
RAP. 2 - AN ASSOCIATIVE PROCESSOR FOR DATA BASES 

S. A. Schuster* 
H. B. Nguyen 

E. A. Ozkarahan+ 
K. C. Smith 

University of Toronto 

RAP - a Relational Associative Processor - is a back- 
end or peripheral device to augment a general purpose 
computer for implementing a data base management sys- 
tem (DBMS). Its architecture is based on the fact 
that that data base operations are inherently set- 
oriented and that data base addressing is best ac- 
complished through associative reference to achieve 
high data independence. RAP utilizes these charac- 
teristics by combining the features of associative 
and array processors. Previous publications on RAP 
have dealt separately with the details of the first 

version of its architecture [1,2,3,4] language inter- 
face [5,6] and performance evaluation [7,8,9,]. 
This paper provides details on a recently evolved, 
faster, and more flexible architecture for RAP. 

i. Introduction 

The basic architecture of a RAP device consists of a 
"chain" of parallel components called cells, a sta- 
tistical arithmetic unit, and central controller. 
This organization is shown in Figure i. 

CONTROLLER 

STATISTICAL 
ARITHMETIC 

UNIT 

CONTROL 
AND DATA 

PROCESSOR 

i 

i 

I 
PROCESSOR 

Figure i. RAP.2 System Architecture 

*On leave to Intel Corporation, Sunnyvale, California 

+On faculty at Middle East Technical University, 
Ankara, Turkey 

Each cell is composed of a processor and block addres- 
sable memory. The processor is specifically construc- 
ted for data base definition, insertion, deletion, up- 
date and retrieval primitives. Logic for each proces- 
sor has been designed to be compatible with LSI cir- 
cuit implementation technology. The memory can be im- 
plemented by a rotating magnetic device such as the 
track of a disk or drum, semiconductor CCD, or bubble 
memory. The statistical arithmetic unit is actually 
part of the controller and is designed for computing 
summary statistics [e.g. totals, averages, etc.] over 
the combined contents of the cell memories. The con- 
troller is responsible for receiving instructions in 
RAP machine format from a general purpose front-end or 
host computer, decoding them, broadcasting control se- 
quences to initiate cell execution, and passing re- 
trieved or inserted items between the front-end and 
RAP. Each RAP instruction is executed within the 
cells which operate in parallel directly on the data. 
Simple intercell communication for priority polling 
is implemented along the chain. Each memory contains 
data formated into a sequence of records containing 
values of data items. The details will be given short- 
ly. 

A cell is composed of several logic units, the most 
important being involved with searching. Several com- 
parator elements form the basis of the associative ad- 
dressing architecture of a cell. The comparators can 
independently test the contents of one item in the 
data base against several literals or several items 
each against different literals. The true or false 
results of comparison tests on a record can be com- 
bined into a disjunctive or conjuctive result to de- 
termine if the record associatively qualifies for fur- 
ther manipulation. 

The front-end computer supports high-level user 
functions. It interfaces users to RAP by supporting 
communications via interactive terminals or through 
programming language CALL and I/0 statements for ap- 
plication programs running in multi-programming oper- 
ating systems. The translation of various query lan- 
guages into RAP programs will also be accomplished in 
the front-end. Data base system software responsible 
for coordinating multiple and diverse secondary stor- 
age devices other then RAP, scheduling of queries, and 
maintaining protection, security, and integrity must 
also be supported in the front-end but can be aided by 
the data processing capabilities of RAP. 

Designs for devices similar in philosophy to RAP 
can also be found in the literature [10-14]. 

2. The Abstract Machine 

The RAP system has a machine-oriented yet high-level 
and complete assembler instruction set for manipulating 
data bases. Most instruction~ correspond to one ma- 
chine instruction which invokes several cell micro- 
code instructions. In this section, an explanation 
of the RAP assembler instructions will be presented. 
A programmer's view of the RAP data structure will be 
given first. Then the basic structure of a RAP in- 
struction will be given followed by the description of 
each individual instruction. 

52 



2.1 Data Structure 

From a programmer's view, RAP stores data as unordered 
occurrences of records defined by a RAP relation as 
shown in Figure 2. A relation can be envisioned as a 

I I " ' 1  I 

RECORD "(TUPLE) / 

L 
I 

Figure 2. 

CELL NO. 

RELATION NAME 

ITEM ITEM 
M1  M2  • • • M6 '  NAME " • • NAME 

1 0 • • • 1 XXXX • • • 99 .99  

I 
RAP-RELAT ION 

RAi=.2 Logical Data Structures 

formatted table of data where rows of the table repre- 
sent a set of record occurrences sometimes called 
tuples in relational terminology. The occurences of a 
relation stores data about a set of similar entities 
(e.g. persons, places, things, or relationships). The 
name of a relation identifies the set of entities. The 
format of record occurrences is defined by naming the 
data items whose concatenated values occur in each re- 
cord and specifying their length. The length of each 
item in the relation is fixed according to a users 
choice of one of several sizes. Each occurrence of a 
relation stores data which describes a particular en- 
tity by assigning a value to each of the items ac- 
cording to the format of the relation. The values are 
treated internally as simple bit patterns for non- 
numeric data and as integers in twos - complement for- 
mat for numeric data. 

Each relation and its occurrences are augmented by 
several special one bit items Mi called mark bits. 
These items can be set to 0 or i under user control 
through various marking instructions or by the inter- 
mediate operations of other instructions. The bits 
are used primarily as a work area to temporarily indi- 
cate subsets of record occurrences so that the results 
of one instruction can be used in subsequent instruc- 
tions. This is done by treating the mark bits as nor- 
mal data items to be tested during associative addres- 
sing. An extra mark bit called the delete flag, which 
is transparent to users, is provided to indicate de- 
leted tuples to be ignored during instruction execu- 
tion. 

The records of a relation can occupy one or several 
cell memories~ but each cell can only store records 
from one relation. Therefore, a single RAP device can 
contain record occurrences from one large relation or 
from N relatioms, one for each of N cells. The pro- 

grammer of a query need not be aware of the cell loca- 
tion or number of cells occupied by the relations. 
However, there are occasions, such as during garbage 
collection or bulk loading, where the user needs to 
control the device at a cell level. To permit this, 
a user can refer to registers containing an integer 
address identifying each cell. 

Several registers are also available in the control- 
ler. These can be used to store intermediate computa- 
tions or retrieved data from relations and used as 
search values or tested in subsequent instructions to 
execute complex queries. 

A RAP relation is an intermediate-level abstraction 
of large data bases. Although it has a flat tabular 
structure, it is not quite relational as defined by 
Codd. For example, duplicate records are permitted 
and their existence is not automatically detected. 
There are physical limitations on sizes and numbers of 
items. Also, the special hardware operations for mark 
bit manipulation is a form of hardwired "access method" 
that a user must control via program instructions to 
select desired data for further processing. What RAP 
does is to provide a data model that is high-level but 
flexible or general enough to easily support software 
implementations of set-oriented versions of common mo- 
dels such aS. hierarchies, networks, and relations. 

2.2 Instruction Format 

The general format of most RAP instructions is: 

<label><opcode><mark option>[<object>:<qualification>] 
[<parameter>] 

Exceptions will be noted as they arrive. The label is 
an optional symbolic instruction address and the opcode 
specifies the data manipulation operation. A mark op- 
tion can take one of the following forms: 

a) <null>, implies no marking is done. 
b) MARK(<bit specification>), sets (to "i") the mark 

bit data items specified in the bit specifica- 
tion of the qualified tuples. 

c) RESET(<bit specification>), resets (to "0") the 
mark bit data items specified by the bit specifi- 
cation of the qualified tuples. 

The individual mark bits will be denoted MI, M2,..., 
Mb where b is the hardware parameter limiting the num- 
ber of mark bits. A bit specification is simply a list 
of mark bit names. An object has one of the following 
formats and is used primarily to specify which cells, 
relations, and individual items are to be manipulated 
by the instruction: 

a) Rn (DI,...,Ds) where Rn is a relation name and (DI, 
D2,..., Ds) is a list of data item names asso- 
ciated with relation Rn. The data item list is 
optional or not relevant in many instructions. 
The index s is a hardware limit on the number of 
domain names that can be included for certain in- 
structions. 

b) List of cell address, CELL(i), where i the integer 
address of the i-th cell. 

A qualification in the RAP instruction format can take 
one of the following forms: 

a) <null>, implying every tuple of the relation 
qualifies. 

b) Q1 & Q2 & Q3 ... & Qp, denoting the conjunction of 
simple conditions Qi. 

c) Q1 i Q2 I Q3...i QP, denoting the disjunction 
of simple conditions Qi. 

A simple condition Qi can be any one of the following: 

a) <Di> <comparator> <operand> 

where i) Di is a data item name 
ii) comparator is one of :=,#,<,<,>,> 

53 



iii) operand is one of REG (i),<integer>, 
'<literal>', where REG (i) refers to the 
contents of the i-th controller register. 

b) MKED (Mi) denoting the mark bit test Mi = i. 
c) UNMKED (Mi) denoting the mark bit test Mi = 0. 
d) CELL (i) indicating that the cell address is 

tested as part of the qualification. 

A qualification has certain restrictions which are im- 
posed by a particular hardware implementation. A 
qualification can have at most k simple conditions of 
type (a) (i.e., data item comparisons) and b 

simple conditions of types (b) and (c) together. 
Only one simple condition of type (d) may be in- 
cluded in any qualification. 

The format of parameter varies greatly and will be 
explained along with each instruction that requires 
additional information not supplied above. 

2.3 Description of RAP Instructions 

The following is a description of each opcode provided 
by RAP and an indication of its execution time. Exe- 
cution times depend on the speed of the cell processor, 
the capacity of cell memory, and could also vary 
greatly depending on the choice of technology or archi- 
tecture of the processor and memory. However, we can 
give a summary in terms of the number of searches or 
scans of cell memory required to execute an instruc- 
tion. The syntax of each instruction is given followed 
by the number of memory scans in parenthesis required 
for execution. 

Selection: 

Select<mark option>[Rn : <qualification>] (i) 

This instruction selects qualified tuples from the re- 
lation Rn andsets or resets the mark bits of these tu- 
pies according to the mark option given. For example, 
the instruction: 

Select Mark (MIM2) [Rl : DI = 'a'] 

will set mark bits MI and M2 of tuples in R1 which 
have DI = 'a'. 

Cross-Select <mark option on Rl>[<Rl>:<Dl><comparator> 
<R2>.<D2>] 

[<R2> <mark option on R2>:<qualification>] 

(i+ # of source tuples/k) 

This instruction involves operation between two rela- 
tions called source (R2) and target (RI). It works 
like a repetitive select instruction on the target re- 
lation with the exception that qualification for each 
selection is obtained from the source relation data 
item values. That is, in order to select a target re- 
lation (RI) tuple, the items DI and D2 respectively of 
target and source relation must have comparable values 
(i.e., values from the same domain) that satisfy at 
least one of the comparisons between them. The source 
tuples participating in the comparison are those which 
satisfy the second qualification. 

Retrieval: 

Read-All<mark option>[Rn(Dl,...,Ds):<qualification>] 
[<work area>] (i) 

This instruction transfers data from all tuples of Rn 
satisfying the qualificatiom to the supporting proces- 
sor's storage address as speclfied by work area. This 
could be a sequence of primary memory addresses or a 
file designation. If the object data item list is pre- 
sent, only those item values are read out, otherwise, 
the entire eligible tuple is transferred.. If the mark 
option is present, the mark bit items of the eligible 
tuples will be set or reset according to the given 
mark option. 

Read(n)<mark option>[Rn(D1,..,Ds):<qualification>] 

[<work area>] (2) 

This instruction is very similar to the Read-All in- 
struction, except that only data items from the "first" 
n or less qualified tuples are transferred to the sup- 
porting processor's storage location. The mark option 
will only be exercised on the tuples that are trans- 
ferred. 

Save(n)<mark optlon>[Rn(Dl,...~s):<qualification>] 
[<register llst>] (2) 

Save transfers data items from qualified tuples of a 
relation to registers of the RAP controller. Only 
items from the "first" n or less eligible tuples are 
transferred. If the mark option is present, the mark 
bits of the tuples will be set or reset according to 
the mark option. If the data element list is not pre- 
sent, the entire tuple will be transferred, otherwise, 
only those items in the list are read into the regis- 
tersf Values will be stored left justified and padded 
on the right with blanks. Data elements with arithme- 
tic domains will be assumed to be a fixed word length 
in twos-complment format. This register llst can take 
on any combination of the following 2 forms: 

a) Reg (i), Reg (j) ..... Reg (k) 
b) Reg (i) - Reg (j), i < j 

where Reg (i) - Reg (j) means Reg (i), Reg (i + i), .... 
Reg (j). The transfer is done in the order given, that 
is, the first item in the object list is read into the 
first register designated in the register llst, second 
item into the second register, etc. The s items are 
read from each tuple. The first item of the second eli- 
gible tuple will be read into the s + i register in the 
register list. 

Read-Reg [<register llst> [<work area>] (0) 

This instruction transfers contents of the specified 
RAP registers to the supporting processor. Register 
list has the same format as the register list in the 
Save instruction. 

Statistical Computations: 

<sopr><mark option>[Rn(Dn):<quallfication>][Reg(i)] (i) 

where sopr is one of the statistical function operators 
Sum, Count, Max or Min. The opcode Count counts eligi- 
ble tuples in the relation Rn and places the result in 
the register specified. (Dn) is omitted for this sta- 
tistical function. The other instructions compute the 
specified function over the numeric domain of item Dn 
from qualified tuples. 

Update: 

<opr><mark optlon>[Rn(Dn):<qualificatlon>][<opd>] (i) 

where opr is one of the operators Add, Sub or Replace 
and opd is either a constant, a data item name, or a 
RAP register. Item Dn in every eligible tuple is op- 
erated on by opr and value of opd 

Insertion and Deletion: 

Delete [Rn : <qualification>] (i) 

Tuples of relation Rn qualifying for deletion has their 
delete flag bit set causing the tuple to be ignored in 
subsequent operations. 

Colgrbg [<relation list>and/or<cell llst>] (i) 

This instruction initiates the physical deletion of all 
delete-flagged tuples of the listed relations and/or 
listed cells. The data is packed towards the beginning 
of cell memory leaving garbage accumulated towards the 
end. The cell list has the same format as a register 
list. The relation list has the following format: 

(RI, R2 ..... Rn) 

Space-Count [Rn : <cell list>] [Reg (i)] (i) 

This instruction will examine the cells of relation Rn 

54 



and returns a value indicating the number of available 
spaces in these cells. This value is stored into the 
given register. Available spaces include both empty 
tuples and the delete-flagged tuples. If the optional 
cell list is present, only those cells in the cell 
list will be examined. All cells in the cell list 
must belong to relation Rn. This instruction is usu- 
ally used to test for space before an Insert instruc- 

tion is used. 

Insert (n) [Rn : <cell list>] [<work area>] (I) 

Work area is the front-end processor's program storage 
location containing the n tuples to be inserted. If 
the optional cell list is given, the n tuples will be 
inserted in those cells only. There is an arbitrary 
hardware upper limit on the number of characters that 
can be inserted in one INSERT instruction which places 

a limit on n. 

Data Definition: 

Destroy [Rn : <cell list>] (0) 

This instruction deletes the tuples, format, and names 
from the specified cells of a relation. If a cell 
list is not present, the relation is removed from all 
the cells it occupies. A special null relation name 
is reserved for all blank cells. 

Create [Rn : <cell list>] [<format>] (i) 

One execution of this instruction formats each cell in 
the cell list for relation Rn. Empty tuples are delete 
flagged on the created cells. Format contains para- 
metric data about the length of the data items stored 

in a relation. 

Register Manipulation: 

Only registers containing valid integer values will 
result in meaningful numeric computations. All regis- 
ter arithmetic will assume a specified word length for 
operands starting at the left-most bits of controller 
registers. 

Insert Reg [<register list>] [<constant list>] (0) 

This instruction will insert the constants into the 
specified registers. If only one constant is present, 
this constant will be inserted in all registers of the 
register list. Otherwise the number of constants must 
match the number of registers. 

Dec-Re$ [Reg (i)] or Inc-Reg [Reg (i)] (0) 

The instruction Dec-Reg subtracts 1 from the contents 
of Reg (i) and Inc-Reg adds i to the contents of Reg 
(i). 

<ropr> [Rag (i) [<ropd>] (0) 

where ropr is one of the operators: Radd, Rsub, Rmul, 
or Rdiv and ropd can either be an integer or another 
register. 

Decision and Transfer: 

B C <label>, <boolean expression of conditions> (0) 

where BC is the abbreviation for "branch on condition". 
Condition can be one of the following: 

a) <null>, this implies the instruction is treated as 
an unconditional branch. 

b) Reg (i) <comparator> Reg (j) 
c) Reg (i) <comparator> <constant> 
d) Test (Rn : <mark qualification>) 

If boolean condition is true, branching will take 
place, otherwise control is given to the next instruc- 
tion. Condition type (d) tests each individual mark 
bit specified by the mark qualification separately and 
if the test is met for at least one tuple (not neces- 
sarily the same one) of relation Rn then the test is 
true, otherwise, the test is false. Mark qualifica- 
tion can be either disjunctive or conjunctive. 

55 

EOQ (0) 

This indicates theend of a RAP program or query. 

3. Implementation 

3.1 History 

The RAP project began in 1975 in the Computer Sys- 
tems Research Group at the University of Toronto, and 
in 1976 produced a prototype system (hereafter called 
RAP.I) consisting of two cells [4]. The RAP.I system 
consisted of a partially hardwired controller and each 
cell had its own memory track where the format and 
timing of a track was modeled on disk technology. In 
RAP.l, all components of the system were required to 
be synchronized by a single clock, all tracks had to 
be of equal length, and several instructions needing 
inter-cell communication required RAP to provide data 
flow capabilities between all cells. Every operation 
concerning data on the track took one or several full 
revolutions which is the time it takes to serially 
scan an entire track. 

During the project three important decisions were 
made to change the organization of RAP.I which re- 
sulted in the design and implementation of RAP.2. 
First, the controller was to be implemented by a mini/ 
micro computer. Second, the data track was designed 
around the capabilities of emerging block addressible 
memories instead of a disk. Third, a more uniform and 
flexible instruction set with extended marketing capa- 
bilities was needed. A hardwired implementation of 
the controller was found to be inflexible and speed 
was not an issue. The development of a disk system 
that meets the requirements of a RAP system appears 
difficult and costly because of synchronization and 
error correction complexity. Furthermore, it is be- 
coming evident that CCD, bubbles,.and electron beam 
technologies will eventually cause head per track 
disks to be phased out. 

The use of a general purpose computer as the con- 
troller resulted in a major redistribution of the work- 
load. In RAP.2, the cells were greatly simplified and 
required to perform only those tasks directly related 
to their tracks. Because the controller is inherently 
slow and cannot cope with the speed of the cell, it 
became important to decouple cell synchronization from 
the controller. The new work-load distribution also 
freed every cell from the task of sending data direct- 
ly to other cells. This can be done through the con- 
troller. Each cell can operate independently of other 
cells and the controller. As a by-product, each cell 
can have its own track length and execute different in- 
structions independent of other cells. RAP.2 now looks 
like a conventional computer system coordinating the 
tasks of many cells which are treated as independent 
peripheral devices attached to a bus. 

In the summer of 1977, a RAP.2 prototype of 2 cells 
and query language software were demonstrated. Each 
cell contained a million bit CCD track built from 
Intel's 16K bit 2416 component. The controller was a 
PDPII/IO and RAP.2 was interfaced to a PDPI1/45 as a 
DMAdevice via the controller. To make the transition 
from RAP.I to RAP.2 as fast as possible, it was decided 
that only essential changes were allowed. Consequently, 
the RAP.2 implementation is far from perfect and its 
performance can be greatly improved. In this paper we 
refer to enhancements not yet implemented as features 
of a future RAP.3 system. 

3.2 Physical Data Organization 

In review, data is organized into files called RAP 
relations. A relation is a collection of records some- 
times called tuples. Each record is a string of many 
concatenated fields called data items in some fixed or- 
der. The number of fields per record of a given rela- 



tion is a constant. Every relation and each of its 
fields have a ~me stored in a compactly coded form. 

In RAP, the length of each item must be constant. In 
the RAP.I and RAP.2 prototypes, each record was limit- 
ed to 255 items whose length could only be one, two or 
four bytes of encoded data. In RAP.3, this length can 
be anywhere from one to n bytes (where n should be 32 
bytes or greater). Presently, each cell stores data 
from one relation. If a relation is large they can be 
allocated to several cells. In RAP.3 this restriction 
would be removed to allow pages of tuples from several 
different relations to reside in the same cell. This 
would allow relations to be spread across more cells 
maximizing cell parallelism. An analysis of how this 
effects RAP performance is discussed in [15]. 

In RAP.I, a cell stored the relation name as well 
as the cell address at the track head followed by 
tuples separated by gaps as shown in Figure 3. A two- 
bit code was attached to each item in a record to spe- 
cify its length. In RAP.2, the cell address is de- 
fined by an 8-contact switch set by an operator. The 
relation name is stored in a 16-bit register and is 
defined by the programmer. Both the cell address and 
the relation name can be read out. The new format for 
each tuple remains unchanged except that the two-bit 
space between 2 consecutive domains are left blank 
since all the length codes are stored in a register 
called the length code RAM. As for gaps, the only 
requirement is that each tuple must fit in an arbi- 
trary integral number of minor loops. 

I°A l oA l IG,  [ RE OBO IOA  ' REPRO I 1 
a,) RAP. 1TrackFormet 

i RECORO I I ' %ORO I I RE ORD I t 
b.) RAP. 2 Track Formal 

c.) RAP, 3 Track Formal 

I LENGTH CODES (IGNORED IN RAP2) 
TRACKENOFLAG-~ ~. 

] I I I 

IO IM, IM=IM3IM. I I I 'T M I I I  ,T:M I t¢1 'T M I l l  
I ~ I MARK BITS 

~'-~DELETE FLAG RECORD END FLAG L T J  

d.) RAP, 1 and RAP. 2 Record Formal 

i o i ill I 
e.) RAP. 3Record Formal 

Figure 3. Physical Data Formats 
The CCD memories of each cell behave like a very 

long drum with many small tracks of 256 bits each. In 
the remaining part of this paper, by "track" we mean 
the entire CCD drum and each 256-bit circumference will 
be called a minor loop. RAP.2 simulates a disk read 
head by the use of a counter which points to the "cur- 
rent" location. The write head can be calculated from 
the read head by using an adder. For most instructions, 
the write head is one data block (a tuple or record 
plus gaps) behind the read head. Because of the ran- 
domly accessible nature of minor loops, access time is 

56 

small (the worst case is 256 bit-times). When a cell 
idles,its' read head is positioned on the first minor 
loop. In operation, each instruction requires the 
heads to scan just enough data to complete the job. 
After an instruction is completed, the heads immediate- 
ly return to the first minor loop. Due to this pro- 
perty, it is more appropriate to use the term "scan" 
instead of "revolution" to indicate the time required 
to do an instruction. In data retrieval or insertion, 
a scan ends immediately when a sufficient number of 
records have been retrieved or inserted. 

In RAP.3, storage efficiency would be maximized. 
There would be no inter-item spaces or gaps. Also, 
a "return from halt" option (analogous to the "return 
from subroutine" instruction of some microprocessors) 
would allow the cell to resume scanning at some pre- 
vious spot. This option greatly improves execution 
time where a very large volume of data is to be in- 
serted or retrieved. 

3.3 Global Architecture 

The RAP.2 system is organized as shown in Figure i. 
There are 8 control lines and 16 data lines. A DMA 
link is established between the data bus of the con- 
troller and front-end computer. There is a priority 
line that runs through all cells to allow fast polling 
of individual cells. This is used to sequence control- 
ler access to cells to retrieve accumulated statisti- 
cal computations, retrieve qualified records or cell 
status, or perform bulk loading. The priority line is 
not essential, but in a large RAP system, it reduces 
cell access time and storage space in the controller. 

The reason why direct data communications between 
cells was dropped in RAP.2 is multifold. First, ex- 
pensive drivers were needed because each cell was re- 
quired to drive all others. Second, there was the 
classical transmission line problem requiring the en- 
tire RAP.I system to be cram~ed into a physically 
small space. Third, we wanted to desynchronize the 
system to maximize reliability and concurrency. Last, 
reliability suffers when data is sent automatically 
from any cell directly to all others. If one cell is 
malfunctioning, the whole system could crash and diag- 
nosis would become an extremely difficult task. Fur- 
thermore, the amount of information to be exchanged is 
usually too small to justify the cost of a direct com- 
munication links. 

Out of eight control lines, seven are used to encode 
a maximum of ~28 micro-code commands called "keys". 
The eigth is called "key enable" and is used to indi- 
cate valid data. In practice, these lines are con- 
nected to the least significant part of the address 
bus of the PDP ll/10 controller and the key enable 
line is decoded from the most significant part. Some 
keys are accompanied by an operand which must appear 
on the data bus, some expect data from cells to be put 
on the data bus, and others are not associated with 
any data. 

Commands are broadca~to all cells of the system. 
Establishing a scheme to selectively restrict the exe- 
cution of commands by a subset of cells is handled by 
the creation of three state-variables called "open", 
"blocked", and "rejected". There are three different 
ways to open a cell. In the simplest case, the con- 
troller can also open any particular cell by its inte- 
ger designation by storing that value in one key loca- 
tion. Finally, cells can be opened by referencing the 
name of the relaLion stored in the cell. The states 
"blocked" and "rejected" together with the priority 
line and the "get next cell" command are used for con- 
trolling the opening and closing of cells in a sequence. 
Consider the following analogy. A number of persons 
(cells) form a line to buy a ticket in a theatre. 
Those who have bought one are "rejected"; those who 
still have to wait are "blocked". The one who is buy- 
is neither blocked nor rejected. Each time the line 



moves corresponds to a "get next cell" execution. 
This command rejects the current non-blocked cell and 

unblocks the first blocked cell. For example, to 
serve all cells of a relation Rn sequentially, the 
controller must first open all Rn cells and then 
blocks them which is achieved by referring to a key. 
It then sequences through a program loop starting with 
a "get next cell" followed by the service routine. 

For a cell to respond to a command, the cell must 
be in a proper state; it must be open, neither blocked 
nor rejected, and furthermore, not running. The last 
condition is a measure of protection against any er- 
roneous attempt to change the parameters of a query 
or the nature of the instruction being executed. 

For I/0 each cell has a (iK-word) RAM called the 
I/0 buffer and a pointer which is resettable by the 
controller. As far as the controller is concerned, 
the I/0 buffer looks like a single reserved memory 
location. Every time a word is stored in this loca- 
tion, it is sent to the I/O buffer where a pointer is 
incremented automatically. To insert a set of tuples, 
all the controller has to do is repeatedly store two 
bytes at a time in the reserved location. The number 
of tuples to be inserted is written in another re- 
served location. After the cell is initiated to run, 
it will look for vacant slots on its track and pull 
data from its I/O buffer to fill them. 

During data retrieval, the opposite is done. The 
cell looks for desired data on its track and puts them 
in its I/0 buffer. Since the buffer size is limited, 
the controller must also indicate how many tuples to 
be retrieved. For reading, the I/0 buffer also looks 
like a reserved memory location. The buffer pointer 
is automatically incremented every time this location 
is read out. 

Besides track data, many other kinds of information 
of a cell are also available for retrieval by the con- 
troller: processing status, cell address, relation 
name, buffer pointer, result register for statistical 
computations and the S-counter which contains the num- 
ber of satisfied tuples in the most recent pass. Ac- 
cess to the buffer pointer allows the establishment of 
a future DMA link for rapid bulk transfer of inserted/ 
retrieved data directly between cells and the front- 
end computer. 

3.4 Cell Structure 

The structure of a cell can be divided into eight 
units. 

Cell Interface: 

This unit implements the interface to the contrpl 
and data busses. It contains bus receivers 
and a large decoder that decodes the contents of the 
control bus. The cell address is part of this unit 
and is defined by an 8-contact switch. Also, there 
is a l~bit relation name register. The logic for 
"get next cell" is also part of this unit. As men- 
tioned before, every reference to t~e related control- 
ler key will affect the states "blocked" and "rejected" 
of an open cell. Finally there are also status states 
indicating whether, in the last pass, bits DF, MI, M2, 
etc are marked and a state indicating if there was a 
satisfied tuple. The most significant bit of the sta- 
tus is always a "i" and is used to indicate the pre- 
sence of a cell. 

Synchronizer: 

This is the largest logic unit of a cell. It pro- 
vides all timing signals and shift clocks to the rest 
of the cell. For simplicity and ease of testing, all 
basic clock signals are ~eriodic. This implies that 
there is always a read phase and a write phase for the 
CCD memories. Consequently, the bit rate of RAP,2 is 
slightly below 1 MHz. (In RA~.3, re~ and write phases 

57 

would be allowed only when necessary). The I MHz bit 
rate is a limitation of the CCDs and not of the cell 
logic which ahs been rated at l0 MHz. 

Query Analyzer: 

This is the heart of a cell and it determines 
whether a tuple satisfies a search qualification. The 
query analyzer has two parts: the terms evaluator and 
k identical data item comparator units (k=3 in the 
prototype). Each comparator unit has an 8-bit regis- 
ter to store the item number to be tested, a tapped 
32-bit shift register for the externally supplied con- 
stant, a 4-bit register which indicates the selection 
of the unit and the sumbols (<, =, >) of the compari- 
son, and a serial comparator. 

I/O Buffer: 

This unit is of prime importance to decouple a cell 
from the controller for data retrieval and insertion. 
It consists of a ik x 16 RAM buffer and a collection 
of pointers. 

Arithmetic Unit: 

This is the only unit that is not vital to the op- 
eration of the rest of the cell. It is only necessary 
for supporting arithmetic instructions (namely Add, 
Sub, Sum, Max, Min) and can be removed if they are not 
required. It contains three tapped shift registers to 
store operands and results. 

Update Control: 

This is the smallest unit of a cell. It has a re- 
gister to store information concerning the Mark and 
Reset option. It takes care of the marking and re- 
setting of mark bits as well as the writing of new 
data supplied by the I/O buffer for Insert or by the 
arithmetic unit for Add, Sub, and Replace. It also 
erases the track for Create or selected tuples for De- 
lete. 

Output Multiplexer: 

This is logica~y the simplest unit. Appropriate 
registers are connected to various bus drivers which 
are enabled by signals from the cell interface decoded 
from the control bus. For most registers, it is the 
duty of the controller to assure that only one cell at 
a time is in the readable state otherwise information 
on the data bus is meaningless. The only exception is 
the reading of cell status which is meaningful in an 
"OR" form. 

CCD Memories: 

Each cell in the prototype contains l-megabit of 
CCD memory. Due to physical limitations, the l-mega- 
bit drum occupies three identical boards. Each board 
contains all necessary drivers and 20 Intel 2456 CCD 
chips which are arranged in an X-Y matrix of 4 x 5. 
Two different kinds of drivers are used: Intel's 5244 
chips are used for shift inputs and Intel's 3245 chipS 
for addressing. Currently, all the CCD chips are 
driven at a same frequency. If the memory size is to 
be expanded much larger, it makes sense to use two 
different rates where one or two chips at a time are 
driven at a fast rate and the rest at the minimum fre- 
quency to conserve power. 

3.5 Some Statistics 

Each cell breadboard (including the l-megabit track) 
requires about 9 amperes at 5 volts. There is a total 
of 13 boards employing 412 IC packages (218 SSI 
+ 117 MSI + 77 LSI). For each additional 1 megabit 
extension, 96 IC's are needed. 

4. Usin$ RAP In A Data Base Computer 

One might conceive of the day in which microproces- 



sor logic and memory becomes so inexpensive that all 
secondary memories would have RAP-like processing capa- 

bilities. However, the first generation of commercial 
RAPs would have capacity limitations relative to the 
total data base storage requirements due to cost. A 
cost effective system would, therefore, consist of a 
triad of component types: a front-end general purpose 
computer to interface with users and provide operating 
system and language processing functions, a RAP device 
used to process schema data or act as a file "cache", 
and one or more conventional secondary memories. With 
appropriate software, the triad could then be considered 
to be a back-end data base computer ~. We will 
briefly outline two approaches to the DBMS organization 
that exploit such an architecture. 

4.1 Data Base Partitioning 

This approach attempts to exploit the notion that 
not all data in a data base, at a particular point in 
time, requires the same processing capabilities. Data 
can be categorized by the system according to its usage 
characteristics and placed on the conventional secon- 
dary memories or RAP depending on processing require- 
ments that best fit the data. We can partition the 
data base files both horizontally, placing certain re- 
cords on RAP and other on disk, and/or vertically, 
placing clusters of data items on one device or the 
other. Extra data items such as record id's may be 
required to link corresponding partitions. 

The implementation of such a system should include 
mechanisms for both user controlled and automatic mi- 
gration of data between the various devices as usage 
of the data changes. Research into algorithms that 
exploit data base device partitioning is under way at 
the University of Toronto [16]. 

A request would be processed by decomposing it into 
RAP and disk subqueries and first executing the RAP 
subqueries. Access would then be made to disk only if 
the request cannot be entirely serviced by RAP. In 
this case the response from the RAP subquery would be 
used to minimize the search over the disk portion. 

4.2 Paging and Virtu ual Memory 

This approach exploits the techniques of paging 
operating systems to provide a virtual associative ad- 
dress space for a RAP device. This requires all the 
data in the data base to be stored according to RAP 
memory format. The data is then divided into pages 
of the size of one RAP cell. All data base queries are 
translated into RAP processing statements. Before ex- 
ecution, each query is directed through a software 
monitor executing on the front-end computer. The prin- 
cipal tasks of the monitor are to maintain a table that 
gives the location of the pages for each data base file, 
analyze which pages are required to execute a query, 
and then page the necessary data between the conven- 
tional secondary storage devices and the RAP processor. 
The query is then passed to the RAP processor for exe- 
cution. It would be optimum to have a direct path be- 
tween the secondary storage devices and RAP so that 
pages would not have to be transferred through front- 
end. As opposed to the partitioned approach, all 
queries will be executed entirely within the RAP pro- 
cessor. A detailed design of the proposed monitor has 
been outlined in a previous study [9]. For simplifica- 
tion, we require that all the data for a query be small 
enough to store on the RAP device before being processed. 
Many of the architectual extensions proposed for the 
RAP.I device to allow the overlapping of paging with 
processing are not required by the RAP.2 architecture. 
A GPSS simulation of the entire system was performed 
and the results were analyzed [3,7]. Statistics were 
collected on the average response time for on-line 
queries for population of Poisson arrivals with a fixed 

mean and specific sized RAP device. Response was stu- 
died with respect to average expomential processing 
times, average amount of data stored in a relation, 
total data base size, and uniform and exponential lo- 
cality of relation references. Locality was defined 
as the degree to which short sequences of queries re- 
ference some relations more than others. It was found 
that no significant losses in performance will occur 
in user environments which exhibit some relative com- 
bination of the following characteristics: 

a) Relations that occupy a small number of cells. 
b) Query populations which exhibit long processing 

times relative to their paging requirements so that 
overlapping of processing and paging can be effec- 
tive. 

c) Query populations which exhibit a "significant" 
amount of locality. 

5. Summar~ of performance 

An important feature of the RAP instruction set is 
that it is relationally complete meaning that any query 
expressable by the relational calculus can be imple- 
mented entirely within the RAP processor [6]. This 
eliminates the need to transfer extensive amounts of 
data derived from the intermediate results of query 
processing between RAP and the supporting computer. 

It is important to note that each high-level in- 
struction operates on at most two entire relations 
during its execution. The hardware is naturally 
locked during an instrucion execution. Thus all soft- 
ware schemes concerned with mutual exclusion of update 
operations can implement synchronization mechanisms 
at the relation level. This eliminates much of the 
operating system overhead incurred by conventional im- 
plementations as well as reducing the complexity of 
maintaining high levels of consistency. 

Studies have been conducted to compare the hypothe- 
tical performances of the original RAP architecture 
relative to a conventional computer system for imple- 
menting a relational data base [8]. Both approaches 
were modeled analytically. The models considered re- 
sident data bases for the original RAP architecture 
and fast access paths in the form of inverted lists 
for the conventional system. The results show that 
gains from one to three orders of magnitude in query 
execution speed can be achieved by the RAP architec- 
ture over conventional systems. Furthermore, the new 
architecture improves this gain substantially through 
the use of retrieval mechanisms exploiting block ad- 
dressable memories. The model studied queries of the 
form: retrievals and updates on records of relations 
selected with respect to simple and complex boolean 
qualifications, retrievals that include statistical 
criteria in the selection qualification, and retrie- 
vals involving the implicit join of two or more re- 
lations. This study indicates that, under many cir- 
cumstances, on-line retrievals and updates of large 
data bases may only be possible with the use of RAP- 
like systems. 

6. Acknowledgements 

This research was funded by the Department of Com- 
munications, Department of Supply and Services, and 
the National Research Council of Canada. We grate- 
fully thank Intel Corporation for their donation of 
CCD and associated driving components. We would also 
like to acknowledge and thank the members of the RAP 
project that have contributed so much to its accom- 
plishments: M. Chan, A. Cousin, R. Freen, C. Hawkins, 
R. Hudyma, H. Huwito, J. Klebanoff, W. Lane, R. Nakano, 
B. Patkau, P. Pereira, A. Radacz, R. Reid, P. Sadowski, 
M. Soong, K. Seveik, and A. Tsonis. 

58 



7. References 

i. Ozkarahan, E.A., Schuster, S.A. and Smith, K.C., 
"A Data Base Processor" Technical Report CSRG-43, 
Computer Systems Research Group, University of 
Toronto, September 1974. 

2. Ozkarahan, E.A., Schuster, S.A. and Smith, K.C., 
"RAP--An Associative Processor for Data Base 
Management", Proc. AFIPS NCC, Vol. 44, 1975, 
pp. 379-387. 

3. Schuster, S.A., Ozkarahan, E.A., Smith, K.C., 
"A Virtual Memory System for a Relational Asso- 
ciative Processor", Proc. AFIPS NCC, Vol. 45, 
1976, p.p. 855-862. 

4. Ozkarakan, E.A., "An Associative Processor for 
Relational Data Bases - RAP", Ph.D. Thesis, 
University of Toronto, 1976. 

5. Kerschberg, L., Ozkarahan, E.A., and Pacheco, 
J.E.S., "A Synthetic English Query Language for 
a Relational Associative Processor:, Proc. of the 
Second International Conference on Software 
Engineering, October, 1976. 

6. Ozkarahan, E.A. and Schuster, S.A., "A High Level 
Machine-Oriented Assembler Language for a Data 
Base Machine", Technical Report CSRG-74, Computer 
Systems Research Group, University of Toronto, 
October 1976. 

7. Nakano, R. "A Simulator for a RAP Virtual Memory 
System", M.S. thesis, University of Toronto, 1976. 

8. Ozkarahan, E.A., Schuster, S.A., and Sevcik, K.C., 
"Performance Evaluation of a Relational Associative 
Processor", ACM TODS, Vol. 2, No. 2, June, 1977, 
pp. 175-195. 

9. Ozkarahan, E.A. and Sevcik, K.C., "Analysis of 
Architectural Features for Enhancing the Perfor- 
mance of a Data Base Machine", A~M TODS, Vol 2, 
No. 4, December 1977, pp. 297-316. 

i0. Copeland, G.P., Lipovski, G.J., Su, S.Y.W., "The 
Architectu~eof CASSM: A cellular System for Non- 
numeric Processing", Proc. First Annual Symposium 
on Computer Architecture, 1973. 

ii. DeFiore, C.F,, and Berra, P.B., "A Data Manage- 
ment System Utilizing an Associative Memory", 
Proc. AFIPS NCC, Vol. 42, 1973. 

12. Lin, C.S., Smith, D.C.P., and Smith, J.M., "The 
Design of a Rotating Associative Array Processor 
for a Relational Data Base Management Application" 
ACM TODS, Vol. i, No. i, March 1976, pp. 53-65. 

13. Baum, R,I., and Hsiao, D.K., "Data Base Computers-- 
A Step Towards Data Utilities, IEEE-TC, Dec. 1976, 
Vol. C-25, No. 12. 

14. Zaky, S.G., "Microprocessors for Non-Numeric Pro- 
cessing", Pro____~ceedings of Third Workshop on Com- 
puter Architecture for N onLNumeric Yrd~esslng, 
May 1977, pp. 23-3U. 

15. Sadowski, P., "Exploiting Parallelism In A Rela- 
tional Associative Processor", M.S. Thesis, De- 
partment of Computer Science, University of 
Toronto, December 1977. 

16. Freen, R., "A Partitioned Data Base for Use With 
A Relational Associative Processor", M.S. Thesis, 
Department of Computer Science, University of 
Toronto, December 1977. 

59 


