing to also support read-after-read dependences is straightforward. All we
need to do is detect read-after-read dependences and treat some of the loads as producers of values. Detect-
ing read-after-read dependences can be done by recording loads in the dependence detection table whenever
no store is found at the same address. When subsequent loads access memory, they can also access the
dependence detection table and identify the preceding load that also accessed the same memory address. At
this point we can mark the preceding load as a candidate for read-after-read cloaking and bypassing (this can
be done using an additional bit indicator in the DPNT entry). The next time that load is encountered, we can
use the existing cloaking and bypassing mechanisms to associate the loaded value with a synonym. The
only difference is that for bypassing purposes, loads should be treated as the actual producers of values in
contrast to stores that write a value that some other instruction is producing. That is, in this case we convert
a series of LOAD1-USE1...LOADN-USEN chains into a single LOAD1-USE1...USEN producer-consumer graph.

4.5 Related Work

Techniques related to cloaking and bypassing can be broadly classified into the following categories: (1)
techniques to eliminate memory communication via register allocation, (2) techniques to reduce load latency
via address or value prediction, and (3) techniques that attempt to link loads and stores similarly to what is
done in cloaking.

4.5.1 Register Allocation Alternatives

An obvious alternative to cloaking is register allocation where instead of using a memory location to pass
or hold a value a register may be used. Register allocating a value eliminates the need for load or store
instructions and memory communication altogether. However, it is not always possible to register allocate a
value for the following reasons: The register name space is typically limited in size (e.g., 32) and as a result,
space may not be available to register allocate a value. Some dependences (RAW or RAR) may not be
detectable statically either because ambiguous dependences exist or because dependence behavior is
dynamic in nature. Registers also offer limited addressability. Other reasons why memory allocation may
be used include calling and other programming conventions (e.g., dynamically linked libraries and objects).

104

In this context, a related technique is the C Machine Stack Cache proposed by Ditzel and McLellan in [19].
In their proposal, a small data cache is introduced on which stack allocated variables can be mapped. Using
a combination of software (ISA extensions) and hardware, memory references to stack variables are redi-
rected to this the stack cache (provided that the stack pointer value is available before the corresponding
instruction is prefetched into the instruction cache).

To reduce the amount of memory communication that results from increased register pressure, a larger
register name space may be used. While this approach is conceptually straightforward, it is not free of trade-
offs and of implications. Increasing the set of architecturally visible registers requires changes in the ISA.
Finding opcode space to accommodate wider register specifiers may not be possible without increasing the
width of instructions. In the latter case, care must be taken to avoid performance degradation due to second-
ary, I-cache effects. Furthermore, an increased register file may lengthen the base cycle time of the proces-
sor and increase the amount of information that has to be check-pointed on context switch.

Better disambiguation methods (see Chapter 3 for pointers) may help in reducing the communication that
results from ambiguous dependences. Dietz and Chi proposed Cregs a hybrid software/hardware approach
to register allocation in the presence of ambiguous memory dependences. In their proposal, registers are
augmented with memory address tags. This facilitates the register allocation of memory values in the pres-
ence of ambiguous memory dependences. Hardware is responsible for keeping these registers coherent with
memory. The goal of this technique is avoiding accessing memory whenever no aliases exist. There is no
provision to allow re-ordering of instructions that use CReg allocated values.

While inter-procedural register allocation [93, 49] may help in reducing the memory traffic caused by the
various programming conventions, such approaches are also not trade-off-free and may not always be appli-
cable. For example, an inter-procedural register allocator may have to rely on cloning (i.e., creating a spe-
cialized copy of the called function) and for this reason may have to balance cloning possibilities against
increases in instruction-cache footprint. Inter-procedural register allocation may also be limited by impre-
cise call-graph information and by the use of dynamically linked objects and libraries. Compared to the
aforementioned techniques, a potential advantage of cloaking and bypassing is that they need not be archi-
tecturally visible and do not require any changes to existing codes and architectural interfaces. Moreover,
both techniques offer the possibility of capturing memory behavior that is not detectable statically.

4.5.2 Address Prediction Based Techniques

Numerous techniques that attempt to predict the data addresses of loads and stores have been proposed to
reduce the access latency of loads both in hardware and in software [5,7,9,21,30,51,74]. Even though no
attempt is made to establish explicit links between dependent instructions, these techniques may, as a side
effect, reduce the latency of the communication of load-store or load-load dependences. These techniques
may do so, provided that the data address accessed by the load is correctly predicted and that the source store
or load has executed (i.e., both the data address and value are available). Cloaking may streamline the com-
munication even if the access pattern defies prediction and does not require that the store address is known in
the case of store-load dependences.

A closely related technique to the ones mentioned in the previous paragraph is sum-addressed memory or
SAM [55]. While not a prediction technique, SAM can be used to reduce the latency associated with address
calculation. In SAM, address calculation takes place in the decoder array of the data cache itself. Even in
this case, cloaking and bypassing may offer additional latency reduction for the following reasons: (1) the
synonym file access latency may be shorter compared to the 1st-level data cache latency due to size differ-
ences, (2) either of the dependent instructions may have not calculated their addresses when the data

105

becomes available, and (3) the source instruction may have left the instruction window so that the dependent
load can obtain its value at the time it enters the instruction window.

Finally, although not an address prediction technique the Knapsack [8] proposed by Austin, Vijaykumar
and Sohi, provides a method of reducing load access latency to 0 cycles. In this approach a data cache, the
knapsack, is introduced at the decode stage of the pipeline and is mapped onto a continuous portion of the
memory address space. Zero access latency is achieved by accessing the knapsack in the decode stage using
just the offset field of the opcode. By utilizing appropriate values for the base register, the offset field is
often sufficient for locating the appropriate storage location in the knapsack.

4.5.3 Value Prediction

A technique closely related to the cloaking is load value prediction [54], a special case of value prediction
[53]. In this technique, a prediction is made on the value that a load will read. As with cloaking, the predic-
tion can be done early in the pipeline using, for example, the PC of the load instruction. This technique may
effectively reduce the latency of memory communication independently of whether the corresponding load
has a dependence or not. The success of this approach relies on the ability to track and predict the actual val-
ues. The fundamental difference between value speculation and cloaking is that cloaking does not directly
predict the loaded value, rather it predicts its producer or another load that also accessed the same location.
While load value prediction relies on regularity in the load value stream, cloaking relies on regularity in the
memory dependence stream. As we will demonstrate in the evaluation section, dependence regularity is
stronger than value regularity for a significant fraction of executed loads (Section 4.6.4.4). Even so, when-
ever value regularity is strong, value prediction may be advantageous for two reasons. First, the information
required to do value prediction is local to the load instruction, while in cloaking we need to somehow associ-
ate the store and the load. Second, if the value is relatively constant then value prediction may supply a load
value earlier than cloaking would. Widigen, Sowadksy and McGrath also describe a technique similar to
load value prediction in [94].

4.5.4 Techniques Similar to Cloaking or Bypassing

Techniques similar to cloaking are Òmemory renamingÓ, proposed by Tyson and Austin [89] and alias pre-
diction proposed by Lipasti [52]. ÒMemory renamingÓ is conceptually identical to cloaking with the excep-
tion that RAR dependences are not used. Other technical differences exist, for example, (1) dependence
detection in Òmemory renamingÓ occurs either in the load/store queue or by propagating store PCs up in the
memory hierarchy, (2) no mention on how to support loads with multiple dependences is discussed, and (3)
communication takes place through the load/store queue. This technique Ñwhich should not be confused
with the memory renaming [6] that takes place in a typical load/store queue or any other mechanism sup-
porting multiple versions of the same memory address for the purposes of out-of-order execution in the pres-
ence of WAR dependences (e.g., [27])Ñ relies on value prediction for those loads that do not exhibit
detectable RAW dependences. As we demonstrate in the evaluation section, RAR dependence prediction
can be used to capture loads that value prediction cannot. However, a significant fraction of loads with RAR
dependences are also amenable to value prediction. Accordingly, in Section 4.6.6.4 we investigate possible
combinations of cloaking/bypassing and value prediction.

Alias prediction can be viewed as a restricted form of cloaking for RAW dependences. In this technique,
a prediction is made on whether a load will read a value from a preceding store that co-exists in the instruc-
tion window. The value is then located by predicting the store buffer location where the value is to be found.

106

Another related technique is Instruction Reuse [79]. In instruction reuse a load may obtain a value prior to
address calculation provided that it is established that the same address will be accessed and that no store has
written to that address since the last time the load was encountered (i.e., no RAW dependence has been
observed). In this case the value so obtained is known to be correct (i.e., it is non-speculative).

A mechanism similar to speculative memory bypassing for store-to-load communication (RAW depen-
dences) was recently studied by Jourdan, Ronen, Bekerman, Shomar and Yoaz [41]. In their proposal,
bypassed loads do not necessarily have to access memory. This is achieved by comparing the addresses of
the relevant store and load. If the addresses are the same then the value obtained through cloaking or
bypassing is known to be correct.

We should note that an effect similar to speculative memory bypassing is possible using a pure software
technique when ambiguous dependences are present. In such an approach, two instructions are allowed to
communicate speculatively via a register while the communication is verified via memory using loads and
stores. Both verification and mispeculation handling has to be done explicitly in the code itself. For exam-
ple, a system that may perform this optimization is DAISY [20] where this optimization may be applied
dynamically by rewriting part of the code during run-time.

A software guided approach to speculative memory cloaking was investigated by Reinman, Calder,
Tullsen, Tyson and Austin [69]. In their approach, new instructions are introduced that allow the compiler
to communicate speculative memory dependences to the hardware. Speculative memory dependences are
communicated using load and store instructions with explicit tags. These tags are allocated in a new name
space, separate to memory or registers. Profile information along with a number of heuristics is used to
select the most stable memory dependences. Tags are also introduced to allow value prediction and depen-
dence speculation to be used whenever deemed advantageous. Reinman and Calder also performed a com-
parative study of load value prediction, memory dependence speculation/synchronization and of a variation
of the Òmemory renamingÓ technique of Tyson and Austin [68] (they also used the incremental algorithm of
Chrysos and Emer [17] to generate synonyms and used a 4K DDT [61] instead of relying on the load/store
queue or on propagating store PCs up in the memory hierarchy [89]). As per the proposal of [89, 61] they
used only RAW prediction for the purposes of cloaking. Using a processor model that does not speculated
on memory dependences as their base and assuming a selective invalidation mechanism, they concluded that
value speculation offers the most benefits and suggested that it should be the first technique to be imple-
mented in future generation processors.

Finally, we should note that we initially reported cloaking and bypassing for RAW dependences in [62].

4.6 Evaluation

In this section we present experimental evidence in support of the utility of the techniques we propose.
We use a two step approach. Initially we investigate cloaking and bypassing ignoring timing considerations.
This allows us to study cloaking and bypassing without having to be concerned with side-effects introduced
by their interaction with other execution techniques. Once we have studied the potential of cloaking and
bypassing we then consider how a particular implementation performs in a out-of-order dynamically sched-
uled processor environment. Finally, we compare this cloaking/bypassing mechanism with a value predic-
tion mechanism and investigate two possible combinations of value prediction and cloaking/bypassing.

The rest of this section is organized as follows: The first step in using cloaking is building the dependence
history necessary to predict subsequent dependence behavior. For this reason, in Section 4.6.1 we measure
the fraction of memory dependences observed as a function of the memory dependence detection table size.
In Section 4.6.2 we investigate an aggressive cloaking mechanism and study its accuracy. In Section 4.6.3

107

we investigate various confidence predictors in an effort to reduce mispeculations while keeping the fraction
of loads that get a correct value from cloaking relatively high. Having shown that a relatively simple confi-
dence predictor can be used to meet our goal, in Section 4.6.4 we present a characterization of the memory
communication that is handled by a cloaking mechanism that offers relatively high accuracy. A description
of the characteristics we consider along with a justification on why we do so is given at the beginning of that
section. We continue the evaluation of cloaking and bypassing by considering what effect finite prediction
structures have on its accuracy in Section 4.6.5. In Section 4.6.6, we measure the performance impact of a
combined cloaking and bypassing mechanism on a fairly aggressive superscalar processor with out-of-order
characteristics. We initially study how performance is affected by the use of squash and selective invalida-
tion. We then compare the cloaking/bypassing mechanism with a straight-forward last-value load value pre-
dictor and conclude by studying two possible combinations of cloaking/bypassing and value prediction.

4.6.1 Memory Dependence Detection

In this section we measure the fraction of memory communication and data-sharing activity that is visible
with various dependence detection table (DDT) sizes. Dependence detection is the first step in applying
cloaking and bypassing and is used to build the dependence history required to predict future dependence
behavior. The measurements presented in this section allow us to estimate the fraction of loads we can hope
to handle with cloaking and bypassing. We have presented similar measurements in Chapter 2 where we
measured the fraction of dependence activity that is visible from within various address window sizes: a
fully associative, DDT of size n with LRU replacement is equivalent to an address window of the same size
as per our definition given in Chapter 2. In this section we take a closer look at the lower end of the spec-
trum, considering dependence detection table sizes we consider feasible and reasonable in the context of
modern and next generation processors. It should be noted that the results of this section provide only an
indication of the fraction of loads cloaking and bypassing may handle. The actual fraction of loads that do
get a correct value via these techniques may be larger or smaller as compared to the fraction of loads whose
dependences is detected. It can be smaller as, for example, the mechanisms we simulate are not able to han-
dle dependences with distances greater than one. It can be larger as the address distance of a dependence
may fluctuate over time. As a result, some instances of the dependence may not be visible while cloaking
and bypassing may still be applied as the result of an earlier detection of another instance of the same static
dependence.

Figure 4.8 reports the fraction of dynamic (committed) loads that experience a RAW or a RAR depen-
dence as a function of DDT size. Whenever a load experiences both a RAR and RAW dependence we only
account for the RAW dependence. We do so as cloaking will give preference to RAW dependences in these
cases. We consider detection table sizes in the range of 32 and up to 2K entries. In part (a), results are
shown per program, while in part (b) we present averaged results for the integer, floating point and all pro-
grams. To aid in the interpretation of these results we present RAW and RAR fractions as separate bars.
Moreover, the grey shaded area reports the sum of the two bars and represents the overall fraction of loads
that have either a RAW or a RAR dependence detected.

Focusing first on the averaged results, we can observe that a large fraction of loads get their value via a
dependence that is visible even with relatively small DDTs. For integer codes about 50% of all loads expe-
rience a RAW or a RAR dependence within the last 32 addresses accessed. This phenomenon is less pro-
nounced for the floating point codes where about 30% of loads experience dependences within the same
range. However, as we move toward larger DDTs, the fraction of loads with dependences rises, approach-
ing roughly 90% (integer) and 80% (floating-point) for the 2K-entry DDT.

The relative fractions of RAR and RAW dependences, and for this reason their importance are dissimilar
for the two classes of programs. While in the integer codes RAW dependences are almost twice as frequent

108

as RAR dependences are, in the floating point codes the roles are almost reversed for the smaller DDT sizes.
Nevertheless, as we consider larger DDTs, the fraction of RAW dependences increases in the floating point
programs, and for a 2K entry table RAW dependences are almost as frequent as RAR ones. Interestingly, as
we move toward larger DDT sizes, RAW dependences become increasingly frequent. The relative increase
is higher for smaller sizes. While RAR dependence frequency also increases with the detection table size in
the range of 32 to 512, virtually no increase is observed as we move toward sizes of 1K or higher. For the
floating point programs we even observe a decrease in RAR dependence frequency between 1K and 2K table
sizes (a decrease in RAR frequency with increased DDT size is also exhibited on a per program basis). This
phenomenon is explained by the increased frequency of RAW dependences: Some of the RAR dependences
are among loads that read a value written by a preceding but distant store. When smaller DDTs are used, the
store is evicted from the DDT due to limited space and the RAW dependences escape detection.

Similar observations apply on per program basis. An increasing number of loads with RAW or RAR
dependence is observed as we consider larger DDTs. Again the relative increase is higher in the range of 32-
256 entries for most programs. RAR dependences are more frequent than RAW dependences for most float-
ing programs, while the opposite is true for the integer programs. And finally, variation is exhibited in the
frequency of RAR dependences as we move toward larger DDT sizes.

Figure 4.8: Fraction of loads that have RAW or RAR dependences as a function of dependence detection
table size. Range is 32 to 2K entries in steps that are powers of two. (a) Per program results. (b) Average
over integer, floating point and all programs.

099 124 126 129 130 132 134 147

 RAR

101 102 103 104 107 110 125 141 145 146

 RAW

 RAR+RAW

(a)

SpecINT SpecFP Overall

(b)

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

109

The results of this section suggest that a DDT of moderate size (e.g., 128 entries) can capture dependences
for large fractions of loads (roughly 70% and 60% for the integer and floating-point programs respectively).

4.6.2 Cloaking Coverage And Mispeculation Rates

The results of the previous section provide a first indication that cloaking may be able to capture a signifi-
cant fraction of all dynamic loads. However, detecting dependences is just the first step. The next step is
predicting dependences and passing the values from producers to consumers. We use two metrics to mea-
sure the accuracy of cloaking: coverage and mispeculation rate. Both metrics represent a fraction of all exe-
cuted loads. We define coverage as the fraction of loads that do get a correct value via cloaking. We define
mispeculation rate as the fraction of loads that get an incorrect value from cloaking.

For the purposes of this study we assume infinite dependence prediction and naming tables (DPNT) and
measure the fraction of loads whose value is correctly predicted for various DDT sizes. To get a rough upper
bound on the fraction of correctly predicted load values, we use an non-adaptive single bit predictor. This
predictor will always cause cloaking to be performed for all instances of the corresponding instruction once
a dependence is detected. In Section 4.6.3 we will consider adaptive predictors to reduce mispeculations.
Figure 4.9 shows the coverage obtained for DDTs of 64, 128, 256 and 512 entries. In part (a) we show per
program measurements. Averaged measurements are shown in part (b). The measurements presented are:
(1) the total fraction of loads that get a correct value (shaded area), (2) a breakdown of these loads depending
on whether they got the value via a RAW (white bars) or a RAR (dark bars) dependence, and finally (3) the
fraction of loads for which a dependence is detected (line).

Focusing first on the averaged results (part (b)), we can observe that the majority of loads that have a
dependence do obtain a correct value via the cloaking mechanism. On the average, about 65% (integer) and
53% (floating-point) of all loads get a correct value via cloaking when a 512 entry DDT is used. The aver-
age for all programs is about 59%. Interestingly, cloaking sometimes supplies a correct value for loads that
have no dependences detected (for example, 147.vortex and a 64-entry DDT) supporting our earlier observa-
tion that an earlier detection of a memory dependence may be used to perform cloaking even when subse-
quent instances of the same dependence escape detection. However, and as expected, not all loads that have
dependence detected get a correct value from cloaking. The fraction of loads that do have a dependence
detected and do not get a correct value from cloaking is negligible for the smaller DDTs. This fraction
increases as we move toward larger DDTs. Furthermore, it can be seen that while floating programs experi-
ence a steady increase in cloaking coverage, the integer codes see virtually no increase in cloaking coverage
as we move toward larger DDTs. More interestingly, a slight decrease in cloaking coverage is observed
between the 256-entry and the 512-entry DDTs. These phenomena can be explained by taking a closer look
at individual program behavior.

As it can be seen by the results of part (a), even on a per program basis, the majority of loads that have a
dependence detected also get a correct value from cloaking. The exception is 107.mgrid. Two are the
causes of this behavior: (1) RAR dependences that have non-unit instance distances (see discussion of Sec-
tion 4.2.2), and (2) RAR dependences that not stable. RAR dependences with non-unit instance distances
are mostly caused when small arrays are traversed multiple times by different pieces of the code. The cloak-
ing mechanism we used in this experiment fails to correctly communicate values as it always attempts to link

110

with the last instance of the source load. Also, some of the RAR dependences detected are not stable. This is
best explained using the following example (the actual behavior of 107.mgrid is more complicated):

1: LOAD A[0]
 ...
2: LOOP i
3:LOAD A[i]
4:LOAD A[i]

During the first iteration of the loop, RAR dependences are detected among the load of line 1 and the loads
of line 3 and 4. Our greedy, non-adaptive approach to building dependence sets and marking producers and
consumers will mark the first load as the producer and the other two loads as consumers for cloaking pur-
poses. However, as execution progresses, the initial RAR dependences are not observed anymore and cloak-
ing fails even though memory dependences are still detected.

Figure 4.9: Cloaking coverage as a function of Dependence detection table size. Range is 64 to 512 entries.
Shown is the fraction of loads that obtain a correct value via a RAW or a RAR dependence (white and black
bars respectively). Also shown is the fraction of loads that get a correct value independently of the
dependence type (shaded area). Finally, the fraction of loads for which a dependence is detected is shown
(black line). (a) Per program measurements. (b) Averaged measurements.

0%
20%
40%
60%
80%

100%

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
0%

20%
40%
60%
80%

100%

 RAR RAW RAR+RAW Dependence Detected

0%
20%
40%
60%
80%

100%
(a)

(b)

SpecINT SpecFP Overall

111

For most programs, cloaking coverage remains relatively unchanged as we consider larger DDTs. Beyond
an 128-entry DDT, noticeable increases in coverage are observed only for 145.fpppp and 125.turb3d and to a
lesser extent for 132.ijpeg, 110.applu, 141.apsi and 146.wave5. (For 132.ijpeg virtually no increase is
observed beyond a 256 entry table.) One reason why cloaking coverage does not increase is that, in some
cases, increasing the DDT size does not result in a considerable increase in the number of detected depen-
dences. This is the case for 129.compress, 102.swim, 103.su2cor and 104.hydro2d. However, for the rest of
the programs, more dependences are typically detected if we use a larger DDT. In those cases, the reason
why these dependences do not result in an increase in cloaking coverage is that in their majority they do not
exhibit unit dependence distances (i.e, their dependence lifetimes overlap, see discussion of Section 4.2.2).
This observation is supported by the measurements presented in Figure 4.10. In this experiment we assumed
perfect prediction of the source instructionÕs identity and measured whether the value read is the same as the
one read or written by the last instance of the source instruction. The lower part of the bar represents the
fraction of loads that read the same value as the one read or written by the last instance of the source instruc-
tion (which includes all dependence with unit instance distance). The top part of the bar (light grey) repre-
sents the fraction of loads that donÕt (non-unit dependence distance). As it can be seen by comparing with
the data of Figure 4.9, there is high correlation between (1) the fraction of loads that do not get a correct
value via cloaking but do have a dependence detected and (2) the fraction of loads that exhibit non-unit
dependence distances. As we mentioned before, the cloaking mechanism used in this experiment is not
designed to handle non-unit distances. In Figure 4.10, we can observe an anomaly for 107.mgrid where a
decrease is observed in the fraction of loads that experience unit instance distances when we move from an
256-entry to a 512-entry DDT. This decrease is the result of loads that have multiple RAR dependences
some of which are distant and less stable than the less distant ones. As we consider larger DDTs, the distant
and less stable RAR dependences are used to make predictions. As we explain in the next paragraph similar
behavior is observed in other programs with the non-perfect dependence predictor.

Returning to the results of Figure 4.9, we can observe that in some cases, a slight decrease in cloaking
coverage is experienced as we increase the DDT size from 256 to 512 entries. These programs are 126.gcc,
130.li and 132.ijpeg. Two factors combine to cause this behavior: (1) the intrinsic dependence behavior of
these programs, and (2) the use of a non-adaptive cloaking predictor. Some loads have multiple RAR
dependences with the more distant ones being less predictable. As we consider larger DDTs, the distant and
less predictable dependences take preference causing a decrease in coverage. A similar phenomenon is

Figure 4.10: Instance Distance Breakdown As A Function Of Dependence Detection Table Size. Assuming
perfect dependence prediction, we measure the distance to the correct instance of the source instruction.
Distance of 1 corresponds to the last instance of the source instruction. Results are show for dependence
detection tables of 64, 128, 256 and 512 entries (left to right in that order).

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

101 102 103 104 107 110 125 141 145 146

 Distance = 1

 Distance > 1

099 124 126 129 130 132 134 147

112

observed on some loads that have multiple RAW dependences that do not occur every time the correspond-
ing store instructions are encountered. Consider for example a load that has a frequent dependence with
store1 and a less frequent dependence with store2. Furthermore, assume that the dependence with store2
escapes detection with a smaller DDT but is detected when we use a larger DDT. If store2 appears often
enough in between instances of the store1 and load instructions, it may occasionally overwrite the value of
store1 (in synonym space) causing a decrease in cloaking coverage. Because in these experiments we used a
non-adaptive dependence predictor, these less predictable dependences cannot be filtered out. However, we
should note that the decrease in cloaking coverage is relatively small and for this reason it may not have a
significant impact on performance.

While for most programs cloaking coverage is smaller than the fraction of loads that have dependences
detected, for 124.m88ksim, 147.vortex and 125.turb3d cloaking coverage is significantly larger (for the
smaller detection table sizes). This is possible, as the distance between the dependent instructions may vary
over time. This is the case in 147.vortex for example. About 70% of loads instances that have no depen-
dence detected but do get a correct value via cloaking in 147.vortex belong to the memcpy and ChkGetChunk
functions. It seems that this program copies a large number of small objects, often multiple times. Each of
these calls to memcpy is separated by a different amount of processing. What happens to each object is data
dependent. Since the main memcpy loop is unrolled, different static instructions are used to copy different
part of the data object being copied. Whenever the data object is small, each instance of these instructions
touches a single data element. As a result, whenever multiple copies of the same structure are made, RAR
dependences exist between the loads of subsequent calls to memcpy. Similarly, whenever a structure is cop-
ied in a chain fashion (i.e., one copy is made, then that copy is used to create another one and so on) RAW
dependences exist between the stores of the previous call to memcpy and the loads of the current call. Func-
tion ChkGetChunk has a parameter that is an index to an array of object pointers. At entry point this index is
used to de-reference the corresponding object and a different action is taken depending on the data found.
Whenever this function is called for the same object, RAR dependences exist between the loads that follow
the object pointers and access the objectÕs elements. It should be noted that register allocating the corre-
sponding data is not straightforward.

So far we have focused on the fraction of loads that do get a correct value via cloaking. However, since
we use prediction, it is to be expected that some loads may get an incorrect value. Ultimately, the impact
cloaking will have on performance will be determined by the latency reduction obtained when cloaking is
successful and by the penalty paid to undo the effects of erroneous speculation. The two factors represent a
trade-off. While on one side we would like to use a predictor that has the highest possible coverage, when
performance is considered, care must be taken to maintain the net penalty of mispeculation relatively low.
Figure 4.11 reports the mispeculation rates for the cloaking mechanism used in this section. It can be seen
that mispeculation rates in most cases are high. For 107.mgrid and 132.ijpeg the mispeculation rate even
exceeds cloaking coverage. It can also be seen that most of the mispeculations correspond to RAR depen-
dences. Moreover, mispeculations typically increase with the size of the DDT. There two reasons why: (1)
more dependences are exposed which are not necessarily regular, and (2) in the case of RAR dependences,
using a larger DDT often results in marking different loads as producers of values for cloaking purposes. In
the latter case, the dependences formed are not necessarily as regular as the ones formed with a smaller
DDT.

 Overall, the high mispeculation rate observed is the result of the non-adaptive nature of the predictor
used. In the next section we consider alternative, adaptive predictors that aim at reducing the mispeculation
rate while maintain the benefits of high cloaking coverage.

113

4.6.3 Using Adaptive Predictors to Improve Cloaking Accuracy

In the previous section we used a non-adaptive dependence predictor to obtain a rough estimate on the
coverage we can hope to obtain with cloaking and bypassing. As expected we have seen that a non-adaptive
predictor results in relatively high mispeculation rates. In this section we consider a number of alternative
adaptive predictors that aim at maintaining high cloaking coverage while reducing the mispeculation rate.
As we have seen in the previous section, a significant fraction of mispeculations correspond to dependences
with non-unit instance distances. Another source of mispeculations is loads which have multiple depen-
dences that exhibit different levels of regularity. To filter out these cases we considered a number of adaptive
predictors including the commonly used 1 and 2-bit saturating counter-based predictors. These predictors
operate as follows: A threshold value is set to decide whether cloaking should be performed or not. When-
ever cloaking is not performed, the counter is incremented (bias toward cloaking being performed) when a
dependence is detected. Whenever cloaking is performed the counter is adjusted to reflect whether the value
obtained was correct or not. While these predictors perform better than the non-adaptive one, they suffer
from oscillations on those loads that exhibit detectable dependences that cannot be handled by the cloaking
mechanism in use. On these loads, the predictors oscillate between having cloaking being performed, deter-
mining that the value so obtained was incorrect, moving back to a state where cloaking is not performed and
once a dependence is detected moving back to the state where cloaking is again performed. One solution to
this problem is to decrement the counter by a higher amount whenever cloaking is erroneous or to use a rel-
atively high threshold value (both approaches were suggested by Tyson and Austin in [89]). However, either
approach results in a relatively high decrease in cloaking coverage. To filter out these loads while maintain-
ing high coverage we experimented with the predictor shown in Figure 4.12. This predictor differs from the
counter based ones in that cloaking is always performed when the predictor is in a state different than the ini-
tial state. However, the predicted value is propagated to the consumers of the load only if the predictor is in
the ÒUseÓ state.

Figure 4.13, reports the cloaking coverage (fraction of all executed loads that get a correct value via cloak-
ing) obtained with a number of different predictors. In these experiments we have used a DDT of 128
entries since, as we have seen in the previous section, cloaking coverage remains relatively unchanged when

Figure 4.11: Cloaking mispeculation rates for the non-adaptive dependence predictor as a function of
detection table size. Range shown is 64 to 512 entries. Grey area represents the total mispeculation rate.
The black and white bars represent the mispeculations that correspond to RAR and RAW dependences
respectively. Also shown is the percentage of correctly predicted loads (black line).

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

 RAR

 RAW

 RAR+RAW

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

 Correct

114

larger detection tables are considered. We report results for the following four predictors: 1-bit counter, 2-
bit counter with threshold of 1, 2-bit counter with a threshold of 2 and the 2-bit predictor of Figure 4.12
(shown in that order starting from the second bar from left). To aid in the interpretation of these results we
also include the 1-bit non-adaptive predictor we used in the previous section (left-most bar). As it can be
seen, little variation in cloaking coverage is observed with all the adaptive predictors shown. Virtually no
variation is observed for the floating point programs. Some variation is observed for the integer programs
with the decrease in cloaking coverage being noticeable only for 099.go, 130.li and 126.gcc. This observa-
tion suggests that some dependences in these programs exhibit transient behavior. For example, some
dependences either do not occur every time the corresponding instructions are encountered or exhibit vari-
ance in their instance distances. The adaptive predictors filter out these dependences and this results in a
decreased cloaking coverage. However, it should be expected that for the same reason we should also
observe a decrease in mispeculation rates. In most programs, the 2-bit counter based predictors perform
slightly better than the adaptive predictor of Figure 4.12. However, the difference is relatively small and for
two programs, 147.vortex and 125.turb3d the latter predictor performs better. Moreover, as we will show
next, the predictor of Figure 4.12 offers significantly lower mispeculation rates compared to the counter-
based predictors. These results suggest that any of the predictors studied may be used to meet one of our two
goals, that of maintaining a relatively high cloaking coverage.

Figure 4.14 shows the mispeculation rates for the same predictors. The grey bar reports the overall mis-
peculation rate, while the black and white bars report the mispeculations that correspond to RAR and RAW
dependences, respectively. We use a logarithmic scale for the Y-axis as the mispeculation range is rather
large (the mispeculation rates observed with the last predictor can be seen in linear scale in Figure 4.15). As
it can be seen, even though the counter based predictors do reduce the mispeculation rate compared to the
non-adaptive 1-bit predictor, the reduction is more pronounced when the predictor of Figure 4.12 is used.
For most programs the mispeculation rate drops below 1% (for 145.fpppp it drops to 0.03% Ñ not visible in
the figure). The only programs for which the mispeculation rate is above 1% are 099.go, 124.m88ksim,
130.li, 126.gcc and 110.applu. Some of these mispeculations correspond to dependences that are transient.
Another source of mispeculations are RAW dependences on callee-saved registers of recursive functions.
For example, roughly 1% (absolute fraction over all loads) of the mispeculations in gcc correspond to callee-
saved register save-restore traffic from functions rtx_cost and canon_reg.

We can also observe that for the integer codes, RAR mispeculations are frequent and in some cases even
more frequent than RAW dependences. However, we have seen (Figure 4.13) that most of the correct pre-
dictions in integer codes correspond to RAW dependences. This observation suggests that RAW depen-
dences are more regular than RAR ones for these programs. It also provides us with a straightforward way
of trading some of the cloaking coverage for a more than half reduction in mispeculation rates. Depending
on the relative cost of mispeculations it may be advantageous to not include RAR dependences in the cloak-
ing mechanism. For the floating point programs, RAR dependences are either the sole source of mispecula-

Figure 4.12: An adaptive cloaking predictor.

Init DonÕt

Use

DonÕt

DD

R

R

R

R

DD = dependence detected

R = value correct
R

R

R = value incorrect

115

tions or they cause as many mispeculations as RAW dependences do. However, it should be noted that for
most floating point programs RAR dependences are also responsible for most of the loads that are correctly
communicated (cloaking coverage, as seen in Figure 4.13).

When all programs are considered, the predictor of Figure 4.12 reduces mispeculations by almost an order
of magnitude when compared to the other predictors. The mispeculation rate is 2%, 0.35% and 1.01% for
the integer, floating and all program respectively. From that, 1.1%, 0.17% and 0.54% (percentage of loads)
corresponds to RAW dependences.

Since the predictor of Figure 4.12 drastically reduces the observed mispeculation rate with little or no
reduction in cloaking coverage, we will focus on cloaking mechanisms that use this predictor in the rest of
the evaluation.

4.6.4 Characteristics of the Memory Values that are Handled by Cloaking

With a cloaking mechanism that offers relatively high coverage and low mispeculation rates, it is now
interesting to attempt to gain an understanding of what kind of loads are correctly handled by this mecha-
nism. We first present a breakdown of loads that get values from cloaking in terms of the address space and
the base register used (Sections 4.6.4.1 and 4.6.4.2 respectively). We do so as an obvious alternative to

Figure 4.13: Cloaking coverage with various predictors. Percentages are reported over all loads. (a) Per
program results. (b) Averaged results. Five predictors are shown. From left to right these are: 1-bit non-
adaptive, 1-bit adaptive, 2-bit saturating counter with threshold 1, 2-bit saturating counter with threshold 2
and the predictor shown in Figure 4.12.

 RAR

 RAW

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

(a)

(b)

0%
20%
40%
60%
80%

100%

SpecINT SpecFP Overall

be
tte

r

116

cloaking is register allocation where a value is placed into a register so that instructions can reference it
directly. The address space and base register breakdowns provide indications on why the particular values
were not register allocated or whether they could be allocated if more registers were available (values
accessed via the global pointer should be easy to register allocate). The next characteristic we measure is
address locality (Section 4.6.4.3). Address locality provides an indication on whether the particular load
tends to accesses the same memory location over time. We do so as an alternative to cloaking would be to
attempt to directly predict the addresses that loads and stores access and use this prediction to streamline
access to those locations. The address locality results provide an additional indication on whether such an
approach may offer better coverage. We then measure the value locality of loads handled by the cloaking
mechanism and the coverage obtained through a last-value load value prediction mechanism (Section
4.6.4.4). As we explained in the related work section, value prediction may also be used to allow loads to
obtain their value early. We also measure the dynamic instruction distance among the source and sink
instructions that cloaking uses (Section 4.6.4.5). These results provide an upper bound on the fraction of
loads that can be handled with bypassing and provide an indication of the effective scope of a realistic cloak-
ing mechanism. Finally, we study how cloaking accuracy changes if a different input data set is used (Sec-

Figure 4.14: Cloaking mispeculation rates for various predictors. (a) Per program results. (b) Averaged
results. The same predictors as in Figure 4.13 are used. The Y-axis is logarithmic.

099 124 126 129 130 132 134 147

 RAR

 RAW

 RAR+RAW
0.10%
0.25%
0.50%

1%

5%
10%
25%
50%

100%

0.10%
0.25%
0.50%

1%

5%
10%
25%
50%

100%

101 102 103 104 107 110 125 141 145 146

(a)

0.10%
0.25%
0.50%

1%

5%
10%
25%
50%

100%

SpecINT SpecFP Overall

(b)

be
tte

r

117

tion 4.6.4.6). Our goal is to provide an indication that memory dependence behavior is mostly a property of
the program and not of the data processed by the program.

4.6.4.1 Address Space Breakdown

In this section we present a breakdown of the memory traffic handled by cloaking in terms of the address
space through which the values are communicated. Figure 4.15 shows a breakdown of loads that get a value
from cloaking in terms of the address segment that the load accesses. Part (a) shows those loads that get a
correct value while, part (b) shows those loads that get an incorrect value. Note that in part (b), the Y-axis
range is different for the integer and the floating programs. It can be seen that while most of the values
belong to the data and stack segments, a noticeable fraction of heap values are also correctly handled by
cloaking. (Note that the few heap accesses observed for 103.su2cor and 104.hydro2d are mostly the result of
the implementation of the fortran built-in functions which are translated to C in our environment.) While
heap values contribute significantly to cloaking coverage for some programs, they are also responsible for a
disproportionate fraction of the mispeculation rate.

4.6.4.2 Base Register Breakdown

Figure 4.16 presents a breakdown of cloaking communication in terms of the base register used by the
corresponding loads. Loads are separated into three classes based on whether they use the stack pointer, glo-
bal pointer or any other register as their base register (shown from left to right in that order). Part (a) shows
the loads that get a correct value, while part (b) shows the loads that get an incorrect value. It can be seen
that for most of the integer programs, loads that use the stack pointer directly or a register other than the glo-

Figure 4.15: Breakdown of loads that get a value via cloaking in terms of the address segment that is
accessed. (a) Loads that get a correct value via cloaking. (b) Loads that get an incorrect value via cloaking.
Y-axis range varies per graph.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 DATA STACK HEAP

(a)

(b)

0%

20%

40%

60%

80%

100%

0%
1%
2%
3%
4%
5%
6%

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%

118

bal pointer are responsible for most of the correctly communicated values. For the floating point programs
most of the correctly communicated loads do not use the stack or the global pointer loads. The only program
where global pointer loads are responsible for most of the correctly communicated values is 129.compress.
Most (but not all) of these accesses correspond to global variables that are not register allocated and that are
accessed repeatedly from within loops. Register pressure is one reason why these variables are not register
allocated. In this case, providing a larger register set would help in removing these loads and stores. How-
ever, about 10% of all executed loads get a correct value from cloaking and do not use the global pointer.
This observation suggests that even if the global pointer loads were eliminated cloaking may still be of use
as it would cover about 25% of the remaining loads (global pointer loads account for about 60% of all
loads).

A clear trend is demonstrated by mispeculations as shown in Figure 4.15. As it can be seen from part (b),
virtually all of the mispeculated loads use a register other than the stack or global pointers. Exceptions are
126.gcc, 130.li and 134.perl where stack loads are also a significant source of mispeculations. The stack
loads that are mispeculated in these three programs correspond, in their vast majority, to callee-saved regis-
ter restore loads found in recursive functions. These loads experience RAW dependences with the save reg-
ister store instructions found at entry to the corresponding recursive function. These loads are
communicated correctly when recursion terminates (i.e., at the leafs of the calling-graph), while they may
get incorrect values when further recursive calls are made.

The results of Figure 4.16 demonstrate that stack and global pointer loads exhibit more stable dependence
behavior than loads that use other registers. Even so, the mispeculations that correspond to the latter loads
are relatively few while their contribution to correctly communicated values is by comparison relatively
high. Depending on the penalty of mispeculation we could avoid using cloaking for loads that do not use the
stack or global pointers in order to minimize mispeculations (for most programs mispeculations will be vir-
tually non-existent). (Tyson and Austin suggest such a confidence prediction in [89].) However, such an
approach will also lead to a significant reduction in the fraction of loads that get a correct value via cloaking.

Figure 4.16: Load breakdown in terms of the base register used. From left to right the categories are: sp
(stack pointer), gp (global pointer) and other. (a) Correctly communicated loads. (b) Incorrectly
communicated loads.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%

0%

1%

2%

3%

4%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b)

 Stack Global Pointer Other

0%

20%

40%

60%

119

4.6.4.3 Address Locality Measurements

We next measure the address locality of the loads that get a correct value via cloaking. We define address
locality as the probability that a load instruction accesses the same address as it did the last time it was
encountered. We present these address locality measurements not only because they offer additional insight
on the type of loads that are correctly handled by cloaking but also because they provide an indication on
whether an address prediction based memory communication streamlining scheme would offer significant
advantages over the cloaking scheme we are investigating. The results are shown in Figure 4.17. The left
bar represents the fraction of all loads that exhibit locality while the right bar represents the fraction of loads
that get a correct value via cloaking. To aid in the interpretation of these measurements we breakdown the
loads that exhibit address locality into three categories depending on whether they also experience a RAW,
RAR or no dependence. We can observe that while many of the loads that cloaking captures also exhibit
address locality, a significant fraction of them does not exhibit address locality. We can also observe that
with the exception of 145.fpppp, there are very few loads that exhibit address locality and do not also expe-
rience a dependence. (145.fpppp uses many statically allocated variables of aggregate type that are used
extensively in repeated calculations. The vast majority of these loads experience dependences. These
dependences however escape detection as the detection table used in this experiment is relatively small. Had
we used a larger detection table, most of these loads would have been captured by the cloaking mechanism
also (see Section 4.6.2).) Moreover, it is often the case that cloaking captures loads that do not exhibit
address locality. These results, suggest that cloaking may offer better coverage than a straightforward last-
address prediction scheme while not requiring explicit tracking of the addresses that are accessed by loads
and stores.

Figure 4.17: Address Locality breakdown. Left bar reports address locality. Right bar reports cloaking
coverage.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 RAR No Dependence RAW RAW

Address Locality - Left Bar

0%

20%

40%

60%

80%

100%

 RAR

Cloaking Coverage - Right Bar

120

4.6.4.4 Value Locality and Value Prediction Measurements

In this section we measure the value locality exhibited by the loads that get a value from the cloaking
mechanism. Value locality and how it is distributed among loads that have dependences is an interesting
metric in this context, as value prediction can also be used to allow loads to obtain their value early, possibly
earlier than cloaking would allow. Figure 4.18 shows a breakdown of loads that exhibit value locality along-
side with a breakdown of loads that get a correct value via cloaking. The loads that exhibit value locality are
separated into three categories depending on whether they have a dependence detected and what type this
dependence is. The categories are: RAW, RAR and no-dependence. We can observe that for most programs
cloaking coverage is higher than the percentage of loads that exhibit value locality. More loads exhibit value
locality only for 132.ijpeg, 104.hydro2d, 110.applu and 125.turb3d. When the dependence status of loads is
taken into consideration, we can observe that cloaking covers more of the loads that experience depen-
dences. This phenomenon is more pronounced for those loads that experience RAW dependences where
cloaking coverage is sometimes twice the fraction of loads that exhibit value locality. However, we can also
observe that a noticeable fraction of loads with value locality do get a correct value via cloaking. This obser-
vation suggests a potential synergy of the two techniques. We do investigate this possibility. Before doing
so however, we take a look at a real load value predictor.

Value locality provides just an indication of the fraction of the loads that may get a correct value via a
value predictor. It directly measures those loads that would get a correct value from a value predictor which
has infinite entries and uses a simple last-value with no hysteresis predictor (see [74]). To better understand
how cloaking compares with value prediction, we next compare a finite value predictor with a cloaking
mechanism that uses finite prediction and detection structures. For this experiment we simulate a value pre-
dictor with 16K entries that uses a last-value prediction scheme augmented with a per load confidence pre-
dictor. The confidence predictor we use is the one presented in Figure 4.12. The cloaking mechanism we

Figure 4.18: Value Locality breakdown. Left bar: loads that exhibit value locality separated into those that
have a RAW, a RAR or no dependence. Right bar: loads that get a correct value via cloaking separated into
those that have a RAW or a RAR dependence.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

100%

 RAR No Dependence RAW RAW

Value Locality - Left Bar

 RAR

Cloaking Coverage - Right Bar

121

use has a 16K DPNT, an 128-entry DDT and a 2K synonym file. All structures are assumed to be fully-asso-
ciative. Figure 4.19 reports the coverage (part (a)) and mispeculation rates (part (b)) observed with these
two mechanisms. The value prediction results are shown by the black left bar, while the cloaking prediction
results are shown by the right grey bar. As it can be seen from the results of part (a), the cloaking mecha-
nism offers better coverage than the value prediction mechanism for most programs. Value prediction offers
better coverage for three floating point programs: 104.hydro2d, 125.turb3d and 110.applu. Similar trends
are seen in the mispeculations observed. As it can be seen in part (b), the cloaking mechanism experiences
less mispeculations than the value prediction mechanism for all programs except 129.compress and
146.wave5. In those two programs the mispeculation rates are relatively small and furthermore, cloaking
exhibits significantly higher coverage than value prediction does.

Even though these results suggest that cloaking offers better prediction than value prediction (for the spe-
cific predictors) it should be noted that these results should be used simply as an indication. Not only differ-
ent or larger predictors may improve value prediction (and cloaking) but also, the performance impact of
each technique can only be judged when timing is taken into account. Even so, these results suggest that
cloaking provides a way of obtain load values early for a significant fraction of loads that do not exhibit
value locality (mostly loads that have RAW dependences). This observation hints to a potential synergy
between the two techniques. To better understand how value prediction and cloaking/bypassing relate, we
measured the fraction of loads that get a correct value from cloaking/bypassing but not from value prediction
and vice versa. The results are shown in Table 4.1. To aid in the interpretation of these results, we also
present a breakdown of the values obtained via cloaking/bypassing in terms of the dependence type. We can
observe that indeed for most programs, value prediction captures some loads that cloaking/bypassing does
not and vice versa. For most programs, the fraction of loads correctly predicted only via cloaking/bypassing

Figure 4.19: Comparing a value predictor with cloaking. (a) Coverage: loads that get a correct value. (b)
Mispeculation rates: loads that get an incorrect value.

0%

20%

40%

60%

80%

100%

0%

1%

2%

3%

4%

5%

6%

0.0%

0.5%

1.0%

1.5%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b)

 Cloaking Value Prediction

122

is higher than the fraction of loads correctly predicted only via the value predictor. The two exceptions are
104.hydro2d and 125.turb3d. Most of the loads captured only by cloaking get a value via a RAW depen-
dence. However, a noticeable fraction of the loads correctly predicted only via cloaking/bypassing get a
value via a RAR dependence. For some programs (most floating point programs and 124.m88ksim and
132.ijpeg), this fraction is close to or exceeds the fraction of loads that get a value via a RAW dependence.
Motivated by the observations of this section, in Section 4.6.6 we investigate possible combinations of value
prediction and cloaking/bypassing and find that the two techniques can be used to complement each other,
leading to further performance improvements.

4.6.4.5 Dynamic Instruction Distance Distribution

In this section we measure the distance in dynamic instructions between the loads that get a correct value
via cloaking and the source instruction that supplied that value. This information is useful in obtaining an
upper bound on the fraction of loads that can also benefit from bypassing. As we noted in Section 4.3,
bypassing can be applied only when the source store or load and the consuming load co-exist in the instruc-
tion window. Figure 4.1 reports the fraction of loads that get a correct value via cloaking as a function of
dynamic instruction distance. The range shown is 4 to 16K instructions and samples are taken at distances
that are powers of four. Part (a) reports the per program measurements while part (b) reports averaged mea-
surements for the integer, floating point and all programs.

As it can be seen by the results of part (b), for 50% of all correctly communicated loads the source of the
value is within 64 instructions. This result provides an upper bound on the fraction of loads that could also
benefit from bypassing in a 64-instruction window processor. This percentage rises to roughly 75% when
we consider distances of up to 256 instructions. It can also be seen that about 15% of all correct values cor-
respond to dependences that span more than 1K instructions. For some programs (e.g., 129.compress and
107.mgrid) about 10% of all correct values correspond to dependences that even exceed 16K instructions.

Cloaking/Bypassing
VP

Cloaking/Bypassing
VP

RAW RAR Total RAW RAR Total

099 23.43% 5.75% 29.18% 5.29% 101 10.22% 15.35% 25.58% 0.24%

124 14.23% 10.62% 24.85% 1.88% 102 6.43% 19.98% 26.41% 0.37%

126 18.15% 5.89% 24.04% 8.01% 103 7.18% 25.89% 33.08% 2.67%

129 41.18% 0.99% 42.18% 0.22% 104 3.02% 1.29% 4.31% 49.94%

130 31.08% 1.08% 32.17% 6.14% 107 2.34% 0.43% 2.77% 2.60%

132 8.67% 5.25% 13.93% 11.24% 110 3.18% 8.29% 11.46% 12.60%

134 21.72% 1.57% 23.29% 7.82% 125 2.27% 0.55% 2.82% 41.94%

147 29.52% 3.33% 32.85% 5.03% 141 8.85% 4.47% 13.34% 9.67%

145 22.46% 17.87% 40.34% 18.17%

146 10.08% 12.84% 22.92% 5.94%

Table 4.1: Fraction of loads that get a correct value from cloaking/bypassing and not from a value predictor
(ÒCloaking/BypassingÓ columns) and vice versa (ÒVPÓ columns).

123

This result suggests that even the relatively small detection table we used is capable of capturing memory
communication that spans large regions of the dynamic instruction stream.

4.6.4.6 Input Data Set Sensitivity Analysis

In this section we investigate the sensitivity of cloaking to a change of the input data set and demonstrate
that, for most of the programs studied, cloaking coverage and mispeculation rates do not change signifi-
cantly. For this experiment we use the a cloaking mechanism with an 128-entry DDT and infinite prediction
structures and measure the cloaking coverage and mispeculation rates observed with the second input data
set detailed in Chapter 1. For most programs, this data set produces significantly longer instruction counts.
Figure 4.2 reports the results of this experiment. Part (a) reports cloaking coverage while part (b) reports
mispeculation rates. Two bars are shown per program. The left dark bar corresponds to the alternate data set
while the right light gray bar corresponds to the data set we have been using so far. Focusing first on the
coverage results, it can be observed that little variation is experienced when the alternate data set is used.
Only, 146.wave5 demonstrates a relatively large difference as its coverage increases by 16% when the alter-
nate input data set is used (since mispeculations also decrease, any performance results obtained for
146.wave5 with the default data set will probably be pessimistic). A similar trend is exhibited by mispecula-
tion rates (part (b)). However, the variation here is greater. For example, the mispeculation rate for
102.swim rises from 0.24% to roughly 0.9% while it drops from about 2% to 0.8% for 124.m88ksim. While
large, when viewed relatively, these variations are small in absolute terms. Overall, even though some varia-
tion is observed in cloaking coverage and mispeculation rates, for most programs this variation is relatively

Figure 4.1: Cumulative dynamic instruction distance distribution between source instruction and loads that
get a correct value via cloaking. Range is 4 to 16K instructions. Samples are taken at the following
distances: 4, 16, 64, 256, 1K, 4K and 16K (powers of 4). (a) Per program measurements. (b) Averaged
measurements.

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

 RAW

 RAR

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%
(a)

SpecINT SpecFP Overall
(b)

124

small. This result provides an indication that the dependence relationships captured by cloaking are mostly
data independent for these programs.

4.6.5 Effects of Finite Prediction Structures

So far we have been assuming infinite prediction structures. In this section we study what effect finite pre-
diction structures have on the accuracy of cloaking. We first investigate prediction and naming tables of var-
ious sizes and of varying associativity.

4.6.5.1 Sensitivity to the Number of DPNT Entries

Figure 4.3 reports the cloaking coverage (part (a)) and misprediction rates (part (b)) for prediction and
naming tables that range from 256 to 8K entries with LRU replacement. Each entry consists of a 32-bit PC,
a two-bit confidence automaton and a 16-bit synonym. While, it may be possible to reduce the number of
bits required per entry (for example by recording partial PC information or by using shorter synonym fields)
we do not investigate this possibility. In Figure 4.2, the right-most dark bar per program corresponds to the
infinite prediction tables we have been using thus far. It can be seen that with few exceptions, little variation
is exhibited even if we use a relatively small prediction and naming table of 256 entries. For virtually all
programs a DPNT of 1K entries results in cloaking accuracy that is very close to that observed with the infi-
nite table. Exceptions are 099.go, 126.gcc, 147.vortex and 145.fpppp which require an 8K-entry DPNT to

Figure 4.2: Comparing cloaking accuracy with a different input data set. Left bar: alternate input data set
(see Chapter 1, input data set 2). Right bar: default input data set. Part (a): cloaking coverage. Part (b):
mispeculation rates.

0%

20%

40%

60%

80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b)

0%

1%

2%

3%

4%

5%

0%

0.5%

1.0%

1.5%

 Input Data Set 1 (used in all other experiments) Input Data Set 2

125

virtually match the accuracy of an infinite prediction table. This phenomenon is explained by the relatively
larger instruction working set exhibited by these four programs as compared to the rest of the programs we
studied.

Overall, an increase of the DPNT results in better cloaking characteristics. However, in some cases
increasing the number of entries may reduce cloaking coverage and increase the mispeculation rate. For
example, this is the case for 134.perl when we move from a table of 1K entries to one that has 2K entries.
Generally, these negative effects are barely noticeable. Only in the case of 107.mgrid a significant decrease
in cloaking coverage can be observed. Specifically, increasing the number of entries from 512 to 1K or
more results in a 14% decrease in cloaking coverage (percentage of dynamic loads). This anomaly is
observed on loads that have multiple RAR dependences which in the case of 107.mgrid, can be found mostly
in the nested loops of the resid routine. The dependence behavior of these loads is similar to the behavior of
the loads in the loop shown on page 110. As explained in Section 4.6.2, our greedy, non-adaptive approach

Figure 4.3: Cloaking coverage and mispeculation rates as a function of the dependence prediction and
naming table size. Part (a): cloaking coverage. Part (b): mispeculation rate. Range shown is 256 to 8K
entries in steps that are powers of two. Last bar corresponds to an infinite table.

0%
20%
40%
60%
80%

100%

0%

20%

40%

60%
099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

(a)

(b)

0%

2%

4%

6%

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
0.0%

0.4%

0.8%

1.2%

1.6%
3.18%

be
tte

r
be

tte
r

126

to building dependence sets and marking producers and consumers will mark the first load as the producer
and the other two loads as consumers for cloaking purposes. However, as execution progresses, the initial
RAR dependences are not observed anymore and cloaking fails. If however, the first load gets evicted from
the prediction table (which is more probable when the table is smaller) then the RAR dependence between
the two loop loads may result in marking the load of line 3 as a producer and in the subsequent application of
cloaking. This anomalous behavior may be eliminated by utilizing adaptive schemes in marking producers
and consumers. For example, we could use a scheme that periodically flushes the prediction and naming
table to achieve such an effect. However, given that for all programs except 107.mgrid this anomaly is
barely noticeable and since our goal is to demonstrate the potential of cloaking and bypassing while under-
standing the issues involved, we do not investigate this issue further.

4.6.5.2 Sensitivity to the Associativity of the DPNT

Figure 4.4 shows how cloaking coverage and mispeculation rates vary as we change the DPNTÕs associa-
tivity from full to 1-way, 2-way, 4-way and 8-way. The DPNT used in this experiment is 8K entries.
Reported is the absolute difference in the fraction of dynamic loads that get a value from cloaking (e.g., if
coverage drops from 40% to 38% we report a 2% reduction). As it can be seen, for most programs, even a
direct mapped table (1-way) results in similar cloaking accuracy as a fully-associative one. The only pro-
grams for which some differences are observed are 099.go, 126.gcc, 147.vortex and 145.fpppp. For those
programs, associativity affects mostly cloaking coverage. While some variation in mispeculation rates is
also observed, the absolute differences are relatively minimal (below 1%). These variations are caused by
the larger instruction working set exhibited by these four programs. Even so, the differences in cloaking
coverage are not extreme and drop to near 2%, for all programs except 145.fpppp when a 4-way set associa-
tive table is used.

4.6.5.3 Synonym File Size Sensitivity Analysis

We finally measure how cloaking accuracy varies as a function of the synonym file size. For this experi-
ment we assume an 8K entry 2-way set associative DPNT and investigate synonym files with 32 to up 2K
entries in steps that are powers of 2. We used fully-associative synonym files. Figure 4.5 reports the abso-
lute difference in cloaking coverage compared to a synonym file of infinite size. It can be seen that most
programs are relatively insensitive to variations in the synonym file capacity. An 1K synonym file yields
cloaking accuracies that are virtually identical to a synonym file of infinite size. We have also experimented
with the associativity of the synonym file. However, we omit these results as virtually no change was
observed when we reduced the associativity of a synonym file with 1K entries.

4.6.6 Performance Impact

In this section we evaluate the performance impact of a combined cloaking and bypassing mechanism.
We do so by simulating a dynamically scheduled ILP processor, measuring its performance with and without
a cloaking/bypassing mechanism. The rest of this section is organized as follows. In Section 4.6.6.1 we
describe the processor configuration and the cloaking/bypassing mechanism we simulated. In Sections
4.6.6.2 through 4.6.6.4 we report our findings. In Section 4.6.6.2 we measure how performance varies when
cloaking/bypassing is used for various mispeculation handling models, and report: (1) the mispeculation
rates observed, and (2) the fraction of loads that get a value via our mechanism along with a breakdown in
terms of where that value came from (cloaking or bypassing). In Section 4.6.6.3, we compare a cloaking/
bypassing and a last-value based load value prediction mechanisms. Finally, in Section 4.6.6.4 we consider
two different combinations of cloaking/bypassing and last-value load value prediction.

127

4.6.6.1 Configuration Parameters

The base processor is capable of executing up to 8 instructions per cycle and is equipped with a 128-entry
instruction window and a 128-entry load/store scheduler. It takes at least one cycle after a load has calcu-
lated its address to go through the load/store scheduler which implements naive dependence speculation (see
Section 3.3). That is: (1) a load may access memory even when there are preceding stores that have yet to
calculate their address, (2) a load will wait for preceding stores that are known to write to the same memory
location (we have shown in Chapter 3 that dependence mispeculations rarely occur in such an environment).
A detailed description of the rest of the configuration parameters was given in Chapter 1.

The cloaking/bypassing mechanism used comprises: (1) an 128-entry fully-associative DDT with word
granularity (a single store can be recorded per word aligned address), (2) an 8K, 2-way set-associative
DPNT, and finally, (3) an 1K, 2-way set associative synonym file. Figure 4.6 illustrates how the various
components of the cloaking/bypassing mechanism are integrated in the processorÕs pipeline. Detection of
dependences occurs when loads or stores commit by accessing the DDT. Synonym file updates and depen-
dence prediction and naming table updates also occur at commit time. Dependence predictions are initiated
as soon as instructions enter the decode stage. Loads and stores that are predicted as producers of synonyms
associate the actual producer of the desired value with the predicted synonym by allocating an entry in the
synonym rename table (SRT) for the purposes of speculative memory bypassing. That is, SRT entries asso-
ciate synonyms with physical registers. Loads that are predicted as consumers of synonyms inspect both the

Figure 4.4: Variations in cloaking accuracy as a function of the prediction and naming table associativity.
Shown (Y axis) is the absolute difference (i.e., fraction of all loads executed) compared to a fully associative
table of the same size. Number of entries is 8k and associativities simulated are: 1, 2, 4 and 8 (X axis). Note
that the Y-axis range varies.

099
124
126
129

130
132
134
147

COVERAGE MISPECULATION RATE

101
102
103
104
107
110
125
141
145
146

1 2 4 8-8%

-6%

-4%

-2%

0%

1 2 4 80.00%

0.25%

0.50%

0.75%

1.00%

1 2 4 8-12%

-8%

-4%

0%

1 2 4 80.00%

0.05%

0.10%

0.15%

0.20%

0.25%

S
pe

c
IN

T
Õ

95
S

pe
c

F
P

Õ
95

be
tte

r
be

tte
r

be
tte

r
be

tte
r

128

SRT and the synonym file in parallel to determine the current location of the appropriate synonym. If an
entry is found in the SRT, the synonym resides in the physical register file (or in a reservation station) as the
corresponding load or store has yet to commit. Otherwise, the synonym is to be found in the synonym file.
At most 8 predictions can be made per cycle and at most 8 instructions can be scheduled for cloaking or
bypassing per cycle. Finally, no data type information is used for cloaking/bypassing purposes.

There are final piece of the cloaking/bypassing mechanism is responsible for: (1) verifying speculatively
communicated values, and (2) recovering from mispeculations. For the purposes of this evaluation we have
experimented with three mispeculation recovery mechanisms. The first is an oracle mechanism that avoids
mispeculations completely. This is achieve by not speculating on a load value whenever that would result in
a mispeculation. While this mechanism is impractical, its use allows us to obtain an upper bound on the per-
formance benefits that might be possible for the given configuration. The second mechanism uses selective
invalidation in order to re-execute only those instructions that used incorrect data. The selective invalidation
mechanism we simulated works by: (1) first re-executing the instruction that was mispeculated, and (2) then
sending the correct result to all its dependent instructions which will re-execute if the result is different than
the one received earlier [52, 72, 89]. For loads and stores we used a variation of the selective invalidation
scheme described in [72] where timestamps are associated with each store and propagated to consuming
loads. The last recovery mechanism we simulated is the one typically used in modern processors to support
control speculation. This mechanism invalidates all instructions starting from the one that was mispecu-

Figure 4.5: Cloaking coverage and mispeculation rates as a function of the synonym file size. Part (a):
cloaking coverage. Part (b): mispeculation rate. Range shown is 32 to 2K entries in steps that are powers of
two. Last bar corresponds to an infinite table. The prediction table used has 8K entries and is 4-way set
associative.

099
124
126
129

130
132
134
147

COVERAGE MISPECULATION RATE

101
102
103
104
107
110
125
141
145
146

S
pe

c
IN

T
Õ

95
S

pe
c

F
P

Õ
95

be
tte

r
be

tte
r

be
tte

r
be

tte
r

64 12
8

25
6

51
2

1K
-10%

-8%

-6%

-4%

-2%

0%

64 12
8

25
6

51
2

1K
-0.3%

-0.2%

-0.1%

0.0%

64 12
8

25
6

51
2

1K
-0.10%

-0.05%

0.00%

0.05%

64 12
8

25
6

51
2

1K
-8%

-6%

-4%

-2%

0%

129

lated. These instructions have to be re-fetched from scratch. We will refer to this mechanism as squash
invalidation.

A challenge shared by most techniques that try to speculate instruction outcomes is how quickly it can be
established that the values so obtained are correct, an action to which we will refer to as data speculation
resolution. Furthermore, as also reported in [80], care must be taken to avoid destructive interference with
other prediction techniques, especially branch prediction. For the purposes of this study we assume the abil-
ity to resolve all speculation in a register dependence chain as soon as it is established that its input values
are correct. Whether such a mechanism can be built is still an open question. The exact data speculation
resolution mechanism we simulated, data speculation resolution proceeds in two steps: (1) when an instruc-
tion is issued, a determination is made on whether it is data speculative, and (2) when an instructions writes
back a non-speculative result, a determination is made on which instructions become non-data speculative.
We first explain how we determine whether an instruction is data speculative at issue time: two flags are
kept per instruction indicating whether the instruction is currently data speculative. The first flag indicates
whether the instruction is data speculative via a register dependence and the second whether it is data specu-
lative via memory. An instruction is data speculative when at least one of these flags is set. Initially, all
instructions are marked as data speculative as they pass through the decode stage. When an instruction is
issued, a determination is made on whether its register data speculative flag should be cleared. The flag is
not cleared under the following conditions: (1) the instruction is using a value obtained via prediction (i.e.,
cloaking/bypassing or value prediction), or (2) the instruction is using a result produced using a data specu-
lative value. For (2) to be possible, all we have to do is mark an instruction as data speculative when it
receives a data speculative result. The required information is already there in a typical scheduler. For
memory, we do not rely on dependences to determine whether a value is data speculative. The reason is that
memory dependences may change over time as a side-effect of value speculating on base register operands.
Instead of attempting to track memory dependences, we use an incremental approach similar to what is done
for control dependences: The memory data speculative flags of loads and stores are cleared using a global
pointer. This global pointer points to the earliest in program order store or load that has either used a data
speculative value (i.e., its register data speculative flag is set) or has not yet calculated its address. Every
cycle, the global pointer is updated by scanning forward in the load/store queue, clearing the memory data
speculative flags of loads and stores until one is found that meets the aforementioned criteria. With this
scheme a load is marked as non-value speculative only when all preceding loads and stores have calculated
their addresses and posted their data using non-speculative values. We now explain how, when a non-specu-

Figure 4.6: A out-of-order processor pipeline with a cloaking/bypassing mechanism

Fetch
Decode

&
Rename

Schedule Execute Commit

DPNT

PC

SF DDT

Verify

predict

update

SRT

update

130

lative value is written back, the data speculative flags of instructions are cleared for values obtained through
register dependences. When a non-speculative result is written back, all instructions that directly use this
result via a register dependence, are marked as non-data speculative. This takes care of register dependence
chains of unit depth. For longer dependence chains, we maintain a bit vector per instruction marking the
source register dependences it has. These bits are set at decode time. Each bit is connected to a line indicat-
ing whether the corresponding instruction is data speculative or not. These signals are generated by merging
together (logical OR) the register and memory data speculative flags of the corresponding instruction. Every
cycle, these signals are used to determine whether the instruction is still data speculative.

Finally, in order to avoid interfering with branch prediction we disallow control resolution on branches
with value speculative inputs.

4.6.6.2 Performance with a Cloaking/Bypassing Mechanism

Figure 4.7 reports how performance varies when cloaking/bypassing is used. Reported are the speedup or
slowdown with respect to the base processor that uses no cloaking/bypassing. Part (a) shows the speedups
obtained with the oracle (left bar) and the selective (right bar) invalidation mechanisms. Part (b) reports per-
formance variation with the squash invalidation mechanism. While performance improvements are
observed for all programs studied with either the oracle or the selective invalidation mechanism, perfor-
mance rarely improves when the squash invalidation mechanism is in place. In fact, for most of the pro-
grams the combination of cloaking/bypassing and squash invalidation often leads to performance
degradation. As with any speculation technique, in cloaking/bypassing care must be taken to balance the
benefits of correct speculation against the net penalty of erroneous speculation. This result suggests that
while cloaking/bypassing may improve performance when correct, the performance improvements so
obtained cannot offset the loss incurred if all instructions following a mispeculation have to be re-fetched.
To overcome this limitation we may seek to improve the accuracy of the cloaking predictor, or, as the results
of part (a) suggest, use an invalidation mechanism that reduces mispeculation penalty.

Focusing on part (a), we can observe that if it was possible to avoid all mispeculations performance
improvements are observed (oracle bar). Moreover, the selective invalidation mechanism offers perfor-
mance that is virtually identical to that of the oracle disambiguation mechanism. As shown, performance
improvements vary significantly from as low as 1.8% for 132.ijpeg to as high as 11% for 147.vortex. It
should be noted that often the selective invalidation mechanism leads to better performance than the oracle
mechanism. There are two reasons why this is so. The first has to do with our simulation methodology. The
oracle mechanism as simulated, does not permit any cloaking/bypassing on instructions that will later get
squashed due to branch mispeculation. However, speculating on these instructions may positively affect per-
formance as they may, for example, prefetch data cache blocks that are actually needed. The second reason
has to do with the nature of the computations that may get speculated. Consider the following sequence of
two instructions: Òload r1; and r1, 1Ó, where r1 is a register and the load may receive a value from cloaking.
The oracle mechanism decides on whether to speculate or not by looking at the loadÕs value. If the value
from cloaking/bypassing is different than the one that will be read from memory, speculation is inhibited.
However, after the ÒandÓ instruction only the last bit of the value is relevant. Provided that the value from
cloaking/bypassing is correct at least in that bit, any instructions that use the result of the and instruction will
be correctly speculated. The selective invalidation mechanism benefits from those cases.

Figure 4.8 reports additional characteristics of the cloaking/bypassing traffic that are useful in interpreting
the performance results. In part (a), shown are the data mispeculation rates observed for the selective (left
bar) and the squash (right bar) invalidation mechanisms. As performance is affected by the instructions that
use the speculative values (the consumers of loads that get a value from cloaking/bypassing) we report mis-
peculation rates over all committed instructions and moreover count a mispeculation for every instruction
(not only loads) that used erroneous data. In these measurements, we do not include data mispeculations on

131

instructions that are squashed as the result of control mispeculation. It can be seen that selective invalidation
is very effective in handling relatively high mispeculation rates (as much as 7% for 134.perl). It can also be
seen that with squash invalidation mispeculation rates are much smaller. This is to be expected as a squash
invalidation throws all instructions following the earlier mispeculation.

Part (b) of Figure 4.8 shows a breakdown of the fraction of committed loads that were identified as poten-
tial consumers by cloaking. Loads are classified into those that were given a value when the prediction was
made (synonym or register file) and to those that had to use bypassing (actual producer was in the window
and had not yet committed). We can observe that there is not a strong correlation between cloaking/bypass-
ing coverage and performance. Consider for example 099.go and 124.m88ksim. 099.go sees a 5% improve-
ment by cloaking/bypassing while 124.m88ksim sees only a 3% improvement. In contrast, 40% of loads in
099.go use cloaking/bypassing while nearly 80% of loads do so in 124.m88ksim. This result demonstrates
that ultimately, performance is affected by whether the consumers of loads can issue earlier if they are given
a speculative value and by whether they are part of the critical path of the computation. Even when we cor-
rectly speculate a load value, no benefits may be possible if no consumers are visible or if the consumers
have other dependences pending. Performance improvements may not also be possible if the processor has
to wait anyhow for some other part of the computation to complete.

Comparing the cloaking coverage results of part (b) with those of our preceding trace-driven evaluation
we can observe that they are very close. This result suggests that delaying dependence detection and predic-

Figure 4.7: Relative performance of cloaking/bypassing for various mispeculation handling mechanisms.
(a) Oracle and Selective invalidation. (b) Squash invalidation. Performance changes are relative to a
processor that uses no cloaking/bypassing. IPCs for the base case are reported in the gray strip underneath
the graph of part (a). An 8K-entry 2-way set associative DPNT table and an 1K fully associative synonym
file are used.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-15%

-10%

-5%

0%

5%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 Oracle Selective Squash

(a)

(b)

0%
2%
4%
6%
8%

10%
12%
14%

2.
97

2.
45

3.
36

3.
35

4.
94

4.
18

4.
64

3.
19

3.
85

3.
74

1.
60

3.
31

2.
31

2.
17

2.
16

3.
94

2.
52

4.
36

 HARMONIC MEAN INT: 6.03% FP: 4.98% ALL : 5.45%

132

tion updates until instructions are committed does not severely impact cloaking coverage. In fact, in some
cases (e.g., 145.fpppp) cloaking coverage improves as mispeculations do not affect the predictor immedi-
ately (however, mispeculations also increase in this case). As the results of part (b) indicate, for most pro-
grams at least half of the speculated loads obtain a value using bypassing. This is to be expected as our base
processor has a relatively large instruction window and a fairly aggressive front-end. As we have reported in
Section 4.6.4.5, most of the loads that may get a value from cloaking do so over relatively short dynamic
instruction distances.

4.6.6.3 Comparing Cloaking/Bypassing and Value Prediction

We next compare cloaking/bypassing with a simple, last-value with no hysteresis load value predictor.
For this experiment we use a 16K-entry fully-associative value predictor. Each entry of this predictor also
contains the confidence automaton of Figure 4.12 (we experimented with other confidence mechanisms and
found that this automaton yields superior accuracy for value prediction also). The accuracy characteristics
of this value predictor are almost identical to those reported in Figure 4.19. In part (a) we report perfor-
mance improvements over the base configuration that does not use cloaking/bypassing or load value predic-
tion. Included are results for cloaking/bypassing mechanisms with 8K and 16K 2-way set-associative
DPNTs. Furthermore, we used the selective invalidation mechanism outlined in the beginning of this sec-
tion. We can observe that increasing the size of the DPNT improves performance for some of the programs.
It can be seen that for most programs the cloaking/bypassing mechanism offers better performance than the
particular value predictor. However, 132.ijpeg, 104.hydro2d and 125.turb3d, see greater improvements from
value prediction. In both techniques the performance tradeoffs are similar. Performance may improve only
when instructions that depend upon loads execute earlier using a correctly speculated value. Performance
may be negatively affected when erroneous speculation causes instructions to execute multiple times con-
suming resources that could be used more productively. So, in either case we have to balance between the

Figure 4.8: Characteristics of cloaking/bypassing communication. (a) Mispeculations observed for the
squash and selective invalidation schemes. Rates are over all committed instructions. (b) Fraction of
committed loads that get a value via cloaking/bypassing. The upper part of the bar reports loads that get a
value at decode time. The lower part reports loads that find that the actual producer of the value is in the
window and has not yet produced a value. These loads benefit from bypassing.

0%

2%

4%

6%

8%

0.0%
0.5%

1.0%
1.5%
2.0%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

4.7%

 Selective Squash (a)

(b)
09

9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

 Value Available

 Wait For Producer

0%

20%

40%

60%

80%

133

benefits of correct speculation and the impact of erroneous speculation. As we have seen cloaking/bypass-
ing offers, in most cases, equal or better accuracy than the particular load value predictor. This is one reason
why cloaking/bypassing results in better performance. Another reason is how quickly the speculative load
values become available. In load value prediction, the predicted value is always available early in the pipe-
line, while, in cloaking/bypassing getting a speculative value may be delayed until the actual producer cre-
ates it. While getting a predicted value earlier may be beneficial when the value is correct (dependent
instructions may execute earlier) it is not so when the value is incorrect as the speculatively executed instruc-
tions consume resources that could be used more productively.

4.6.6.4 Combining Cloaking/Bypassing and Value Prediction

As we have discussed in Section 4.6.4.4, it may be beneficial to combine value prediction and cloaking/
bypassing. In this section we evaluate two alternatives, the first uses cloaking/bypassing for RAW depen-
dences and value prediction for other loads. Combining RAW memory dependence prediction with value
prediction was suggested by Tyson and Austin [89]. Here, we extent that mechanism by using bypassing for
RAW dependences. In the other mechanism we utilize both RAW and RAR prediction for cloaking/bypass-
ing. Preference is given to value prediction. Cloaking/bypassing is used when value prediction fails either
by mispeculating a load or by not speculating at all. Performance results are given in Figure 4.10, where the
two aforementioned combinations of value prediction and cloaking/bypassing are marked as ÒCLOAK/VPÓ
and ÒVP/CLOAKÓ. With the exception of 104.hydro2d and 125.turb3d, all three mechanisms that use cloak-
ing/bypassing resulted in similar performance improvements. For most programs, using a combination of
cloaking/bypassing and value prediction results in slightly better performance. A notable exception is
099.go, whose performance improvements are reduced with either of the combined mechanisms. Compar-
ing the two combined mechanisms, we can observe that the mechanism that attempts to use value prediction
first (VP/CLOAK) and that also utilizes RAR dependence prediction performs slightly better for most pro-
grams. For 126.gcc, 104.hydro2d and 107.mgrid the mechanism that does not use any RAR dependence
prediction resulted in slightly better performance. However, overall the differences are minor and cannot be
used as an indication of the superiority of any of the mechanisms studied over the rest of them.

The results of these experiments support our earlier observation of a synergy between cloaking/bypassing
and value prediction. Unfortunately, we have seen that the performance improvements by combining the

Figure 4.9: Comparing a load value prediction mechanism with a cloaking mechanism.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 CLOAKING 8K-DPNT CLOAKING 16K-DPNT VALUE PRED. 16K

0%

5%

10%

15%

20%

134

two techniques obtained are relatively minor. Further, investigation is required to determine whether perfor-
mance is limited by the program itself (i.e., whether some other part of the program becomes the critical path
when the techniques are combined) or whether it is the limited bandwidth of the processor model we used
that inhibits any further improvements. Such an investigation is beyond the scope of this work.

4.7 Summary

In this chapter we identified and were motivated by two prevalent uses of memory: inter-operation com-
munication (passing a value from a store to a load) and data-sharing (two or more loads access a common
memory location). We reviewed how these actions are specified using the traditional address-based memory
interface and identified a set of potential drawbacks: calculating an address (fetching input registers and per-
forming an addition), disambiguation (determining whether a preceding, yet uncompleted store will provide
the value and where the value is going to be placed) and finally, memory system access. Noticing that using
run-time calculated addresses is not the only way of specifying these actions we were concerned with meth-
ods of explicitly specifying memory communication and data-sharing and of exploiting this information to
streamline loading values from memory. We proposed using memory dependence prediction to identify the
memory communication and data-sharing patterns dynamically, annotating the corresponding instructions.
We used memory dependence prediction as the basis of speculative memory cloaking, a novel technique
where we create a new, albeit speculative name space through which loads and stores can access values with-
out having to incur some of the overheads associated with address calculation, disambiguation and memory
system access. Furthermore, observing that loads and stores act simply as agents passing values that other
instructions create or use we proposed speculative memory bypassing where the instructions that produce or
consume memory values via stores and loads are linked directly. Both techniques are speculative in nature
and for that require that the values so obtained are verified through the traditional memory name space also.
For this reason, these techniques can only reduce the latency associated with reading memory values.

Evaluating cloaking and bypassing we have seen that most of the executed loads read a value that was
written by a recent store or read by a recent load. Moreover, we have demonstrated that the majority of the

Figure 4.10: Performance improvements obtained by combining load value prediction and cloaking/
bypassing. All cloaking/bypassing mechanisms use a 8K DPNT.

0%

2%

5%

8%

10%

12%

15%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 CLOAKING VALUE PRED. 16K CLOAK/VP VP/CLOAK

135

corresponding dependences can be captured with relatively small structures that can hold the last 128 mem-
ory locations accessed. Furthermore, we have demonstrated that this history information can be used to pre-
dict future dependence behavior with relatively high accuracy and showed that a cloaking mechanism that
utilizes this prediction can provide correct values for about 70% and 50% of all loads executed in the integer
and the floating point program respectively, while maintaining mispeculation rates of roughly 2% and 0.4%
respectively. We have identified that important sources of mispeculations are: (i) the save and restore stores
and loads respectively of recursive functions, and (ii) loads that have multiple RAR dependences some dis-
tant and less regular and some in close proximity that are fairly regular. We also demonstrated that while
RAW dependences are more frequent for the integer codes, RAR dependences are more frequent in floating
point codes. Moreover, we showed that even through the use of a small dependence detection structure, we
can capture and predict dependences that span across much larger distances in terms of dynamic instructions
(some of the dependences captured were between instructions more than 16K instructions apart).

We also investigated the address and value locality characteristics of the loads that get a value via cloak-
ing. We showed that cloaking captures most of the address locality found in the programs studied and while
also capturing some loads that do not exhibit any address locality. We also looked at the value locality char-
acteristics of the loads that get correct values from cloaking and found high correlation between the type of
dependences experienced by a load and its value locality characteristics. We saw that loads that experience
RAW dependences exhibit relatively low value locality while the loads that experience RAR exhibit rela-
tively high value locality. For most programs, few other loads exhibit value locality. Moreover, we found
that cloaking offers superior accuracy when compared to a simple, yet realistic last-value based value predic-
tion mechanism. However, we also found that a synergy exists between value prediction and cloaking/
bypassing.

Moreover, we investigated the performance impact, a combined implementation of cloaking and bypass-
ing has on a dynamically scheduled ILP processor. To do so we used a fairly aggressive processor with an
128-entry instruction window that performs naive memory dependence speculation as our base. We found
that performance was extremely sensitive to the mispeculation recovery mechanism used. When squash
invalidation was used, performance improved slightly only for two programs. In fact, performance degrada-
tion varying from as low as 2.5% to as much as 12% was observed for the rest of the programs. However,
when combined with an implementation of selective invalidation, cloaking/bypassing offered performance
improvements for all programs studied. The observed speedups were in the range of 1.5% to 15.4% with the
harmonic mean being 4.1% (16K, 2-way set associative DPNT, 1K 2-way set-associative synonym file).

Finally, we compared our cloaking/bypassing mechanism to a straightforward last-value, load value pre-
dictor and found that cloaking/bypassing offered superior performance for all programs except 104.hydro2d.
We also considered two mechanisms that combined load value prediction and cloaking/bypassing and found
the although some benefits were possible, in most cases those benefits were relatively small for the processor
model we used. However, these mechanisms may perform better under different processor models. For
example, they may perform better: (1) when memory latency is higher as now the potential benefits of
obtaining a memory value as early as possible are increased, and (2) when the instruction window is
increased as in this case value prediction may supply a memory value long before cloaking or bypassing
could.

While conceptually exciting, our results suggest that support for selective invalidation and fast data specu-
lation resolution has to materialize before the techniques presented can be of practical use (under similar
assumptions about the processor configuration and memory access latency).

136

Chapter 5

Transient Value Cache

Highly parallel execution can benefit from both low memory latency and from the ability to perform mul-
tiple memory accesses in parallel. The techniques we have presented so far aimed at providing low memory
latency by either scheduling loads as soon as possible (Chapter 3) or by creating a speculative name space
through which loads can obtain a value without incurring the overheads associated with the traditional mem-
ory address space (Chapter 4).

In this chapter, we present the Transient Value Cache (TVC for short), a method of supporting multiple
memory access per cycle. The TVC is a novel memory hierarchy component that combines a memory
dependence status predictor and a relatively small, narrow data cache. The basic approach is illustrated in
Figure 5.1. The TVC records in its data cache component the nth most recent accessed memory locations as
a traditional data cache would. However, contrary to what is done in a traditional memory hierarchy, the
data cache component does not always appear in series with the rest of the memory hierarchy. Instead, its
placement is decided using a memory dependence prediction as follows: When a load is ready to access
memory, a prediction is made on whether the memory location it will access is resident in the TVC, or
viewed differently whether the load has a RAW or a RAR dependence with a recent store or load respec-
tively. If so, the load is sent only to the TVC, in which case the TVC appears in-series with the L1 data
cache. Otherwise the load is sent to both the TVC and the rest of the memory hierarchy, in which case the
TVC appears in-parallel with the L1 data cache. Provided that prediction accuracy is high, the potential
benefits of the TVC approach are: (1) the loads that hit in the TVC are hidden from the rest of the memory
hierarchy, freeing up L1 data cache ports to be used by other loads, (2) the latency of loads that are unlikely
to hit in the TVC remains unchanged. High prediction accuracy is essential as the TVC may result in
increased load latency when prediction incorrectly indicates that a load will find its data in the TVC. We
also discuss a possible WAW dependence status prediction extension, where the TVC is also used to hide
from the rest of the memory hierarchy those store accesses that are likely to be overwritten quickly, preclud-
ing potential problems with writeback traffic contention while reducing L1 port requirements (see discussion
in Section 5.2).

137

For the TVC to be effective, programs must exhibit a significant fraction of loads with short-distance
RAW or RAR dependences. Furthermore, the existence of those dependences must be predictable with high
accuracy. Moreover, if we decide to use the WAW extension, the aforementioned characteristics should be
exhibited by the WAW dependence stream of programs. We have presented evidence that such behavior
exists in Chapter 2. In Section 5.1, we take a closer look at the short-distance RAW, RAR and WAW mem-
ory dependence behavior of programs. We use the results of this analysis to motivate the TVC approach
which we describe in Section 5.2. In Section 5.3, we review related work. In Section 5.4 we present exper-
imental evidence in support of the benefits of the TVC approach. Finally, in Section 5.5 we summarize our
findings.

We should warn the reader that the evaluation presented in this chapter is preliminary. For this reason, the
results presented should be interpreted merely as an indication of the potential of the TVC approach. Fur-
ther investigation is required to determine how a TVC affects performance.

5.1 Short-Distance Memory Dependence Measurements

The TVC method is best motivated by examining the short-distance memory dependence behavior of pro-
grams. For this reason, we first present an empirical study of the short-distance memory dependence behav-
ior of loads and stores. Specifically, to get an estimate of the fraction of loads or stores that the TVC can
potentially hide from the rest of the memory hierarchy we measure: (1) the fraction of loads that have a
RAW or RAR dependence, and (2) the fraction of stores that have a WAW dependence with a succeeding
store. We measure both fractions as a function of the number of memory locations that can be stored in a
word-wide, fully-associative data cache. We have presented similar measurements in Chapter 2, where we
were concerned with the amount of resources required to capture a desired level of memory dependence
activity. The analysis of this section differs in that we take a closer look at the lower end of the spectrum
and consider address window sizes that seem more appropriate from a practical perspective. Figure 5.2,
reports, in part (a), the fraction of loads that would find the data they need in the data cache, and in part (b),
the fraction of stores that would be killed in the data cache. The size of the data cache is varied from 32 to
up to 8K entries, and samples are taken at sizes that are powers of two.

Figure 5.1: The Transient Value Cache

OOO Core

TVC

Memory Hierarchy Load/Store Path

no dependence

dependence

De
pe

nd
en

ce
 S

ta
tu

s
Pr

ed
ic

to
r

138

Focusing first on the loads (part (a)), we can observe that most programs exhibit relatively large fractions
of loads that read a recently written or read memory location. Even when we keep a record of just the last 32
accessed memory locations, we can often capture around 40% or more of all load accesses. As it can be
seen by the results of part (b), a significant fraction of stores also get killed within the limits of a relatively
small data cache. However, the fraction of stores that gets killed within a data cache of a given size is typi-
cally smaller than the fraction of loads that would find their data in a data cache of the same size. As we
also noted in Chapter 2, the WAW dependence behavior of floating point programs is different from that of
integer programs. In the integer programs, the fraction of stores with WAW dependences rises sharply with
the size of the data cache, exceeding 65% with a data cache of 8K. In contrast, the increase in stores with
WAW dependences is not as sharp for floating point programs. Moreover, for most floating point programs,
the fraction of stores with WAW dependences is typically lower compared to the integer programs. For
example, in 104.hydro2d the fraction of stores with WAW dependences is near 30% even when an 8K data
cache is used.

The results of this section suggest that a data cache that can hold a relatively small number of recently
accessed or written memory locations, can potentially service significant fractions of loads and stores. For
example, a data cache capable of recording 128 memory locations can provide values for 62% (70.2% for
the integer codes and 56.3% for the floating point codes) of all loads on the average. In the same data cache,
38% of all stores (55% for integer codes and 23% for floating point codes), will get killed on the average.

Figure 5.2: (a) Loads with a RAW or RAR dependence within the last n unique, most recently accessed
memory locations. (b) Stores that have a WAW dependence within the next n unique memory locations
accessed. Range of n shown is 32 to 8K in steps that are powers of two.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

(a)

(b)

139

Motivated by these empirical observations, in the next section we present the transient value cache which
exploits this behavior to reduce the bandwidth requirements imposed on a traditional memory hierarchy.

5.2 The Transient Value Cache

To goal of the TVC approach is to provide support for multiple memory requests per cycle, reducing the
port requirements imposed on the L1 data cache. Traditionally, support for multiple memory requests was
provided by multi-porting (e.g., replication) or by partitioning (e.g., banking) of the L1 data cache. How-
ever, it is likely that L1 data cache sizes will have to increase in future generation processors to compensate
for increased working sets and relatively slower main memories or other levels of memory hierarchy. Fur-
thermore, it is likely that in future processors, wire propagation delays may limit the amount of resources
reachable within a clock cycle thus making larger caches relatively slower [98]. Under these constraints, we
argue that it is desirable to service as many memory requests as possible using relatively small storage struc-
tures. The reasons are that: (1) relatively small structures may occupy less area and for that may be faster
(e.g., [98]), and (2) the cost of replicating a small structure for the purposes of multi-porting may not be pro-
hibitive.

As the results of the previous section suggest, for the programs we studied, behavior is such that even rel-
atively small data caches could service significant fractions of loads and stores (a discussion on whether this
observation will apply to future workloads is delayed until later in this section). The TVC approach is best
motivated if we first consider how a traditional memory hierarchy could be extended to exploit the afore-
mentioned program behavior. In a traditional memory hierarchy, the various data cache levels are placed
serially. The straightforward way of exploiting the phenomena identified in the previous section, is to intro-
duce an additional level of caching between the L1 data cache and the processor. This is shown in Figure
5.3, where the newly introduced cache is referred to as the L0 data cache. The advantage of this organiza-
tion is that now, loads that will hit in the L0 data cache may benefit from the additional ports provided. Sim-
ilarly, stores that get killed in the L0 are hidden from the L1 data cache. In either case, the processor may
benefit from the ability to issue multiple requests at the same time, while the bandwidth requirements on the
L1 data cache are reduced. Unfortunately, the L0 organization has also potential disadvantages. The first is
that the latency of loads that do not hit in the L0 is now increased by the time required to inspect the L0. For
this reason, care must be taken to balance between the benefits obtained when loads hit in the L0 and the
increases in load latency when loads do not hit in the L0. This trade-off applies to all hierarchies that place
caching levels serially. However, in todayÕs memory hierarchies the absolute and relative increases in
latency between adjacent caching levels is relatively high, while the miss rates are typically low. For rela-
tively small L0 caches, and as the results of the previous section suggest, miss rates will be relatively higher,
while it is likely that the latency of the L0 will be comparable, if not equal to that of the L1. Under these
new conditions the benefits of additional ports may not offset the effects of increased load latency for those
loads that miss in the L0. An additional concern with the L0 organization is how it may interact with a typi-
cal out-of-order instruction scheduler and specifically, when instructions that use a value loaded from mem-
ory, can be scheduled for execution. If the scheduler can wait until a determination is made on whether the
source load hits in the L0, there is no concern. However, if the scheduler must optimistically schedule the
dependent operations in parallel with accessing the L0 or earlier [84], then a high L0 miss rate will translate
in frequent replays in the pipeline which may degrade performance.

The goal of the TVC approach is to provide the benefits of servicing a significant fraction of loads and
stores using a relatively small data cache, while avoiding the aforementioned problems associated with
introducing an additional level of caching between the processor and the L1 data cache. The TVC is noth-
ing more than a small data cache coupled with a memory dependence status predictor. The TVC differs
from a typical data cache in that it does not always appear in series with the next level of the memory hierar-
chy as is the case with traditional memory hierarchies. Instead, the TVC uses memory dependence status

140

prediction to place itself either in-series or in-parallel with the rest of the memory hierarchy on a per access
basis. Before a load is performed, a prediction is made whether it will access data written or read by a recent
load or store. If so, the access is directed first to the TVC, otherwise it is sent to both the TVC and the L1
data cache in parallel. Provided that the dependence status of an instruction is correctly predicted the bene-
fits are two-fold: (1) accesses that find the data they need in the TVC do not consume L1 ports which may
be used by other memory instructions, (2) accesses that are not likely to find their data in the TVC do not
pay the latency of having to first go through the TVC. High prediction accuracy is essential as when predic-
tion is incorrect one of the following two scenarios apply: (1) load latency will increase by the time required
to first go through the TVC and then to the L1 cache, or (2) a load will be incorrectly exposed to the L1
unnecessarily consuming an L1 data port. In the first scenario, the TVC is incorrectly placed in series with
the L1 data cache. However, this is no different than what would have happened with the L0 organization of
Figure 5.3. In the second scenario, the TVC is incorrectly placed in parallel with the L1. This case repre-
sents a lost opportunity for L1 data port bandwidth reduction.

We can also extend the TVC with a WAW dependence status predictor, in which case a prediction is made
on whether a store will be killed in the TVC before it is evicted to the L1 data cache. The potential benefits
in this case are indirect. The L1 port scheduler may use this information to better utilize idle L1 port cycles
by writing those stored values that are more likely to not get killed in the small data cache. However, in the
case of incorrect WAW prediction, the TVC may not hide some of the stores that would have been killed
with the organization of Figure 5.3.

The operation of the TVC is summarized in Figure 5.4 where we show how dependence status prediction
is used to steer loads and stores. Loads that are likely to have RAW or RAR dependences with recent stores
or loads respectively, are initially sent only to the TVC. Such loads are directed to the data cache only if we
miss in the TVC (part (a)). In the latter case we do bring the data in the TVC. Other loads have to access
both the TVC and the data cache in parallel (part (b)) since the most recent value may be only in the TVC. If
the WAW extension is used, then stores that are likely to be killed soon are initially sent only to the TVC in
hope that they will be killed in it before they are forced to go the data cache (part (c) Ñ in an L0 organiza-
tion all stores will first get exposed only to the L0 if a write-back policy is used). Other stores are sent to
both caches to keep them coherent (part (d)). If a dirty block in the TVC needs to be replaced, its contents
will have to be written to the data cache.

The TVC requires a memory dependence status predictor. The memory dependence predictors we use in
our evaluation associate dependence status information with static loads and stores via their PCs. To collect

Figure 5.3: Incorporating an additional level of caching between the L1 data cache and the processor.

OOO Core

L1 Data Cache

L0

Load Latency

L0 hit: L0 latency

L0 miss: L0 latency + L1 latency

141

this information, a method of detecting the existence of memory dependences is required. Since we are
interested in the dependence status of instructions, the exact dependences are not important, only whether
dependences exist. In the case of loads, detecting whether the load has a RAW or a RAR dependence within
the limits of the TVC is equivalent to whether the load has found the data it needs in the TVC. This observa-
tion suggests that the TVC itself may also serve as a detection mechanisms for RAW and RAR dependences.
Detecting whether a store is overwritten by a another store is not as simple. The reason is that at the time the
WAW dependence occurs we want to associate the event with the store that wrote the data being overwritten.
For this reason, detecting and predicting WAW dependences requires to also record the PC of the store along
with the data in the TVC itself.

We should also note that in a shared memory multiprocessor environment and subject to the consistency
model in use, we may have to expose all memory operations to the coherence mechanism. However, the
issues are no different than those applying to any memory hierarchy.

We conclude the discussion of this section by commenting on the following two issues: (1) whether the
underlying phenomena that the TVC exploits will exist in future workloads, and (2) how the TVC might
interact with the cloaking/bypassing methods we presented in Chapter 3.

We motivated the TVC by observing that the behavior of the programs we studied is such that even rela-
tively small data caches could service significant fractions of loads and stores; many loads and stores read or
write on memory address that was recently accessed by another load or store. A valid concern however, is
whether the aforementioned observations will or will not apply for future workloads. Unfortunately, there is
no way of providing a definite proof for either possibility. However, we do offer two qualitative arguments:
one that suggests why short-distance memory dependences may still represent a reasonable fraction of all
memory traffic in some future workloads and one that suggests that the TVC approach may at least not harm
performance when short-distance memory dependences are not exhibited. As the results of Chapter 4 sug-

Figure 5.4: Transient value cache operation. Loads: (a) RAW or RAR dependence predicted, (b) no RAW or
RAR dependence predicted. Stores: (c) WAW dependence predicted, (d) no WAW dependence predicted.

Data Cache

TVC

Data Cache

TVC

Data Cache

TVC

Data Cache

TVC

store store

load load

if miss

(c) (d)

(a) (b)

142

gest much of the short-distance memory traffic can be attributed to inter-operation communication through
memory or to repeatedly reading a memory value. These phenomena are partially the result of how pro-
grams operate and of how this operation is expressed. Often times, programs perform calculations whose
results are quickly used for further processing. Such behavior gives rise to short distance inter-operation
communication. Moreover, programs often use constants or values that do not change for some period of
time. Such behavior gives rise to short-distance RAR memory dependences. Finally, the use of structured
programming techniques, of object-oriented programming techniques and of dynamic linking often results
in increased memory traffic (passing parameters, saving and restoring registers on method/procedure calls).
It will take a program that scans through large data structures without reusing any of its memory stored
results or memory stored constants for short distance RAW and RAR dependences to be infrequent. Finally,
even when short-distance RAR and RAW dependences are not frequent the TVC being an adaptive structure
may at least succeed in avoiding increasing latency for loads. Although, the TVC will not provide any ben-
efits for such programs, it is highly probable that it will also not cause any harm.

Finally, it is also interesting to consider how the TVC interacts with the cloaking/bypassing mechanism
presented in Chapter 4. Recall, that cloaking/bypassing utilizes RAW and RAR dependence prediction to
supply memory values early in the pipeline. The loads that cloaking/bypassing is capable of handling are
those that have dependences detected via a DDT of moderate size. These loads, in their majority are the
loads that the TVC aims to hide from the rest of the memory hierarchy. The potential exists to combine the
two techniques, sharing a common prediction structure. In this case, the TVC and cloaking/bypassing may
be used to both reduce the latency for a large fraction of loads and to also hide them from the rest of the
memory hierarchy reducing the bandwidth requirements imposed on the L1 data cache.

5.3 Related Work

A plethora of cache related techniques and studies has been reported. In this section we review work that
specifically targets supporting multiple, simultaneous requests at the L1 data cache-processor interface, and
related studies. A variation of the TVC approach, in which only RAW memory dependence status prediction
was used for loads, was presented in [62].

A number of previous studies have focused on the bandwidth requirements of highly-parallel processing.
Sohi and Franklin [83] argued for the need of high-bandwidth memory systems in order to support the data
bandwidth demands of future, wide-issue processors. They proposed a number of organizations that can be
used to support multiple, simultaneous load and store requests. Techniques suggested include lockup-free
caches [48] and multi-ported or multi-bank caches. Another technique to support multiple memory requests
per cycle is time division multiplexing or virtual multi-porting. In this technique, which is, for example,
used in the IBM Power2 [76] and in the Alpha 21264 [11], multi-porting is achieved by performing multiple
(two in the specific implementations) data cache accesses serially within a single clock cycle. Another tech-
nique, utilizes multiple copies of the L1 data cache. This technique is used for example in the 21164 Alpha
processor [45].

Wilson, Olukotun and Rosenblum [96, 95] studied how performance varied with the number of available
data cache ports, and found that multiple cache ports can have a significant impact on performance. They
also suggested a number of organizations that utilize a very small data cache, the Line Buffer which is placed
in series with the L1 data cache [96]. They demonstrated that a large fraction of memory accesses can be ser-
viced within this small data cache. The assumption of the study is that the line buffer, being relatively small,
does not impact load latency even when the data needed is not found there. The TVC aims at offering most
of the benefits of the Line Buffer approach even when this assumption is not valid.

143

Rivers, Tyson, Davidson and Austin propose the Locality-Based Interleaved Cache (LBIC) [70], that
employs a line buffer per data cache bank to reduce the negative effects of bank conflicts. In their design,
accesses to the same memory block can be serviced simultaneously via the use of a line buffer. They also
study the effects of multi-porting on the performance of a very aggressive dynamically-scheduled ILP pro-
cessor and find that true multi-porting can lead to significant performance improvements.

Kin, Gupta and Mangione-Smith also suggested introducing a relatively small data cache, termed the Fil -
ter Cache, in between the L1-processor interface [46]. The Filter Cache uses the L0 organization of Figure
5.3 as it aims to reduce power at the expense of some performance degradation.

In this work we were motivated by the large fraction of memory accesses that can be serviced with a rela-
tively small data cache. A plethora of previous studies have also looked at the memory reference behavior of
programs, with the focus being the optimization of the memory hierarchy. The most relevant to this work
studies are the following: McNiven and Davidson [59] analyzed memory reference behavior and suggested
using compiler hints to identify values that are killed in order to reduce the traffic between adjacent levels of
the memory hierarchy. Huang and Shen studied the minimal bandwidth requirements of current processors
taking into account instruction issue rate, memory capacity and memory bandwidth. They also formalized
the notion of an efficient memory system, were the smallest possible storage structure is used to meet the
data requirements of program execution [35, 36]. They demonstrated that relatively small structures can in
principle be used to meet the bandwidth requirements of typical programs.

The TVC approach exploits the high-levels of locality exhibited in the memory dependence status of loads
and stores. Abraham, Sugumar, Windheiser, Rau and Gupta, have shown that there is high correlation
between misses and the static load and store instructions that cause them [2]. They proposed a number of
compiler optimizations to reduce the performance impact of those misses. Tyson, Farrens, Matthews and
Plezkun exploited this phenomenon to predict whether the data fetched by a memory instruction will be used
again [88]. This prediction was used to increase data cache efficiency by not caching data with low locality.
The TVC is orthogonal to either technique as it exploits the high correlation between instructions and miss
behavior to hide loads from higher levels of the memory hierarchy.

5.4 Evaluation

In this section we provide experimental evidence in support of the potential of the TVC method. To do so,
we assume a memory dependence status predictor of infinite size and measure its accuracy as a function of
the size, associativity and data block size of the data cache used. These results, indicate the fraction of loads
that would be serviced by the TVC and the fraction of stores that will get killed in it. Furthermore, they also
indicate the fraction of loads that will see an increased latency by having to first go through the TVC. We
also compare the TVC to L0 organizations that utilize the same data cache components. We should warn the
reader that these results should only be interpreted as indications of the potential of the TVC method. The
evaluation presented has several limitations, the most important of which are: (1) we do not study the impact
the TVC has on performance, and (2) we do not compare with other existing techniques of improving cache
port efficiency.

Our focus in on how the TVC interacts with load instructions. This study is presented in Section 5.4.1.
Initially, we measure the effectiveness of the TVC approach for various sizes of the data cache components
and compare its characteristics to an L0 organization of the same size. In Section 5.4.1.1, we study the
effects of using data cache components of reduced associativity. Finally, in Section 5.4.1.2 we study the
effects of increasing the block size of the data cache component. In Section 5.4.2, we study the prediction
accuracy of a WAW memory dependence status predictor. In this study, we assume fully-associative data
cache components.

144

5.4.1 Load Dependence Status Prediction Accuracy

Figure 5.5 reports the memory dependence status prediction accuracy on loads as a function of the data
cache entries used. In these experiments we assumed a fully-associative, word-wide data cache component
and varied its size from 32 to 8K entries, in power of two steps. Furthermore, we assumed a dependence sta-
tus predictor that associated a 2-bit saturating counter with each load and store. A threshold value of two
was used. That is, a load should have a dependence detected twice before a positive dependence status pre-
diction could be made. No limit was placed in the number of predictor entries. However, as we have seen
in Chapter 2, the working set of loads with dependences, even when the data cache is 64K words, is less than
4K for all programs except 145.fpppp. This result implies that a predictor with at most 4K entries should
yield prediction accuracies very close to those possible with the predictor used in this study. Part (a) of the
figure reports the fraction of loads that have their dependence status correctly predicted. We can observe
that with the exception 099.go and for data cache sizes of 128 entries or more, prediction accuracy is above
90%. For most floating point programs, accuracy is above 95% independently of data cache size. We can
also observe that while, typically increasing the size of the data cache improves accuracy, in some cases
accuracy may decrease. The reason is that when the data cache size is increased, more dependences get
exposed. However, these dependences are not always well behaved. In some cases, the dependences corre-
spond to loads that traverse through structures that only partially fit in the data cache, or to loads that exhibit
control flow dependent behavior.

Part (b) of the figure, reports the fraction of loads that are correctly predicted and do find the data they
need in the TVC. These are the loads that will be hidden from the rest of the hierarchy thus freeing up L1
data cache port resources to be used by other loads or stores. We can observe that in absolute terms, a large
fraction of loads is correctly identified. Moreover, when compared with the hit rate that would be possible
with a traditional organization (part (a) of Figure 5.2), we can observe that the vast majority of loads that
would indeed find their data in a data cache of the given size are predicted correctly. This is clearly shown
by the results of part (d), where we report the loads that are predicted correctly and hit in the TVC as a frac-
tion of the loads that would have hit in a data cache of the same size. With the exception of 132.ijpeg, more
then 90% of the loads that would have hit in a traditional organization will do so using the TVC approach.

As we discussed in Section 5.2, the TVC may increase the latency of some loads. This happens when
dependence status prediction incorrectly indicates that the load will find the data it needs in the TVC cache.
Part (c) of Figure 5.5 reports this fraction. We can observe that in absolute terms, few loads will see a
latency increase by the introduction of the TVC. However, for very small data cache sizes, this fraction is
noticeable. For example, about 8% of loads in 130.li will observe a latency increase when a 32-entry data
cache component is used. Fortunately, as we consider larger data cache sizes the percentage of loads that
will be penalized by the use of the TVC drops. In particular, when an 128-entry data cache is used, this per-
centage drops below 5% for all programs except 099.go. We should however note, that had we used the tra-
ditional organization of Figure 5.3, the fraction of loads that would be penalized would have been
significantly higher. In fact, all loads that would miss in the L0 data cache would have been penalized. As
we have discussed in Section 5.1, roughly 30% and 45% of loads would miss on the average in a data cache
of 128 words for the integer and floating point codes respectively.

Table 5.1 compares the TVC approach with a traditionally organized L0 data cache (organization of Fig-
ure 5.3). The comparison is done in terms of the load hit rates and of the fraction of loads that will observe
a latency increase (miss rate in the case of the L0) compared to an organization that uses neither an L0 nor a
TVC. In this comparison we limit our attention to data cache sizes of 128, 256, and 512 word entries (or
equivalently, 512, 1K, and 2K bytes). Moreover, we assume fully-associative word-wide data cache compo-
nents for both the TVC and the L0. Under the TVCHIT% columns we report the fraction of loads that will
get hidden in the TVC (these are the loads for which dependence status prediction correctly predicts that

145

they will find the data they need in the TVC). That is, the TVCHIT% indicates the positive impact the intro-
duction of the TVC may have. Under the TVCLI% columns we report the fraction of loads that will observe
a latency increase (these are the loads for which dependence status prediction incorrectly predicts that they

Figure 5.5: Load dependence status accuracy. (a) Correctly predicted loads, (b) loads that are correctly
predicted and hit in the TVC, (c) incorrectly predicted loads that do not hit in the TVC. (d) loads that hit in
the TVC as a fraction of the loads that would have hit in a data cache of the same size.

80%

90%

100%

0%

20%

40%

60%

80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

(b)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

5%

10%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(c)

70%

80%

90%

100%

(d)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

146

will find the data they need in the TVC). The TVCLI% indicates the negative impact the introduction of the
TVC may have. The average memory latency is given by the following formula:

TVCHIT% × TVClat + TVCLI% × (TVClat + MEMlat) + (1 - TVCHIT% - TVCLI%) × MEMlat

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

099 64.9% 6.1% +7.0% +28.0% 101 61.8% 0.5% +0.05% +38.1%
74.9% 5.3% +5.8% +19.2% 62.0% 0.4% +0.03% +37.9%
81.6% 3.9% 4.5% +13.7% 65.0% 0.4% +0.03% +34.9%

124 79.9% 3.6% 2.5% +17.4% 102 66.9% 0.05% 0% +33.0%
95.0% 1.1% 0.9% +4.0% 66.9% 0.05% 0% +33.0%
97.1% 0.7% 0.3% +2.5% 66.9% 0.05% 0% +33.0%

126 65.0% 3.9% 4.3% +30.6% 103 54.1% 0.3% +1.4% +44.4%
71.6% 3.3% 3.5% +24.8% 54.5% 0.9% +2.4% +43.0%
76.0% 2.6% 2.8% +21.1% 56.9% 2.4% +2.7% +40.3%

129 74.8% 0.5% 0.9% +24.2% 104 45.4% 0.1% +0.1% +54.3%
75.4% 0.8% 1.4% +23.1% 46.2% 0.1% +0.05% +53.6%
76.7% 1.0% 1.8% +21.3% 46.2% 0.1% +0.05% +53.6%

130 78.8% 3.1% 2.1% +18.9% 107 66.1% 3.3% +0.1% +33.7%
82.9% 1.8% 1.8% +15.1% 67.7% 3% +0.1% +32.0%
84.4% 1.5% 1.8% +13.6% 83.4% 1.5% +0.2% +16.3%

132 29.7% 2.7% 5.0% +65.2% 110 67.2% 2.2% +0.6% +32.1%
38.9% 3.4% 5.6% +55.4% 74.5% 1.4% +0.5% +24.8%
47.3% 4.1% 5.6% +46.9% 83.5% 0.6% +0.4% +16.0%

134 69.2% 2.1% 1.6% +29.1% 125 32.1% 0.5% +0.1% +67.7%
73.4% 1.6% 1.6% +24.8% 35.9% 2.0% +1.7% 62.2%
80.7% 1.0% 0.9% +18.3% 60.8% 2.9% +2.1% +36.9%

147 72.5% 1.8% 2.9% +24.4% 141 56.1% 4.4% +3.6% 40.1%
80.2% 1.8% 1.8% +17.8% 73.6% 2.8% +2.6% +23.6%
84.0% 1.2% +1.4% +14.4% 88.6% 0.5% +0.3% 11.0%

Mean
INT

66.9% 3.0% +3.3% +29.8% 145 49.6% 0.2% +3.5% +46.8%
74.1% 2.4% +2.8% +23.1% 65.1% 0.3% +4.9% +29.8%
78.5% 2.0% +2.4% +19.0% 77.6% 0.8% +5.2% +17.1%

Mean
All

60.4% 2.0% +2.1% +37.5% 146 51.9% 0.5% +1.3% +46.6%
66.7% 1.7% +2.0% +31.3% 60.9% 0.2% +0.9% +38.1%
73.5% 1.5% +1.7% +24.7% 66.2% 0.2% +0.9% +32.8%

Mean
FP

55.2% 1.2% +1.1% +43.7%
60.8% 1.2% +1.3% +37.8%
69.5% 1.0% +1.2% +29.2%

Table 5.1: Comparing a TVC with a L0 data cache of the same size. Data cache sizes shown are 128, 256
and 512 words (top to bottom)

147

Where TVClat is the latency of the TVC and MEMlat is the latency observed when accessing the rest of the
memory hierarchy starting from the L1 data cache. Note that in the above formula, the latencies of the TVC
and the L1 data cache add only when dependence status prediction incorrectly predicts that a load has a
dependence visible from within the TVC (TVCLI% component). The L0HIT% columns report the addi-
tional fraction of loads that would hit in the L0 cache (compared to the TVC) and the L0LI% columns report
the additional fraction of loads that would miss in the L0 and thus observe a latency increase. That is the
L0HIT% rate is calculated by subtracting the TVCHIT% rate from the actual hit rate of the L0, while the
L0LI% rate is calculated by subtracting the TVCLI% rate from the actual miss rate of the L0. (Note that the
loads that miss in the TVC are not necessarily the same as the ones that miss in the L0.) The L0-HIT% col-
umn can be interpreted as the fraction of loads that will incorrectly not get hidden in the TVC (i.e., depen-
dence status prediction incorrectly indicates that these loads will not find the data they need in the TVC),
while the L0-LI% column can be interpreted as the fraction of loads that will correctly not get penalized
when the TVC is used (i.e., dependence status prediction correctly indicates that these loads will not find the
data they need in the TVC). The average memory latency in this case is as follows:

(TVCHIT% + L0HIT%) × L0lat + (TVCLI% + L0LI%) × (L0lat + MEMlat)

Where L0lat is the latency through the L0 data cache. Note that in this formula the latencies of the L0 and
the L1 data cache add whenever loads do not have dependences that are visible through the L0 (TVCLI% +
L0LI%). We make the following observations: (1) very few loads that hit in the L0 do not hit in the TVC,
(2) very few loads will observe a latency increase with the TVC, and (3) a relatively large number of loads
will miss in the L0 and thus observe a latency increase by the introduction of the L0 data cache. These
results, suggest that the TVC can capture most of the loads that would hit in a traditionally organized L0 data
cache, while avoiding the vast majority of load misses that would otherwise lead to increased load latencies.

The results of this section suggest that a relatively small data cache (e.g., 128 words) coupled with mem-
ory dependence predictor could be used to offer the benefits of servicing a large fraction of loads (i.e., 66.9%
and 55.2% for the integer and floating-point programs respectively) without consuming L1 cache ports,
while increasing load latency for 3.3% and 1.1% of all loads on the average for the integer and floating point
codes respectively. In the worst case observed, the latency of 7.5% of all load was increased (099.go). For a
traditional organization, that would place an 128-word data cache in series with the L1, 29.7% and 43.7% of
all loads will have observed increased latency on the average and for the integer and floating point codes
respectively.

5.4.1.1 Effects of Associativity on Prediction Accuracy

In this section we vary the associativity of the data cache component and measure how memory depen-
dence status accuracy is affected. For the purposes of this study, we restrict our attention to a data cache
component of 128 words. Table 5.2 compares a TVC and a L0 cache that are, from top to bottom: (1) direct
mapped, (2) 2-way set associative, and (3) 4-way set associative. The same metrics as in Table 5.1 are used
for this comparison.

We can observe that for smaller associativities, and as expected, the fraction of loads that can get hidden in
a small data cache drops. In this environment the effectiveness of both the TVC and the L0 caches is
reduced. The L0 caches exhibit much higher miss rates, which would translate in an increased number of
loads getting penalized by the introduction of an additional caching level. In the case of the TVC caches,
prediction accuracy also drops compared to a fully-associative data cache component. Fortunately, increas-
ing the associativity results in higher accuracy. Compared to an L0, the TVC still captures the vast majority
of loads that would hit in the L0. However, the differences are now higher. Moreover, the fraction of loads
that the TVC incorrectly tries to hide from the L1 (TVC-LI% column) is also much higher, especially with

148

the direct-mapped data cache component. However, this fraction is still small compared to the fraction of
loads that would miss in an L0 (TVC-LI% + L0-LI%).

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

099 50.8% 10.8% +10.6% +38.6% 101 30.2% 1.6% +1.3% +68.5%
57.6% 9.0% +9.1% +33.3% 41.7% 2.4% +1.5% +56.8%
61.4% 7.7% +8.1% +30.5% 49.1% 3.2% +2.6% +48.4%

128 61.3% 10.0% +6.9% +31.7% 102 41.7% 0.3% +0.1% +58.2%
66.9% 10.4% +7.3% +25.8% 50.7% 0.5% +0.0% +49.2%
72.5% 8.9% +5.3% +22.2% 64.3% 0.1% +0.0% +35.7%

126 55.2% 7.3% +6.1% +38.7% 103 44.8% 1.7% +1.9% +53.3%
60.5% 5.6% +5.4% +34.2% 51.7% 1.1% +1.6% +46.7%
62.9% 4.7% +4.8% +32.2% 52.9% 0.6% +1.5% +45.6%

129 59.0% 4.9% +2.3% +38.7% 104 34.6% 1.6% +0.6% +64.8%
71.5% 2.5% +1.3% +27.2% 40.5% 1.5% +0.5% +59.0%
73.9% 1.1% +0.9% +25.1% 45.1% 0.5% +0.1% +54.8%

130 62.1% 10.0% +6.7% +31.1% 107 42.2% 8.2% +6.1% +51.7%
72.8% 7.1% +3.5% +23.7% 50.6% 8.9% +5.0% +44.5%
77.0% 4.6% +2.5% +20.5% 61.9% 5.8% +1.1% +37.0%

132 26.8% 2.7% +3.1% +70.0% 110 54.9% 6.6% +3.3% +41.8%
27.8% 2.3% +3.1% +69.0% 59.2% 3.4% +1.5% +39.4%
28.6% 2.8% +4.9% +66.4% 62.9% 4.0% +2.3% +34.8%

134 58.9% 4.8% +3.4% +37.8% 125 31.6% 2.6% +1.7% +66.7%
62.9% 4.1% +3.0% +34.0% 31.8% 1.8% +1.3% +66.8%
65.1% 3.4% +2.5% +32.4% 31.1% 1.5% +1.0% +67.8%

147 63.5% 4.2% +3.4% +33.1% 141 53.6% 6.7% +5.0% +41.4%
68.6% 2.7% +2.6% +28.8% 55.8% 5.7% +3.7% +40.5%
70.9% 1.8% +2.6% +26.5% 56.9% 5.6% +3.4% +39.7%

Mean
INT

54.7% 6.8% +5.3% +39.9% 145 40.5% 0.4% +2.5% +57.0%
61.1% 5.5% +4.4% +34.5% 45.3% 0.4% +2.8% +51.9%
64.0% 4.4% +3.9% +32.0% 46.2% 0.4% +3.0% +50.7%

Mean
All

46.8% 4.8% +3.8% +49.3% 146 30.3% 2.9% +3.9% +65.7%
52.9% 4.0% +3.1% +44.0% 36.0% 2.5% +3.0% +61.0%
56.9% 3.2% +2.7% +40.4% 40.9% 1.9% +2.1% +51.0%

Mean
FP

40.4% 3.2% +2.6% +56.9%
46.3% 2.8% +2.1% +51.6%
51.1% 2.3% +1.7% +47.4%

Table 5.2: Comparing an 128 word TVC with a L0 data cache of the same size for various associativities
(direct mapped, 2-way and 4-way, top to bottom).

149

The results of this section suggest that while TVC effectiveness drops with decreased associativity, the
TVC still captures most of the loads that would get hidden in an L0, while avoiding penalizing the majority
of the loads that would see their latency increased had we used an L0 organization.

5.4.1.2 Effects of Block Size on Prediction Accuracy

So far we have assumed that the data cache component of either the TVC or the L0 is word-wide. In this
section, we study how memory dependence status prediction and the effectiveness of the TVC and the L0
organizations varies when we increase the block size to 2, 4 and 8 words (8, 16 and 32 bytes respectively).
For this experiment we use fully-associative data cache components of 128 words (512 bytes). Table 5.3
reports the results of these experiments. The same metrics as in Table 5.1 are used.

We can observe that the TVC still offers most of the benefits of using a small data cache to hide loads from
the L1, while avoiding penalizing a large fraction of loads. Prediction accuracy is typically lower compared
to a word-wide data cache component. The fraction that the TVC incorrectly does not hide (L0-HIT% col-
umn) is now higher, and in most cases increases with the block size. Similarly, the fraction of loads that the
TVC incorrectly penalizes increases with the block size. The cause of this decrease in accuracy lies in the
effect the increased block size has on the quality of the memory dependence status history of loads. Recall
that we use the data cache component to detect dependences and build the history used by our predictor.
When we use a larger block size and on a miss, additional data, beyond what is required by the access that
missed are brought into the data cache. As a result of the spatial locality found in typical programs, the addi-
tional data cause the detection of memory dependences that do not necessarily correspond to real depen-
dences in the program. In this case the real memory dependence status history of loads is convoluted by the
prefetching effect of larger block sizes. A similar decrease in dependence status history quality is introduced
when due to the block size used, data that would otherwise reside in the data cache is evicted. In this case,
some dependences that exist in the program are not detected.

5.4.2 Store Dependence Status Prediction Accuracy

In this section we report results on the accuracy of a WAW (output) dependence status predictor for stores
as a function of the data cache size used. The data cache sizes and assumptions are the same as the ones we
used in Section 5.4.1. The same applies to the memory dependence status predictor used. We restrict our
attention only to fully-associative data cache components and do not study the effects of decreased associa-
tivity or of increased block sizes.

For WAW dependence detection purposes, each entry of the TVC data cache was augmented to record the
store that wrote to that memory location, if any. A single store could be recorded per TVC word. Figure
5.1, part (a) reports the fraction of stores that are correctly predicted by the dependence status predictor. In
all programs and all data cache sizes studied, prediction accuracy was higher than 80%. Part (b) of the figure
reports the fraction of stores that are correctly predicted and are killed in the TVC data cache. Part (d) of the
figure compares the fraction of stores that are killed in the TVC, with the fraction of the stores that would
have been killed in data cache of the same size. We can observe that most of the stores that would have been
killed in an L0 data cache, are also killed in the TVC. This observation is also supported by the results of
part (d), where we report the stores that are killed in the TVC as a fraction of the stores that would have been
killed in an L0 of the same size. Finally, part (c) reports the fraction of stores that are incorrectly predicted
that they will not be killed in the TVC. These are the stores that the TVC will incorrectly not hide from the
L1 data cache. We can observe, that while this percentage is in most cases low, for some programs and
depending on the data cache component used it is relatively large. In the worst observed case, (145.fpppp

150

and 2K-word data cache component), as much as 14% of stores are incorrectly identified. For the data
cache component of 128-words, this fraction is below 10%, and for most programs below 7.5%.

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

099 53.6% 6.9% +8.1% +38.3% 101 77.5% 0.3% +0.0% +22.4%
48.5% 7.9% +8.4% +43.1% 78.2% 1.1% +6.3% +15.5%
44.1% 7.2% +8.2% +47.7% 82.2% 4.8% +0.7% +17.1%

124 43.6% 1.8% +2.6% +53.8% 102 64.1% 1.7% +13.0% +22.9%
49.7% 4.7% +2.1% +48.2% 84.0% 6.6% +0.1% +15.9%
53.1% 4.5% +4.2% +42.8% 87.5% 4.1% +0.0% +12.5%

126 62.3% 4.7% +3.7% +33.9% 103 71.5% 0.5% +0.9% +27.6%
64.6% 6.3% +5.6% +29.9% 72.4% 0.6% +6.6% +21.0%
66.7% 5.8% +5.1% +28.2% 79.7% 3.7% +1.4% +18.9%

129 73.7% 4.7% +1.4% +24.9% 104 70.0% 0.4% +0.1% +29.9%
68.6% 5.1% +1.7% +29.6% 71.2% 0.5% +11.2% +17.6%
58.8% 6.3% +4.2% +37.0% 87.5% 5.8% +0.6% +11.9%

130 66.4% 5.7% +3.3% +30.3% 107 82.6% 1.7% +0.1% +17.4%
59.4% 7.7% +6.1% +34.5% 86.2% 3.6% +3.8% +10.0%
61.1% 6.1% +6.0% +32.9% 72.8% 6.0% +0.9% +26.3%

132 56.4% 7.4% +7.9% +35.7% 110 77.7% 1.8% +0.8% +21.6%
67.3% 7.9% +5.1% +27.6% 80.0% 2.7% +4.3% +15.7%
70.0% 6.1% +4.1% +25.8% 82.9% 3.5% +1.8% +15.3%

134 66.3% 3.4% +1.8% +31.8% 125 64.0% 0.5% +0.1% +35.9%
62.9% 3.7% +2.6% +34.6% 67.9% 0.4% +11.6% +20.6%
64.9% 3.8% +2.4% +32.7% 85.0% 7.1% +1.0% +13.9%

147 64.6% 3.0% +2.1% +33.3% 141 68.7% 1.8% +1.1% +30.2%
68.1% 4.6% +4.1% +27.8% 74.1% 1.6% +3.5% +22.4%
66.8% 4.2% +3.6% +29.6% 78.1% 3.1% +2.0% +19.9%

Mean
INT

60.8% 4.7% +3.9% +35.3% 145 65.4% 0.1% +3.1% +31.5%
61.1% 5.9% +4.4% +34.4% 69.7% 0.1% +3.2% +27.1%
60.7% 5.5% +4.7% +34.5% 72.7% 0.1% +3.4% +23.9%

Mean
All

66.5% 2.6% +2.8% +30.7% 146 68.6% 0.5% +0.8% +30.6%
69.1% 3.7% +5.1% +25.8% 71.1% 1.2% +5.6% +23.3%
71.8% 4.8% +2.8% 25.4% 77.9% 3.6% +1.3% +20.8%

Mean
 FP

71.0% 0.9% +2.0% +27.0%
75.5% 1.8% +5.6% +18.9%
80.6% 4.2% +1.3% 18.1%

Table 5.3: Comparing an 128 word TVC with a L0 data cache of the same size for various block sizes (2, 4
and 8 words, top to bottom).

151

The result of this section suggest that while WAW dependence status prediction is high, a noticeable frac-
tion of stores may have their dependence status incorrectly identified.

Figure 5.1: Store dependence status accuracy (see text for explanation).

60%

70%

80%

90%

100%

80%

90%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

(b)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(c)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

100%

(d)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

5%

10%

15%

152

5.5 Summary

In this chapter, we were motivated by the large fraction of loads that read a recently accessed memory
location and of stores that are quickly killed by another store. We observed that these loads and stores could
be serviced using a relatively small data cache reducing the bandwidth requirements imposed on the rest of
the memory hierarchy. Unfortunately, we also noted that if a small cache was introduced in series with the
L1 data cache, as it is done in traditional memory hierarchies, it would also result in a latency increase for all
loads that do not hit in it.

 To get the best of both worlds, that is to hide from the rest of the memory hierarchy those loads and stores
that could be serviced with a relatively small data cache, while not increasing the latency of all other loads,
we proposed using the Transient Value Cache, a memory hierarchy component placed at the L1-processor
interface. The novelty of the TVC lies in its ability to adapt and appear either in-series with or in-parallel to
the L1 data cache. The decision on whether to appear in-series or in-parallel is taken using a history-based,
memory dependence status predictor. Specifically, before a load or a store is sent to the memory hierarchy, a
prediction is made on whether it will find the data it needs in the TVC (if it is a load), or whether it will get
killed in TVC (if it is store). If so, the load or store is send only to the TVC, in which case L1 data cache
ports can be used to service other memory requests. If the prediction correctly indicates that a load will not
find the data it needs in the TVC, it is send directly to the L1 data cache thus avoiding an increase in latency.

We have performed a trace driven study of the accuracy of TVC mechanism varying the size of the data
cache component and found that prediction accuracy for loads is high, often above 90%. For a realistic data
cache component of 512 bytes (128 words) we have found that the TVC approach could hide 66.9% and
55.2% of all loads on the average and for the integer and floating point codes respectively. More impor-
tantly, only 3.0% and 1.2% of all loads would observe a latency increase as the result of erroneous memory
dependence status prediction. In contrast, a traditional memory organization that would place the 128-word
data cache in series with the L1, would hide only an additional 3.3% (integer) and 1.1% (floating-point) of
loads, while increasing the latency of an additional 29.8% (integer) and 43.7% (floating-point) of all loads.
We also studied the effects of reduced associativity and of increased block size and found that while predic-
tion accuracy drops, the TVC still hides the majority of loads that could be hidden in such data caches while
avoiding penalizing a large fraction of other loads. While our evaluation is preliminary, it does provide an
indication of the utility of the proposed technique. Further investigation is required, as ultimately the effec-
tiveness of the TVC approach can be determined only when its effects on performance are studied.

Finally, we investigated using WAW dependence status prediction to predict whether a store will get killed
if allocated in the data cache component of the TVC and found that prediction accuracy is high, although not
as high as it is for RAW and RAR dependence status prediction for loads.

153

Chapter 6

Conclusion

In this last chapter, we first present a summary of our findings in Section 6.1. Finally, in Section 6.2 we
conclude by pointing to a number of research directions that may extend this work or that stem from our
experience gained while investigating memory dependence prediction and its applications.

6.1 Summary

As projected, advances in manufacturing technology will soon offer us the ability to construct single-chip
devices containing hundreds of millions if not a billion of transistors [75]. This vast amount of on-chip
resources provides us with both an opportunity and a challenge. The opportunity exists to try out techniques
and build mechanisms that were not previously practical. Yet, making judicious use of this opportunity is
bound to be challenging, more so if the underlying design tradeoffs change as many currently predict (e.g.,
wire transmission speed may limit how much area of the on-chip resources may be reachable within a clock
cycle, or power may constrain the amount of circuitry we can operate [57].

In this context, it is not our contribution that we provide definite answers on how to best make use of this
forthcoming opportunity. Rather, with this thesis we contribute a new tool, memory dependence prediction,
that might be useful in developing techniques that may utilize these resources in a useful and hopefully bet-
ter way. In particular, we have introduced two forms of memory dependence prediction: (1) memory depen-
dence status prediction and (2) memory dependence set prediction or, simply memory dependence
prediction. Memory dependence status prediction is technique that allows us to guess with high accuracy
whether a load or a store will experience a dependence of a particular type (for this technique the exact
dependence is not important, only whether a dependence exists is). Memory dependence prediction is a spe-
cialization of memory dependence status prediction where not only we guess whether a load or store has a
dependence of a particular type, but also which this dependence (or dependences) is. Both techniques oper-
ate: (1) by observing the memory dependence behavior of instructions through the memory address name
space, (2) by associating relevant memory dependence information with the corresponding static instruc-
tions (i.e., with the PC of a store or a load), and (3) by using the recorded information to predict the relevant

154

memory dependence information the next time a load or a store is encountered without actual knowledge of
the addresses being accessed.

In Chapter 2 we have provided experimental evidence in support of the efficacy of memory dependence
prediction. In particular, we have identified that typical programs exhibit high regularity in both their mem-
ory dependence status and their memory dependence stream. We have shown that: (1) if at some point dur-
ing execution, a load or a store experiences a dependence of a particular type, chances are that the next time
the same instruction is encountered, it will experience a dependence of the same type as before, and (2) if at
some point during execution, a load or a store experiences a particular memory dependence, then chances
are the next time the same instruction is encountered it will experience the same memory dependence once
again. These results suggest that past dependence behavior is a good indicator of forthcoming memory
dependence behavior. Which, in turn suggests that memory dependences may be amenable to history-based
prediction. Moreover, we have shown that the working set of stores and loads with dependences is relatively
small (i.e., less then 4K for virtually all programs studied in this thesis). This observation suggests that struc-
tures of reasonable size will probably be sufficient to record memory dependence history information for the
purposes of memory dependence prediction.

In itself memory dependence prediction is only useful in providing advance information of the memory
dependence behavior of loads and stores. Techniques are required to make use of this information in some
practical manner and for a practical purpose. To this extent, in this thesis we presented three micro-architec-
tural techniques: (1) dynamic speculation and synchronization of memory dependences, (2) speculative
memory cloaking and bypassing, and (3) transient value cache. The first two techniques aim at reducing the
observed memory access latency, while the third technique aims primarily at providing support for multiple
memory requests per cycle. In the next three sections we briefly describe each of these techniques along with
a summary of the key results.

6.1.1 Dynamic Speculation and Synchronization of Memory Dependences

The first technique we proposed aims at supporting highly parallel execution of loads and stores in the
presence of ambiguous memory dependence. In particular, this technique aims at mimicking the operation of
an ideal load/store scheduler that has perfect in advance knowledge of all memory dependences. This tech-
nique operates by: (1) predicting those load-store pairs whose unrestricted execution will result in a memory
dependence violation, and (2) delaying load execution only as long as it is necessary to avoid the memory
dependence violation by enforcing synchronization with the appropriate store. Dynamic speculation and
synchronization of memory dependences was motivated by the following observations: (1) naive memory
dependence speculationÑthat is, always executing a load as soon as its address becomes availableÑoffers
significant performance improvements over not speculating memory dependences, and (2) the net penalty of
erroneous dependence speculations when naive memory dependence speculation is used can become signif-
icant especially as the size of the instruction window increases. We have demonstrated that the two afore-
mentioned observations hold under the following two processing models: (1) a centralized, continuous
window processor model (typical modern superscalar) when loads cannot inspect preceding store addresses
to determine whether memory dependences exist, and (2) a distributed, split-window processor model inde-
pendently on whether store address information is available to loads prior to accessing memory.

Using timing simulations we have shown that memory dependence speculation and synchronization can
reduce memory dependence mispeculations by at least an order of magnitude over naive memory depen-
dence speculation. Moreover, we have studied three possible implementations of our proposed technique,
one centralized and two distributed ones which we assumed to be increasingly easier and less costly to
implement. We found that these three mechanisms can sustain average performance improvements of (1)
28.0% (integer) and 15.43% (floating point), (2) 22.4% and 10.9%, and (3) 20.2% and 9.0%, respectively

155

and over naive memory dependence speculation. All three mechanisms performed close to what would be
possible had we had perfect, in advance knowledge of all memory dependences, that is 31.21% (integer) and
17.35% (floating-point). This result suggests that our technique is quite successful in attaining both goals of
memory dependence speculation.

We also studied memory dependence speculation under a centralized, continuous window processor
model equipped with an 128-entry window and capable of issuing up to 8 instructions in parallel (4 loads or
stores) and found that: (1) naive memory dependence speculation in almost all cases improved performance
over no speculation. The actual improvements were heavily influenced by whether preceding store address
information was available to loads prior to accessing memory. We found that when this information was not
available, naive speculation improved performance over no speculation by 29.6% (integer) and 113% (float-
ing-point). When store address-information was available, naive speculation improved performance over no
speculation by 4.6% and 5.3% provided that inspecting store address did not increase load latency. (2) When
store addresses were made available for load inspection, mispeculations were virtually non-existent. (3)
When store addresses were not available for load inspection the net penalty of dependence mispeculation
was significant. In this case, had we had perfect knowledge of all memory dependences, performance could
improve by as much as 20.9% (integer) and 20.4% (floating-point) over naive speculation. An implementa-
tion of our speculation/synchronization mechanism offers performance improvements which are very close
to those ideally possible: 19.7% (integer) and 20.4% (floating-point).

6.1.2 Speculative Memory Cloaking and Bypassing

Speculative memory cloaking and bypassing aims at reducing observed memory access latency. In this
technique memory dependence prediction is used to build direct, albeit speculative communication links
between loads and stores that access a common memory location, without actual knowledge of the memory
location being accessed. This is done so loads may obtain a speculative value without having to wait until
the traditional, address-based memory hierarchy is accessed. In particular, communication links are estab-
lished between: (1) a load and store, when it is highly probable that the load is going to be reading the value
written by the store, and (2) two loads, when it is highly probable that both loads will be accessing the same
memory location.

Using trace driven simulations we have demonstrated that a straightforward model of cloaking/bypassing
is capable of providing correct values for about 70% (integer) and 50% (floating-point) of all loads (cover-
age). Moreover, the same mechanism provided incorrect values for only 2.5% (integer) and 0.4% (floating-
point) of all loads (mispeculation rate). We also compared cloaking/bypassing with a straightforward last-
value load value prediction mechanism and found that cloaking/bypassing offers superior coverage and mis-
peculation rates. However, we have also shown that the two techniques are complementary as cloaking/
bypassing correctly handles some loads that load value prediction does not and vice versa. Using timing sim-
ulations of an aggressive 8-way superscalar, with an 128-entry window that also uses naive memory depen-
dence speculation we found that an implementation of cloaking/bypassing offered performance
improvements of 6.03% (integer) and 4.9% (floating-point) when selective invalidation was possible (i.e.,
invalidating and re-executing only those instructions that used erroneous data). We also found that when
combined with squash invalidation (i.e., invalidating and re-executing all instructions starting from the old-
est one that used erroneous data) cloaking/bypassing resulted in performance degradation for virtually all
programs. Finally, we studied two combinations of last-value prediction and cloaking/bypassing and found
that while performance improved somewhat for most programs the performance improvements compared to
a stand-alone cloaking/bypassing mechanism were barely noticeable.

156

6.1.3 Transient Value Cache

Finally, we proposed the transient value cache, a technique aiming at supporting multiple memory
requests per cycle. For this technique we were motivated by two empirical observations about load and store
behavior. We observed that: (1) a relatively large fraction of loads read a value that was either recently writ-
ten by a store, or was recently read by another load, and (2) a large fraction of stores get killed (i.e., overwrit-
ten) by a subsequent, yet close in time store. In particular, we have shown that roughly 70% (integer) and
56% (floating-point) of all committed loads, access a memory location that is within the 128 most recent
memory locations (word granularity) read by a preceding load or written to by a preceding store. Moreover,
55% (integer) and 23% (floating-point) of all committed stores, get overwritten by a subsequent store that
accesses a memory location that is within the last 128 most recently accessed memory locations (word gran-
ularity). Based on the aforementioned observation we further noted that it would be possible to hide all those
memory references using a relatively small data cache. However, had we placed this data cache in series
with the L1 cache (as it is done in traditional memory hierarchies) the latency of all other loads that would
not hit in the newly introduced data cache would now increase.

To get the best of both worlds, that is to hide all those loads and stores that would be hidden in a small data
cache, while avoiding increasing the latency of other loads, we proposed the transient value cache. In our
proposal, a small and preferably narrow cache is introduced in the processor-L1 data cache interface. More-
over, memory dependence status prediction is used to decide whether the newly introduced data cache
should appear in-series with or in-parallel to the L1 data cache on a per access basis. Specifically, the TVC
appears in-series with the L1 data cache for those loads that will likely find the data they need in the TVC
and for those stores that will likely get overwritten in the TVC. For all other loads and stores the TVC
appears in-parallel to the L1 data cache. Provided that memory dependence status prediction is correct, the
potential benefits of the TVC approach are: (1) the loads that hit in the TVC and the stores that get killed in
the TVC are hidden from the L1, freeing up L1 data port resources to be used by other loads and stores, (2)
the latency of loads that would not hit in the TVC is not increased.

Using trace-driven simulation, we demonstrated that a TVC comprising a fully-associative data cache
component of 128-words (512 bytes) and a memory dependence status predictor that utilizes 2-bit confi-
dence counters, could hide roughly 67% (integer) and 55% of all committed loads from the rest of the mem-
ory hierarchy, while only 3% (integer) and 1.2% (floating-point) of all loads would observe increased
latency by the introduction of the TVC. For a traditionally organized (i.e., in series with the L1 data cache)
data cache component of the same size, only an additional 3.3% (integer) and 1.1% (floating-point) of all
committed loads would be hidden from the L1 data cache, while an additional 29.8% and 46.6% of all loads
would observe a latency increase. We also studied the effects of increased block size and decreased associa-
tivity and found that while prediction accuracy dropped, the TVC could still hide the vast majority of loads
that would have been hidden in a traditionally organized cache of the same size, while avoiding to increase
the latency for most of the loads that would not hit in such a data cache. Our results serve as an indication of
the potential utility of the TVC approach. However, further investigation is required to determine the perfor-
mance impact of the TVC approach.

Finally, we observed that the possibility exists to combine the TVC with the cloaking/bypassing mecha-
nism resulting in a mechanism that can both reduce the latency of accessing some memory values and hide
these accesses from the rest of the memory hierarchy.

157

6.2 Future Directions

Throughout this work our goals were: (1) to provide sufficient evidence in support of our observations
about the regularity that exists in the memory dependence stream of ordinary programs, and (2) to present
techniques that can exploit this regularity for some practical purpose, also providing sufficient evidence
about their utility. In our opinion, this work represents only a first step toward a thorough investigation of the
dynamic memory dependence behavior programs and of potential applications of memory dependence pre-
diction. Certainly, our evaluation and treatment of all three techniques can be extended in many ways (for
example, by considering alternative implementations, other prediction structures and by varying the configu-
ration parameters). We will not attempt to enumerate these possibilities. Rather, in the few remaining sec-
tions we will briefly comment on some general research directions that are either directly related to memory
dependence prediction or that stem from the experience we gained while working on this topic.

6.2.1 Correlating Memory Dependence Behavior
with Program Elements and Data Structures

In our treatment of memory dependence behavior presented in Chapter 2 we restricted our analysis on
what is the memory dependence behavior of the programs studied and, for the most part did not attempt to
explain why behavior is such. Further investigation could focus on correlating memory dependence behavior
with the program elements and the data structures that give rise to it. Such an investigation will improve our
understanding of why memory dependences behave in certain ways. Hopefully, this information will be
proven helpful in stimulating other applications of memory dependence prediction as it may for example,
expose previously unidentified regularities in program behavior. It may also expose weaknesses in the way
programs express a desired action hinting to better ways of expressing or of performing such actions (similar
to what was the case for memory inter-operation communication and data-sharing).

Such an investigation may also focus on determining whether regularities exist in a coarser level. Even
though we focused on the relationships formed when individual loads and stores access memory, it is likely
that similar relationships may among exist parts of the code. For example, we may find that program opera-
tion is such that one function (or part of the program) generates data that some other function is consuming
(consider a compiler where one function generates a parses a statement into an internal form which is then
used by another function that scans through this form to generate statements). Such coarse level Òdepen-
denceÓ information might be useful, for example, in a ÒsmartÓ memory hierarchy in which a set of data is
associated with the parts of the code that is generating or manipulating it. This information could be useful
in managing data placement in the memory hierarchy. For example, once one data element of a set of data
previously tagged is accessed the rest of the data could be moved in faster storage structures in hope that
they will also be accessed.

6.2.2 Interaction with the Compiler

Throughout this work we have focused on dynamic, architecturally invisible techniques. Nevertheless, it
might be possible to expose some of the mechanisms we propose to the compiler through ISA extensions or
to rely on compiler provided information to improve the characteristics of our techniques. With such an
approach we may either hope to improve the coverage or accuracy of our techniques and/or reduce the
amount of physical resources required. For example, in memory dependence speculation and synchroniza-
tion we may rely on compiler hints in order to avoid speculating some loads. Or, we may expose the memory
dependence prediction information to the software so that a decision can be made on whether to execute a
schedule that speculates a load or an alternative one that does not. Similarly, in cloaking/bypassing we may

158

rely on compiler provided synonyms and finally, in the transient value cache we may rely on compiler pro-
vided memory dependence status information.

There are two important challenges in this context: (1) whether the compiler can provide accurate enough
information, and (2) whether any of the improvements so obtained justify changing the architectural inter-
face. We next comment on both issues. In all our techniques we relied on dynamically collected information.
Whether this information can be accurately provided by the compiler is an open question. Certainly, profile
information can be useful in this context. However, some of the underlying phenomena may be dynamic in
nature and more importantly they may heavily depend on the particular hardware configuration. For exam-
ple, the dependences that are mispeculated are not necessarily the same for processors with different instruc-
tion windows. One of the potential advantages of the techniques we proposed is that they are architecturally
invisible. As such, they do not require modification of existing applications. Moreover, another potential
advantage of our techniques is that they can be designed to fit the particular processor implementation.
These two potential advantages may be lost if we choose to rely on a compiler directed approach.

Another important consideration with using compiler information to improve upon our mechanisms is
whether we could obtain similar benefits by pre-existing software only approaches. For example, if we rely
on the compiler for hints on whether to execute a load with ambiguous dependences, we may get perfor-
mance that is similar to that possible with software-only memory dependence speculation. For these reasons
a more fruitful approach could be to use the compiler to improve upon the hardware-only implementations,
whenever this is desired. The challenge then is once again determining whether the additional benefits jus-
tify the approach.

A study of a compiler directed approach to improving the accuracy of memory dependence speculation
and to providing synonyms for the purposes of speculative memory cloaking was reported in [69]. The focus
of this work is on demonstrating that a compiler directed approach can provide similar performance benefits
to those possible with a hardware-only approach.

6.2.3 Memory Communication and Sharing in Distributed Environments

Underlying cloaking and bypassing is the general idea that while we have chosen to express some pro-
gram actions via the traditional address based interface, in an actual implementation we do not necessarily
have to perform these actions in that way. In particular, we may devise techniques to identify what the
intended action is and mechanisms to perform it faster or in a better way.

While we have investigated speculative memory cloaking and bypassing in the context of a single central-
ized and continuous window processor, in principle the same techniques and concepts might be applicable in
other environments and processing models. In fact, in the case of cloaking and bypassing the potential bene-
fits could be higher when the latency of accessing a value is increased. Such environments are, for example,
multi-processors executing either sequential (as in Multiscalar) or explicitly parallel programs. In those envi-
ronments programs also read and write memory values, and inter-operation communication and data-sharing
occurs. More importantly, in such environments other inefficiencies of the address-based memory interface
may be present which are not there in the sequential, centralized execution models we considered in Chapter
4 (e.g., data speculation or coherence related overheads [31, 32]). For example, in a multi-processor environ-
ment we may use memory dependence prediction of RAR dependences to speculatively propagate values
read by one processor to another. Similarly, we may use RAW dependence prediction to speculatively prop-
agate the value written by one processor to others converting the traditional ÒpullÓ approach (load asks for a
value and memory reacts) to accessing memory values into an active ÒpushÓ one (value is sent to the load).
In fact, Kaxiras has recently studied such techniques in the context of explicitly-parallel programs and pre-
sented evidence in support of their utility [43]. Other techniques may be possible. However, much work

159

remains in determining whether sufficient regularity exists in the memory dependence or more appropriately
in the load/store relationship stream under these assumptions (For example, there is nothing to say that the
memory dependence behavior observed on a lock will be sufficiently regular Ñthe exact dependence pattern
may be heavily data dependent).

Other opportunities for applications that use memory dependence information and prediction may also
exist if the current predictions about the relative speed of wires and logic of semiconductor devices are
proven correct [57]. In such an environment, memory dependence prediction may also be proven useful in
combating the increased latencies that will be experienced in forthcoming, large-integration chips. For
example, memory dependence prediction may be used to localize communication as much as possible by
assigning those loads and stores that communicate to the same processing unit.

6.2.4 Support for Selective Invalidation and Data Speculation Resolution

In Chapter 4 we have seen that cloaking/bypassing is advantageous when selective invalidation and fast
data speculation resolution is possible. In fact, most value speculative techniques proposed today assume
that such mechanisms are possible. Yet, we noted that whether these two mechanisms can be implemented is
still an open question. For this reason further investigation is required. Such an investigation may proceed in
two directions: (1) We may focus on determining how tolerant are our techniques (or other value speculative
techniques) to the speed and aggressiveness of the invalidation and data speculation resolution mechanisms.
(For example, we assumed that a data speculative register dependence chain of any length can be resolved in
a single cycle. It might be the case that limiting the length of the dependence chains that can be resolved in a
single cycle does not severely impact overall performance.) Such an investigation will help in determining
whether we really need ideally accurate and fast invalidation and data speculation resolution mechanisms.
(2) In parallel we may also seek to develop actual mechanisms that can be implemented in a practical.

Moreover, our focus on this work was on demonstrating that our techniques can be used to improve the
performance of highly optimized, wide-issue, long instruction window processors. It would be interesting to
study whether our mechanisms can help a less aggressive processor to attain similar or better performance. If
so, it is then interesting to study whether a combination of a less aggressive processor and of our techniques
or other speculative techniques results in less complex, faster implementations.

6.2.5 Operation Prediction

Finally we comment on a research direction that stems from the experience we gained while working on
memory dependence prediction. While the specific target of each of the three applications we presented is
different their operation is similar: they all try to somehow predict in-advance what the program will do, and
then use this information to optimize operation. Many other techniques that utilize some form of prediction
exist (for example value, address and branch prediction). Most of these existing proposals to exploit regular-
ities in program behavior focus in regularity that exists in the products of instruction execution and not so in
the methods used to produce these results. For example, branch prediction observes the direction branch
instructions follow with no regard to how this decision is being made. Similarly, value prediction observes
the value stream produced or read by an instruction. Moreover, much of current proposals that aim at
improving the accuracy of various predictors focus on methods to refine the history-information used trying
to detect patterns in the stream of events being predicted (e.g., pattern based predictors [15, 12]). The under-
lying operation of such predictors however remains pretty much the same: we associate a prediction with a
sequence of preceding events that led to it (for example, after branch A was taken 10 times, branch B was
also taken).

160

However, the fact that memory dependences are predictable provides an indication that what actions (i.e.,
instructions) a program follows to produce its desired effects are not also random. Other evidence in support
of this observation also exists [60, 51, 73, 24]. This observation hints to another direction of improving pre-
diction accuracy and ultimately of building computing systems that are able to on-the-fly tailor their opera-
tion to better fit the currently executing program and the underlying semiconductor technology: that of
studying what actions programs follow to produce their results and if possible using these very same actions
to in-advance predict what the program will do. Our intuition is that often the sequence of actions used to
produce a result is more regular than what this function produces (e.g., adding two arrays to produce a third,
or traversing a linked list).

An example of a potential application is operation prediction where the predictor does not directly predict
a desired information (e.g., which way a branch will go, or which value an instruction is going to produce)
but rather, it predicts what sequence of operations will produce the desired information (for example, this
load reads a value which is then compared with a constant to determine which direction a subsequent branch
will follow). For operation prediction we may still rely on history-based prediction techniques. In this case,
instead of building history that relates to the products of instruction execution, we build history that relates
to the actions followed. Combined with other prediction techniques, operation predictors could, for example,
be used to improve upon the accuracy of existing control flow predictors, value predictors or for prefetching
memory data. In the case of branch prediction, an operation predictor could be used to pre-calculate the
direction a branch will follow. Similarly, in the case of value prediction, an operation predictor can be used
to pre-calculate the value an instruction is going to produce potentially long before the processor has had a
chance to even fetch the corresponding instruction (note that the processor is limited the following factors: it
has to fetch all instructions, it has maintain program semantics, and it has no notion of which part of the
computation (slice) is more critical than others). In a sense, an operator predictor can be viewed as a gener-
alized predictor which can tailor its prediction algorithm according to program behavior.

161

Bibliography

Conference/Publication Abbreviations

ASPLOS..............International Symposium on Architectural Support for Programming Languages and

Computer Architecture.

COMPCON.........IEEE International Computer Conference

HPCA..................International Symposium on High-Performance Computer Architecture

ICDD...................International Conference on Computer Design

ICS......................International Conference on Supercomputing

ISCA....................Annual International Symposium on Computer Architecture.

ISSCC..................International Solid-State Circuits Conference

MICRO................International Symposium on Microarchitecture

PACT...................International Conference on Parallel Architectures and Compilation Techniques

PLDIConference on Programming Language Design and Implementation

References

[1] PowerPC 620 RISC Microprocessor Technical Summary. IBM Order number MPR620TSU-01,
Motorola Order Number MPC620/D, October 1994.

[2] S. G. Abraham, R. A. Sugumar, D. Windheirser, B. Rau, and R. Gupta. Predictability of load/store
instruction latencies. In Proc. on MICRO-26, November 1993.

[3] D. Adams, A. Allen, R. Flaker J. Bergkvist, J. Hesson, and J. LeBlanc. A 5ns store barrier cache with
dynamic prediction of load/store conflicts in superscalar processors. In Proc. ISSCC, February 1997.

[4] R. Allen and K. Kennedy. Automatic Translation of FORTRAN Programs to Vector Form. ACM
Transactions on Programming Languages and Systems, 9(4), October 1987.

[5] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Fast address calculation. In Proc. ISCA-22, June
1995.

[6] T. M. Austin and G. S. Sohi. Dynamic Dependency Analysis of Ordinary Programs. In Proc. ISCA-
19, May 1992.

[7] T. M. Austin and G. S. Sohi. Zero-cycle loads: Microarchitecture support for reducing load latency. In
Proc. MICRO-28, November 1995.

[8] T. M. Austin, T. N. Vijaykumar, and G. S. Sohi. Knapsack: A zero-cycle memory hierarchy compo-
nent. Technical Report 1189, Computer Sciences Dept., University of Wisconsin-Madison, November
1993.

162
[9] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to reduce data access penalty. In

Proc. Supercomputing Õ91, 1991.

[10] U. Banerjee. Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic Publishers,
1988.

[11] P. Bannon and J. Keller. Internal architecture of alpha 21164 microprocessor. In COMPCONÕ95,
March 1995.

[12] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, 1990.

[13] S. E. Breach. Design and Evaluation of a Multiscalar Processor, in preparation. Ph.D. thesis, Univer-
sity of Wisconsin-Madison, Madison, WI 53706, December 1998.

[14] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. The anatomy of the register file in a multiscalar pro-
cessor. In Proc. MICRO-27, pages 181Ð190, December 1994.

[15] I-Cheng K. Chen, J. T. Coffey, and Trevor N. Mudge. Analysis of Branch Prediction via Data Com-
pression. In Proc. ASPLOS-VII, October 1996.

[16] W. Y. Chen. Data Preload for Superscalar and VLIW Processors. Ph.D. thesis, University of Illinois,
Urbana, IL, 1993.

[17] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. In Proc. ISCA-25,
June 1998.

[18] J. Dennis. Data Flow Supercomputers. IEEE Computer, November 1980.

[19] D. R. Ditzel and H. R. McLellan. Register Allocation for Free: The C Machine Stack Cache. In Proc.
ASPLOS-I}, April 1982.

[20] K. Ebcioglu and E. R. Altman. DAISY: Dynamic Compilation for 100% Architectural Compatibility.
In Proc. ISCA-24, June 1997.

[21] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for pipelined processors. In IBM journal
on research and development, 37(4), July 1993.

[22] J. R. Ellis. Bulldog: A Compiler for a VLIW Architecture. Ph.D. thesis, Yale University, February
1985.

[23] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis in the
presense of function pointers. In Proc. SIGPLAN PLDI, June 1994.

[24] A. Farcy, O. Temam, and R. Espasa. Dataflow Analysis of Branch Mispredictions and Its Application
to Early Resolution of Branch Outcomes. In Proc. MICRO-31, December 1998.

[25] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture: Reducing Cycle
Time Through Partitioning. In Proc. MICRO-30, December 1997.

[26] M. Franklin. The Multiscalar Architecture. Ph.D. thesis, University of Wisconsin-Madison, Madison,
WI 53706, November 1993.

[27] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dynamic Memory Disambiguation.
IEEE Transactions on Computers, 45(5):552Ð571, May 1996.

[28] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu. Dynamic Memory
Disambiguation Using the Memory Conflict Buffer. In Proc. ASPLOS VI, pages 183Ð193, October
1994.

[29] M. Gell-Mann. The Quark and the Jaguar. W. H. Freeman and Comparny, New York, 1994.

163

[30] M. Golden and T. Mudge. Hardware support for hiding cache latency. In CSE-TR-152-93, University
of Michigan, Dept. Of Electrical Engineering and Computer Science, February 1991.

[31] Sridhar Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning cache. In Proc.
HPCA-4, February 1998.

[32] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip multiprocessor. In
Proc. ASPLOS-VIII, October 1998.

[33] J. Hesson, J. LeBlanc, and S. Ciavaglia. Apparatus to dynamically control the out-of-order execution
of load-store instructions in a processor capable of dispatching, issuing and executing multiple
instructions in a single processor cycle, US Patent 5,615,350, filed on Dec. 1995, March 1997.

[34] G. J. Hinton, R. W. Martell, M. A. Fetterman, D. B. Papworth, and J. L. Schwartz. Circuit and
method for scheduling instructions by predicting future availability of resources required for execu-
tion, US Patent 5,555,432, filed on Aug. 19, 1994, September 1996.

[35] A. S. Huang and J. P. Shen. A Limit Study of Local Memory Requirements Using Value Reuse Pro-
files. In Proc. MICRO-28, December 1995.

[36] A. S. Huang and J. P. Shen. The intrisinic bandwidth requirements of ordinary programs. In Proc.
ASPLOS-VII, October 1996.

[37] A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative disambiguation: A compilation technique for
dynamic memory disambiguation. In Proc. ISCA-21, May 1994.

[38] D. Hunt. Advanced performance features of the 64-bit PA-8000. In COMPCONÕ95, 1995.

[39] W. W. Hwu and Y. N. Patt. Checkpoint Repair for High-Performance Out-of-Order Execution
Machines. IEEE Transactions on Computers, C-36(12):1496Ð1514, December 1987.

[40] Q. Jacobson, S. Bennett, N. Sharma, and J. Smith. Control Flow Speculation in Multiscalar Proces-
sors. In Proc. HPCA-3, February 1997.

[41] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A novel renaming scheme to exploit
value temporal locality through physical register reuse and unification. In Proc. MICRO-31, Decem-
ber 1998.

[42] G. Kane. MIPS R2000/R3000 RISC Architecture. Prentice Hall, 1987.

[43] S. Kaxiras. Identification and Optimization of Sharing Patterns for Scalable Shared-Memory Multi-
processors. Ph.D. thesis, University of Wisconsin-Madison, Madison, WI 53706, August 1998.

[44] J. Keller. The 21264: A Superscalar Alpha Processor with Out-of-Order Execution. In Digital Semi-
conductor, Digital Equipment Corp., Hudson, MA, October 1996.

[45] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 architecture. In Proc. of ICCD,
December 1998.

[46] J. Kin, M. Gupta, and W. H. Mangione-Smith. The Filter Cache: An Energy Efficient Memory Struc-
ture. In Proc. MICRO-30, December 1997.

[47] T. Knight. An architecture for mostly functional languages. In Proc. ACM Conference on Lisp and
Functional Programming, August 1986.

[48] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In Proc. ISCA-8, May 1981.

[49] S. M. Kurlander and C. N. Fischer. Minimum cost interprocedural register allocation. In The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January 1996.

164
[50] D. Levitan, T. Thomas, and P. Tu. The PowerPC 620 Microprocessor: A High Performance Supersca-

lar RISC Processor. In COMPCONÕ95, March 1995.

[51] J. Gonz‡lez and A. Gonz‡lez. Speculative execution via address prediction and data prefetching. In
Proc. ICS-11, July 1997.

[52] M. H. Lipasti. Value Locality and Speculative Execution. Ph.D. thesis, Carnegie Mellon University,
Pitsburgh, PA 15213, April 1997.

[53] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. In Proc. on MICRO-
29, December 1996.

[54] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value prediction. In Proc. ASP-
LOS-VII, October 1996.

[55] W. L. Lynch, G. Lauterbach, and J. I. Chamdani. Low Load Latency through Sum-Addressed Mem-
ory (SAM). In Proc. ISCA-25, June 1998.

[56] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel scheduling for
VLIW and superscalar processors. In Proc. ASPLOS V, 1992.

[57] D. Matzke. Will Physical Scalability Sabotaze Performance Gains? In IEEE Computer, 30(9), Sep-
tember 1997.

[58] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital Equipment Corp.,
WRL, June 1993.

[59] G. D. McNiven and E. S. Davidson. Analysis of Memory Referencing Behavior for Design of Local
Memories. In Proc. ISCA-15, May 1988.

[60] S. Mehrotra and L. Harrison. Examination of a memory access clasification scheme for pointer-inten-
sive and numeric programs. In Proc. ICS-10, September 1997.

[61] A. Moshovos, S.E. Breach, T.N. Vijaykumar, and G.S. Sohi. Dynamic speculation and synchroniza-
tion of data dependences. In Proc. ISCA-24, June 1997.

[62] A. Moshovos and G.S. Sohi. Streamlining inter-operation communication via data dependence pre-
diction. In Proc. MICRO-30, December 1997.

[63] A. I. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. A dynamic approach to improve the
accuracy of data speculation. Technical Report 1316, Computer Sciences Dept., University of Wis-
consin-Madison, March 1996.

[64] M. Moudgill and J. H. Moreno. Run-time detection and recovery from incorrectly reordered memory
operations. In IBM research report RC 20857 (91318), May 1997.

[65] A. Nicolau. Run-time disambiguation: Coping with statically unpredictable dependencies. IEEE
Transactions on Computers, 38(5):663Ð678, May 1989.

[66] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In Proc.
ISCA-24, June 1997.

[67] M. Reilly and J. Edmondson. Performance simulation of an Alpha microprocessor. In IEEE Com-
puter, 31(5), May 1998.

[68] G. Reinman and B. Calder. Predictive Techniques for Aggresive Load Speculation. In Proc. MICRO-
31, December 1998.

[69] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin. Profile guided load marking for memory
renaming. Technical Report CS98-593, University of California, San Diego, July 1998.

165

[70] J. A Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. On high-bandwidth data cache design for
multi-issue processors. In Proc. MICRO-30, December 1997.

[71] A. Rogers and K. Li. Software support for speculative loads. In Proc. ASPLOS-V, October 1992.

[72] E. Rotenberg, Q. Jacobson, Y. Sazeides, and Jim Smith. Trace processors. In Proc. on MICRO-30,
December 1997.

[73] A. Roth, A. Moshovos, and G. S. Sohi. Dependence Based Prefetching for Linked Data Structures. In
Proc. ASPLOS-VIII, October 1998.

[74] Y. Sazeides and J. E. Smith. The Predictability of Data Values. In Proc. MICRO-30, December 1997.

[75] Semiconductor Industry Association. The National Roadmap for Seminconductors: Technology
Needs, 1997 edition. (Chapter on Overal Roadmap on Technology Characteristics).

[76] D. J. Shippy and T. W. Griffith. POWER2 fixed-point, data cache, and storage control units. In IBM
journal on research and development, 38(5), October 1994. An on-line revised version can be found
at: http://www.rs6000.ibm.com/resource/technology/fxu.html.

[77] M. D. Smith, M. Horowitz, and M. S. Lam. Efficient superscalar performance through boosting. In
Proc. ASPLOS-V, October 1992.

[78] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting beyond static scheduling in a superscalar
processor. In Proc. ISCA-17, Seattle, WA, May 1990.

[79] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In Proc. ISCA-24, June 1997.

[80] A. Sodani and G. S. Sohi. Understanding the Differences Between Value Prediction and Instruction
Reuse. In Proc. MICRO-31, December 1998.

[81] G. S. Sohi. Instruction issue logic for high-performance, interruptible, multiple functional unit, pipe-
lined computers. IEEE Transactions on Computers, March 1990.

[82] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proc. ISCA-22, June 1995.

[83] G. S. Sohi and M. Franklin. High-Bandwidth Data Memory Systems for Superscalar Processors. In
Proc. ASPLOS-IV, April 1991.

[84] S. Steely, D. Sager, and D. Fite. Memory reference tagging, US Patent 5,619,662, filed on Aug. 1994,
April 1997.

[85] J. G. Steffan and T. Mowry. The potential for using thread-level data speculation to facilitate auto-
matic parallelization. In Proc. HPCA-4, January 1998.

[86] The Standard Performance Evaluation Corporation. SPEC CPU95 Benchmarks. SPEC Newsletter,
available on-line from http://www.specbench.org/osg/cpu95/news/cpu95descr.html, September 1995.

[87] J.Y. Tsai and P.-C. Yew. The superthreaded architecture: thread pipelining with run-time data depen-
dence checking and control speculation. In Proc. PACTÕ96, October 1996.

[88] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A Modified Approach to Data Cache Man-
agement. In Proc. MICRO-28, December 1995.

[89] G. S. Tyson and T. M. Austin. Improving the Accuracy and Performance of Memory Communication
Through Renaming. In Proc. MICRO-30, December 1997.

[90] S. Vajapeyam and T. Mitra. Improving superscalar instruction dispatch and issue by exploiting
dynamic code sequences. In Proc. ISCA-24, June 1997.

[91] A. H. Veen. Dataflow Machine Architectures. ACM Computing Surveys, vol. 18, December 1986.

166
[92] T. N. Vijaykumar. Compiling for the Multiscalar Architecture. Ph.D. thesis, University of Wisconsin-

Madison, Madison, WI 53706, May 1998.

[93] D. W. Wall. Global register allocation at link-time. In SIGPLANÕ86 Symposium on Compiler Con-
struction, January 1986.

[94] L. Widigen, E. Sowadksy, and K. McGrath. Eliminating operand read latency. In Computer Architec-
ture News, 24(5), December 1996.

[95] K. M. Wilson and K. Olukotun. Designing high bandwidth on-chip caches. In Proc. ISCA-24, June
1997.

[96] K. M. Wilson, K. Olukotun, and M. Rosenblum. Increasing Cache Port Efficiency for Dynamic
Superscalar Processors. In Proc. ISCA-23, May 1996.

[97] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C Programs. In Proc.
PLDI, June 1995.

[98] S. J. E. Wilton and N. P. Jouppi. An enhanced access and cycle time model for on-chip caches. Tech-
nical report, WRL Research Report 93/5, Western Research Laboratory, 1993.

[99] T. Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive training branch predic-
tion. In Proc. ISCA-19, May 1992.

