ECE 532S

Digital Hardware

Voice Over IP

Group Project Report

Group members:
Leonard Siu

Wendy Cheung
Due date:
April 12, 2004

Overview

This project is a hardware client prototype for an existing Voice over IP (VoIP) system called Vocal Village
. The block diagram of the system is shown in Figure 1.

[image: image1.wmf]MicroBlaze /

Software

FPGA

Ethernet

Device

Ethernet

MAC

controller

(Xilinx IP)

Ethernet

driver

(Xilinx

driver)

Async.

FIFO

(Xilinx IP)

AC97

Contoller

External Memory

Controller (Xilinx IP)

ZBT External Memory

AC97

Codec

System

To/From Vocal

Village Server

audio in

Format

converter

Digital

Clock

Manager

(DCM)

Sync.

FIFO

(Xilinx IP)

Timer

(Xilinx IP)

Interrupt

Controller

(Xilinx IP)

OPB

UART

(Xilinx IP)

Debug

module

(Xilinx IP)

Interrupt

driver

(Xilinx

driver)

LWIP

(3rd party)

OPB

Figure 1: System block diagram

 The initial goal for the project is to establish a bi-directional audio channel that communicates with the Vocal Village server through the Internet Protocol. As the project progressed, due to time constraints, the aim was modified to doing uni-directional communication, as drawn in Figure 1.

The audio input comes from a microphone connected to the Xilinx board. The AC97 Codec on the board converts this analog signal to digital. The AC97 controller configures the Codec and extracts the audio data. Further processing includes bringing the data to the OPB clock domain, converting it to a format that matches with the OPB width and storing it in a FIFO that can be accessed through the OPB. The AC97 controller also has an OPB interface, since it starts its operation when it gets signalled by the MicroBlaze processor. In the audio data path system, the FIFO blocks (one asynchronous and one synchronous) are IPs available from Xilinx. The other cores were created.

The networking components include an EMAC controller (Xilinx IP), which interfaces with the Ethernet device used to interface with the Vocal Village server. Xilinx also provides a driver for this controller. Other Xilinx IP included in the system are a Timer and an Interrupt Controller, which also have Xilinx drivers. These components are used to call a function in the Light Weight Internet Protocol (LWIP) every 100ms which is required for the networking library to function properly. ZBT (Zero Bus Turnaround) external memory was used for since the combine executable and library code is greater than the allow 64kb available with on-chip BRAM. To access this memory, an External Memory Controller (EMC), which is Xilinx IP, is used. A Digital Clock Manager (DCM) block is used to synchronize the FPGA’s internal logic and clock with the external memory’s logic and clock. In addition, a 3rd party library called LWIP was used. This library provided the client networking functionalities that is not available on the LibXil Net library from Xilinx.

Audio Data Path System

The block diagram for the audio data path system is shown in Figure 2. On one end of the data path, it takes audio input from a microphone. Through several processing stages, the data gets stored in a FIFO that’s mapped to the OPB, so that the data can be read by an OPB master such as the MicroBlaze processor.

[image: image5.wmf]

w

r_

en

Figure 2: Audio data path block diagram

IP Blocks

Audio Controller Wrapper

Functional Description

On the Xilinx Multimedia board, audio processing is done through the National Semiconductor LM4549 audio Codec
. This Codec is compliant with the specification for PC audio, known as AC97. The Codec uses 18-bit ADC and DAC to convert between analog and digital signals, and it can also mix and process the audio signals. The role of the AC97 controller is to interface with the Codec, so that input audio signals can be exchanged between the FPGA chip and the outside world.

The digital controller needs to generate a SYNC signal for the Codec to define the boundaries of each frame of audio data. Each frame consists of 1 Tag Slot and 12 Data Slots. As a 2-channel Codec, it uses only 2 of the Data Slots for audio data – one for the left channel and one for the right. The AC97 controller extracts these 2 audio data samples from the serial input line (SDATA_IN), packs them to 16-bit signals and stores them in an asynchronous FIFO. The Tag Slot and 2 other Data Slots contain Codec status information and data read from a register. In this implementation of the controller, this data is not used, thus it is ignored. The rest of the slots are stuffed with zero, so the controller doesn’t look at those data bits too. The Codec is configured by setting the values of its registers; the output volume, input volume and ADC sources are examples of options that can be set. To write to a register, the register address and the data to be written are embedded in the serial data (SDATA_OUT) that the controller sends to the Codec.

The AC97 controller wrapper also interfaces with the OPB with a slave attachment. The purpose of this is to allow the MicroBlaze processor to write to the memory-mapped START register to signal the AC97 controller to start its operation of configuring the Codec and to subsequently start taking input data recorded from the microphone.

Interface Signals

The Codec has 5 signals that are connected to the pins of the FPGA chip on the board: BIT_CLK, SYNC, SDATA_IN, SDATA_OUT and PC_BEEP. The PC_BEEP signal is an input to the Codec that can be mixed to both channels of a stereo signal. It is not used in this project, thus only the other 4 signals form the interface between the AC97 controller and the Codec. BIT_CLK is a 12.288MHz clock that’s sent to the AC97 controller. It’s the clock for the serial input data to the controller (SDATA_IN) and output data from the controller (SDATA_OUT). The SYNC signal is generated by the AC97 controller and sent to the Codec to indicate the frame boundaries of the data.

The controller packs the audio samples extracted from SDATA_IN and writes them to the asynchronous FIFO. The interface between the controller and the FIFO is a standard write FIFO interface. The controller sends a write enable signal and write data to the FIFO, and the FIFO sends a full signal to the controller.

The slave OPB interface contains signals as defined by the OPB architecture
. By including the proper options in the .mpd file of the core, these interface signals are automatically interfaced with the MicroBlaze’s OPB.

Implementation

As an OPB slave device, when the OPB_select signal is asserted and OPB_Abus is valid, the AC97 controller should decode the address to determine if it is within its own address range. This OPB address decoding logic is implemented by using the parameterizable peripheral address decoding module pselect provided by EDK. This VHDL module is available in the common_v1_00_a library. The parameter and port definitions of the module are described in the “Designing Custom OPB Slave Peripherals for MicroBlaze” tutorial document as well.

The AC97 controller starts its operation when the MicroBlaze processor writes to the controller’s START register. This START register is at a parameterized offset from the base address of the controller. The default value of this offset is 0x4. The controller does not look at the write value to the START register. When it detects that a write is performed on the register, it pulls an internal signal to high. Since this internal signal asynchronous to BIT_CLK, it is synchronized to BIT_CLK through a double flip-flop synchronizer. The output from the synchronizer is registered once more, and the resulting signal is used as the reset signal to all the flip-flops in the BIT_CLK domain in the module.

The AC97 standard for audio data is schematically shown in Figure 3. Each frame consists of a 16-bit long Tag Slot and 12 20-bit long Data Slots, for a total of 256 bits in the frame. The SYNC signal is asserted to indicate the start of a new frame, and de-asserted at the end of the Tag Slot. The SYNC signal is thus a 48kHz pulse with a duty cycle of 6.25% (16/256 cycles). It is generated based on a counter that continuously counts through 256 before wrapping around. To extract incoming data from the proper slots or to send output data in the correct slots, the AC97 controller uses counters to keep track of the slot number and uses flags to indicate whether it’s in the Tag Phase or the Data Phase. The incoming serial data is packed together before being written to the asynchronous FIFO; this is by shifting the bits through a series of registers. In a similar manner, the output data is sent one bit at a time through shifting the bits through shift registers.

[image: image6.wmf]

w

r_

en

Figure 3: AC97 audio data format

When the AC97 controller starts its operation after the MicroBlaze writes to the controller’s START register, the controller goes into a setup mode to write values to the Codec’s registers to configure it. In this mode, recording from the microphone input does not start yet. There are 8 register writes that are performed, and they are specific to the application needed for this project. The rest of the registers of the Codec are left at their default values. Table 1 explains how the register writes configure the Codec. Once the 8 register writes are completed, the AC97 controller exits setup mode and starts recording the input from the microphone.

Table 1: Codec register writes done by AC97 controller

	Register Address
	Register Name
	Write Value
	Configuration

	0x02
	Master volume
	0x0000
	Unmute the master output volume

	0x04
	Line level volume
	0x0000
	Unmute the line level volume

	0x06
	Mono volume
	0x0000
	Unmute the mono volume

	0x0A
	PC beep volume
	0x8000
	Mute the PC beep volume

	0x0E
	Mic volume
	0x8040
	Add 20dB boost to microphone input (for ADC), but mute the mic input to mixer 1

	0x18
	PCM out volume
	0x0000
	Unmute the PCM out volume

	0x1C
	Record gain
	0x0F0F
	Set record gain to 22.5dB for both left and right channels

	0x20
	General purpose
	0x8000
	Set the DAC output to bypass the 3D sound circuitry

Asynchronous FIFO Wrapper

Functional Description

The serial audio data that goes to the AC97 controller from the audio Codec is clocked on the BIT_CLK provided by the Codec. Since this data will eventually be accessed by the MicroBlaze processor via the OPB at the end of the data-path, the data needs to be synchronized to OPB_Clk. The asynchronous FIFO block is used to transfer audio data from the BIT_CLK domain to the OPB_Clk domain.

Interface Signals

The write side of the asynchronous FIFO is in the BIT_CLK domain, and the write side interface signals (write enable, write data, full) are connected to the AC97 controller. The read side of the FIFO is in the OPB_Clk domain, and the read side interface signals (read enable, read data, empty) are connected to the format converter, which will be described in the next section.

Implementation

This wrapper simply contains an asynchronous FIFO core
 generated by Xilinx ISE 6.1’s CORE Generator.

Since the OPB width is 32 bits, the AC97 controller truncates the 18-bit quantized audio samples to 16 bits by dropping the 2 LSBs, so that a left audio sample and a right audio sample can be packed together by the format converter to form 32 bits. Therefore, the width of the asynchronous FIFO was chosen to be 16 bits; each entry in the FIFO is a 16-bit left channel or right channel audio sample.

In the design of the FIFO depth, the write and read data rates were considered. The input data is a serial data line, where there are 2 18-bit audio samples (one for left channel and one for right channel) for each 256-bit frame. The rate of reading data from the FIFO depends ultimately on the processing time of the MicroBlaze processor. Once the processor has established a connection with the server and is ready to send packets, it starts recording from the input microphone. It reads data from the OPB-mapped synchronous FIFO, which stores the data packed from reading the asynchronous FIFO. Assuming that the processor can send packets at about the same rate as the input data rate, since OPB_Clk (50MHz) is about 4 times faster than BIT_CLK (12.288MHz), the read rate of the FIFO is faster than the write rate of the FIFO. Therefore, FIFO overflow is not a concern, and this asynchronous FIFO is mainly used to cross the clock boundary. The minimum FIFO depth that can be generated is 15, which is a reasonable value to use for this FIFO. Note that the valid FIFO depths for this core are (2N-1), where N is an integer from 4 to 16, inclusive. The FIFO depth is not a power of 2 because one memory location is traded for optimizing the FIFO’s performance. Since the complete system was not functional, we did not get a chance to test whether this FIFO depth was sufficient. Interrupts based on the full signal of the FIFO could have been generated to indicate whether the FIFO overflows.

Aside from the basic full / empty flags that indicate the status of the FIFO, this core can be generated with additional status or control signals. For example, write /read

acknowledgement, write /read error, write / read data count signals were included in the core, with the foresight that they might be useful for generating interrupts or for checking the status of the FIFO. However, most of these signals are not currently used.

Format Converter

Functional Description

The asynchronous FIFO stores 16-bit audio data samples. This data will be stored in a 32-bit wide synchronous FIFO that’s mapped to the OPB, so that the MicroBlaze processor can access the data. The format converter packs 2 data entries read from the asynchronous FIFO and packs them together to write to the synchronous FIFO.

Interface Signals

The format converter is interfaced with the read side of the asynchronous FIFO. It also interfaces with the write side of the synchronous FIFO.

Implementation

The format converter interfaces with 2 FIFOs – it reads data from the asynchronous FIFO and writes data to the synchronous FIFO. There are certain conditions that the converter checks for before each read request it sends to the asynchronous FIFO. First, the asynchronous FIFO needs to have at least 2 entries. This is because the converter packs together 2 16-bit data read from the asynchronous FIFO to write to the 32-bit wide synchronous FIFO. While it is possible to perform a read form the asynchronous FIFO when it has only one entry and wait till the next data come to perform another read, the current implementation avoids pipe-lining the operation and additional checks. The second condition that the converter checks for is whether the previous packed data has been written to the synchronous FIFO. If not, the registers that store the packed data is not ready to accept new data. Lastly, the converter checks whether the synchronous FIFO is full. If it’s full, it would not be ready to accept more data, so the converter temporarily stops reading from the asynchronous FIFO. Again, this implementation is used to avoid more pipe-lining stages and to use less complicated logic checks. The trade-off is a small amount of extra latency, which we do not think will be critical in this case. When 2 consecutive reads from the asynchronous FIFO have been done, and when the 2 pieces of data that were read are packed together to 32 bits (left channel data on bits [31:16], right channel data on bits [15:0]), the converter writes this data to the synchronous FIFO.

Synchronous FIFO Wrapper

Functional Description

The format converter writes 32-bit wide data to the synchronous FIFO in this wrapper. Each entry in the FIFO contains a 16-bit left channel and a right channel audio sample. The FIFO stores this data until the entries are read by the MicroBlaze processor via the OPB. By using an OPB slave attachment, the synchronous FIFO is memory-mapped. Every time the MicroBlaze processor reads the DATA register, an entry is read out from the FIFO and the data appears on the OPB. The processor can also read the STATUS register to have the status of the FIFO appear as data on the OPB.

Interface Signals

The synchronous FIFO’s write side signals are interfaced with the format converter. The OPB slave interface uses signals that are standard to the OPB architecture. The read side’s signals come indirectly from the OPB slave interface signals.

Implementation

The synchronous FIFO core
 used in this wrapper is very similar to the asynchronous FIFO core that was previously described. It is also generated with Xilinx ISE 6.1’s CORE Generator.

The width of the synchronous FIFO is 32 bits, which is the same as the width of the OPB. In the design of the FIFO depth, it’s not obvious how the write and read data rates of this FIFO will compare with respect to each other. Intuitively, since the system sends a live stream of audio data, the system’s input and output rate should be about the same, thus the write and read data rate of this FIFO should also be similar. This FIFO was chosen to have 32 entries. Testing the system when it’s functional would indicate whether this choice gives a FIFO of the right size.

As a slave device, this module needs to decode the OPB_ABus when OPB_Select is high to determine whether it should respond. As with the AC97 controller, this wrapper uses the pselect module in the common_v1_00_a library to do this address decoding logic.

There are 2 memory-mapped registers for this wrapper. They are the DATA register and the STATUS register, and they are both read-only registers. The definition of the STATUS register is shown in Figure 4.

[image: image7.wmf]

w

r_

en

Figure 4: STATUS register for the synchronous FIFO wrapper

When the MicroBlaze processor reads the DATA register, this core performs a read on the synchronous FIFO and put the data that’s read on the OPB. It is assumed that the processor would have checked that the FIFO is not empty when it reads the DATA register, so the core does not perform an additional check. In the event that the FIFO is empty and the processor still reads the DATA register, data from the previous read could still appear on the OPB bus, but the rd_err bit would be asserted in the STATUS register.

Testing

AC97 Controller Loopback Operation

In the initial design of the AC97 controller, a controller that records from the microphone and that plays back the recording almost immediately was implemented. This loopback operation can test register writes in the setup mode, extracting data from audio input, storing and retrieving the extracted data and outputting audio data. When testing confirmed this loopback controller’s functionality, it was reasonably simple to convert the controller to what’s actually needed for the project.

The module was first tested with a ModelSim testbench. The testbench injects arbitrarily chosen data (e.g. send a ‘1’ bit every 4 cycles) to the controller. Since it would be time-consuming to make a Codec model, the simulation ran on this testbench requires visually checking the waveform to verify the controller’s functionality. On the waveforms, it was verified that the register addresses and values and the control bits required for doing register writes appeared on the output data correctly. It was also verified that the audio playback lags the input by one frame.

After the ModelSim simulations, testing was done with the actual Xilinx board. ChipScope
 cores were inserted in this controller module to aid in the testing. These cores are the integrated controller (ICON) core and the integrated logic analyzer (ILA) core. The ILA was configured to use an 8-bit wide trigger signal and a 128-bit wide data bus to monitor the controller.

Memory-mapped FIFO

The initial test for implementing a memory-mapped FIFO was done by writing known data to the FIFO and then reading the data on the OPB.

This was first done with a ModeSim testbench. The test inputs emulate reading the DATA register and the STATUS register of the FIFO to test the response of the module. The waveforms were visually checked to ensure that the signals behaved as designed.

For the actual testing with the Xilinx board, XMD was used to read the DATA and STATUS registers. ChipScope cores were also inserted into the module for debugging purposes. However, since XMD and ChipScope cannot be run simultaneously, the ChipScope insertion turned out to be not particularly useful.

Audio Data Path

After testing the AC97 controller loopback operation and the memory-mapped FIFO separately, they were modified and combined together to form the actual audio data path system shown in Figure 2. For now, this system can only be tested by doing register reads and writes with XMD. When the connection to the server is established, further testing of sending the data to check the format of the data can be done.

Networking component

Hardware System

Figure 5 list components of the hardware system as shown in EDK.

[image: image2.png]=] System BSP
micrblaze_0
mb_op
I detug mode
inb
amb
B dmb_erte
3 imb_crtr
3 imb bram
;R
B ob_ethemet_0
BE oot scr 0
B opb_eme_0
3 dom_modie_0
B ok aign 0
3 dom_modie_1
T ric 0
B ovb_timer 0
©@ PojectFles

‘Right Cick for Optons

Figure 5. List of cores shown in EDK

microblaze_0 (Xilinx IP v2.00a) is the instance of the main processor for the unit.

debug_module (Xilinx IP v1.00c) is part of debugging module generated by the Base System Builder. This unit is connected through the On-chip Peripheral Bus (OPB).

dlmb_cntlr (Xilinx IP v1.00b) is the Data Local Memory Bus (DLMB) controller generated by the Base System Builder.

ilmb_cntrl (Xilinx IP v1.00b) is the Instruction Local Memory Bus (ILMB) controller generated by the Base System Builder.

lmb_bram (Xilinx IP v1.00a) is the Block RAM (BRAM) connected by the Local Memory Bus (LMB) generated by the Base System Builder. This BRAM is used to store the xmdstub such that the executable can be downloaded to the FPGA.

RS232 (Xilinx IP 1.00b) is the OPB UART controller core. The serial connection is used to display printf statements mainly for debugging purposes.

opb_ethernet_0 (Xilinx IP v1.00m) is the OPB Ethernet Access Media Controller (EMAC) core. EMAC is used in Poll-mode for this project, so technically, the EMAC-lite core from XIlinx could be used instead.

gen_zbt_addr_0 (User IP)
 is used to map the address lines of the ZBT connection to the EMC controller.

opb_emc_0 (Xilinx IP v1.10b) External Memory Controller (EMC) communicates with on-board ZBT RAM block. Program executable, libraries and drivers are stored in ZBT RAM.

dcm_module_0 (Xilinx IP v1.00a) is the Digital Clock Manager (DCM) core that connects to the system clock.

clk_align_0 (User IP)7 is used to connect the two DCM modules and synchronize the clock edges.

dcm_module_1 (Xilinx IP v1.00a) is the DCM core that connects to ZBT memory.

opb_intc_0 (Xilinx IP v1.00c) is the OPB interrupt controller core.

opb_timer_0 (Xilinx IP v1.00b) is the timer core used to generate interrupt every 100ms. This is needed for the LWIP server library to work correctly.

Timer module and Interrupt controller

The timer module is added because the software networking library requires the tcp_tmr() function to be called every 100ms. The timer module and interrupt controller was added to the base system created by the Base System Builder of XPS.

External memory and the DCM

The size of the executable and the library code combine to be more than the 64kb available with an on-chip BRAM. Therefore, and External Memory Controller (EMC) was added to the system connecting it to a bank of on-board memory. The amount of addressable space on the external memory was set to 0xFFFFF, which is approximately 1Mb. DCM cores were added to the system to ensure the proper data transfer between the FPGA and external memory.

Light Weight Internet Protocol networking library

The LibXil Net networking library from Xilinx does not support client functionalities. Light Weight Internet Protocol (LWIP) library
, a small TCP/IP stack networking library implemented by Adam Dunkels was used instead. There were several other small networking libraries targeted for embedded system, for example TinyTCP.
 All of the networking libraries examined either lacks documentation or has out-of-date documents. LWIP was chosen because more relevant examples related to Microblaze or Xilinx FPGA was found. Important documents and example for LWIP includes,

· Xilinx Application Notes 663 (XAPP663)
. This application notes implements an example of a web server on a Virtex-II Pro FPGA with PowerPC processors.

· “An lwIP implementation for Microblaze” by S. Nilsson et al.
. This project consists of an out-of-date Microblaze port of lwip using and out-of-date EMAC core no longer available from Xilinx.

· “Design and Implementation of the lwIP TCP/IP Stack” by Adam Dunkels. This report is on an out-date version 0.5 of LWIP. The current version of LWIP is 0.7.1

Porting LWIP

Although two relevant examples of LWIP were found, Xilinx Application Notes 663 is implemented for PowerPC processor and Microblaze port by S. Nilsson et al. is out of date. Therefore, it was necessary to port LWIP to the recent Xilinx platform based on the Microblaze Porcessor.

Integrate LWIP into EDK

In EDK, user software libraries are implemented under the directory, “sw_services” of the main directory of the project, see Figure 8. The organization of the sw_services directory is shown in Figure 6.

[image: image3.png]2 peores
B sw_services.
=3 wip_v1.00_2
D data
2 Qs
2 contrb

Figure 6. Directory structure of sw_services.

lwip_v1_00_a is a self contained directory that stores the lwip library files. EDK automatically looks for user libraries under this directory. The directory is structured in the format that the Library Generator (libgen) understands.

lwip_v1_00_a /data contains Microprocessor Library Definition (MLD) and the TCL files. MLD files contain directives for customizing the software library
. TCL contains procedure scripts used by libgen.

lwip_v1_00_a/src contains the source file of the LWIP library and a Makefile which is called by the XPS to prepare the library for compilation. The Makefile contains detail comments of what each target is responsible for. Please refer to the Makefile for more details.

Under the lwip_v1_00_a/src directory are the contrib and the lwip directory:

contrib contains the architecture specific files port to different platforms. The port used in this is Microblaze which in the directory ports/mb under the directory contrib.

lwip contains the architecture independent source files of LWIP.

Common source and header files

No modifications were made to the architecture independent files. LWIP was used as is and is available for download from http://savannah.nongnu.org/download/lwip/. The version of lwip used in this project is v0.7.1.

Target specific source and header files

The directory, contrib/ports/mb, contains other very important header files that configure LWIP and these files are needed during compilation of the library by libgen. Under the contrib/ports/mb directories are the Network interface directory netif, and the include directory. The include directory contain header files for the functions declaration, configures LWIP, and architecture specific settings.

Network interface Implementation

Network interface functions should be implemented in the source file under the netif directory. Under the netif directory is a file called mbif.c and the associated header file, mbif.h, under include/netif. The mbif.c source file contains an implementation of the network interface with an old EMAC core no longer available in XPS. This file is not used by kept for reference purpose only. This source file is commented out from the Makefile when the library is to be built. Instead the network interface functions are implemented in the main program. This allows rapid development and changes to be made to these functions. When the network functions are deemed stable, they should be placed into the architecture specific files directory in a similar fashion as the mbif.c and mbif.h files.

Configuration file

include/lwipopts.h

This file is the main configuration file for architecture specific settings for LWIP. Proper documentation of the available options was not found. However, some comments can be found in the include/lwip/opt.h found among the architecture independent directory. LWIP have two mode of API, namely the LWIP Callback API and Event API. In this project, the LWIP is configured to used the Event API which is configured in include/lwipopts.h.

Architecture specific configuration files

include/arch/

cc.h

This file contains settings to map different data types to the cpu architectures. For example, LWIP has unsigned 8-bit type defined as u8_t. For Microblaze, unsigned 8-bit type is mapped to unsigned char. For details about Microblaze data types, please refer to the Microblaze Processor Reference Guide.

cpu.h

This file defines the clock speed and the endianess of the processor.

perf.h

The use of this file is not known.

sys_arch.h

This file defines the mailbox and semaphore functions. These functions can be used if the target system contains an underlying operating system that supports these functions. This project uses the raw API, therefore the functions are defined to NULL.

Main program files source and header files

Only one source file, main.c, is created for this project. This file is separated into three main components, the main program, the LWIP functions and the network functions.

Network functions

The network functions consist of the following functions
:

· High-level functions: xemacif_init, xemacif_input, xemac_output.

· Low-level functions: low_level_init, low_level_input and low_level_output.

The high-level functions implement procedures that set up the environment before the low-level functions are called, or process the data return by the low-level functions.

The low-level functions call device-specific functions to implement the function call.

xemacif_init and low_level_init

These two functions combine to initialize the EMAC. xemacif_init set up several variables, including xemacif_ptr which stores EMAC configuration information. xemacif_init is called within the netif_add function. netif_add is a LWIP function. The purpose of netif_add is to store the network interface information in LWIP.

xemacif_input and low_level_input
xemacif_input should be called whenever the program is ready to receive more data from the EMAC. xemacif_input in turn calls low_level_input which calls the EMAC drivers to grab data from the EMAC controller. xemacif_input is currently called within the LWIP_EVENT_POLL case of the lwip_tcp_event function. This ensures the input is polled every 100ms for data.

xemacif_output and low_level_output
xemacif_output is called when the program needs to output data through the EMAC. xemacif_output process the output data and calls low_level_output which in turn calls EMAC device drivers to send the data.

LWIP functions

The LWIP functions consist of the lwip_tcp_event and ConnHandler functions. lwip_tcp_event is called whenever a TCP event occurs. ConnHandler is a callback function when a TCP connection is established.

Main Program

The main program is simply a program that attempts to establish a TCP connection with the IP address 1.2.3.2 on port 5555 and send text, “Hello”, after the connection is established.

Testing

Hardware System

The hardware system was built piece by piece, starting from the system built by the Base System builder of XPS. Timer Core and Interrupt Controller Core were added and were tested by printing a “.” in the timer interrupt callback function. The time between each appearance of the “.” was measured to be approximately 100ms. External Memory Controller and Digital Clock Manager were added to utilize the ZBT on board memory. The system was tested by running a simple Hello World program using the address space of the external memory. Lastly, I added the Ethernet core, and tested it by running the xemac_fifo_example.c from lab 4.
Connectivity

The Xilinx Multimedia Board is connected to the laptop using a crossover cable. An Ethernet packet sniffer, Ethereal, is installed on the laptop to pick up any traffic sent by the system. The IP address on the laptop is set to 1.2.3.3 with network mask of 255.255.255.0. The dummy server bound to IP 1.2.3.3 port 5555 was set up on the laptop using TruSite three-pronged TCP application debugger
. The IP of the EMAC on the Xilinx Board was set to 1.2.3.2 with the same network mask. The test program on the system initiates a connection to 1.2.3.3 (laptop IP) by calling tcp_connect. All transaction of packets displayed using the xil_printf. The packets are analyzed for there conformities to the Ethernet Protocol
.

When the program was first executed, the program hangs in the middle of a printf statement within the low_level_output function. After some thorough investigation, it was found that the stack size was too small. The default stack size is 100 x 4 bytes. The problem was solved by increasing the stack size to 16384 x 4 bytes.

After solving the stack size problem, we proceed to test the network connectivity of the system by connecting it to the laptop. However, the EMAC self test function failed within the initialization code of the test program. It was later found that the connection established between the physical link layer of the system and the laptop was 100 Mbps. Since the OPB bus is running at 27 MHz, it is not fast enough for the system to run at 100 Mbps. This problem is solved by configuring the Ethernet card on the laptop to negotiate for a 10 Mbps connections.

After fixing the physical link layer connection speed problem, the connection between the laptop and the system was tested. The Ethernet packet sniffer is configured in promiscuous mode to pick up all packet traffic. However, the Ethernet packet sniffer did not pick up any packets. To isolate the problem, a hub was used in between the laptop and the Xilinx Board. When the test program was ran, the activity LED flashed on the hub indicating network activity. In attempt to identify the problem a network diagnostic tool, Intel PROSET II, for the laptop was found an installed. Through the diagnostic tool, it was found that the Ethernet Card is registering error packets.

The EMAC on the Xilinx Board is configured to loopback mode in order to analyze examine the packets. The packets send and received by the EMAC were printed. Though this set up, it was found that the pad bytes inserted by the EMAC core is 0xAA instead of the proper pad byte, 0x00. This was corrected by disabling the insert pad byte function on the EMAC core and adding the 0x00 pad byte by software. However, after changing the pad byte to 0x00, the diagnostic tool on the laptop is still registering error packets only. We only manage to reach this stage before the deadline of the project.

Outcome / Results

Accomplishments

Audio Data Path System

There are 2 versions of AC97 controllers that were implemented in VHDL. The first one is a controller that records audio input from the microphone and plays it back through the speakers. This can be used as an example to understand the interface between the controller and the Codec, and the format and the timing of the input and output data. The second version of the controller only records the audio input and doesn’t do playback, so it can be used for applications where the data gets further processed by the hardware or software components. If the application requires the data to be played after the processing, the two versions of the controller can be combined with appropriate modifications and probably with additional logic to provide such a controller. Both versions of the controller are able to embed register writes data properly in the serial output data line to perform the register writes listed in Table 1.

The second version of the AC97 controller has an OPB slave interface that allows the MicroBlaze processor to write to a register to signal the controller to start its operation. This code can be used as an example of how to interface a slave peripheral to the OPB and how to create memory-mapped registers.

The synchronous FIFO at the end of the audio data path is a read FIFO from the point of view of an OPB master. The FIFO was memory mapped such that each entry read from the FIFO and the status of the FIFO appears on the OPB when reads are performed on corresponding registers. The FIFO core can be changed to any other depth, but the FIFO width should remain at 32 bits since that’s the width of the OPB bus. The FIFO can be changed to an asynchronous FIFO with some modification, since the current STATUS register contains status signals from both the read and the write side.

Network Component

The Microblaze port of Light Weight Internet Protocol (LWIP) library by S. Nilsson was modified using Xilinx Application 663 as a reference. We were able to use the library to establish communication with the FPGA itself when the system is configured in loopback mode. The expected ARP request and reply packets are found when the test program was trying to establish a connection its own IP address while in loopback mode. Using the library, the system was able to receive the ping packets sent from the laptop as well. However, ARP request packets sent as part of the TCP connection negotiation between the laptop was thrown out as error packets by the EMAC on the laptop. The packets never made it to the network packet sniffer installed on the laptop.

Future Work

AC97 Controller

The register writes performed in setup mode are currently hard-coded in the VHDL module. These registers were configured for this particular project. To extend the controller’s scope, the register writes can be controlled by parameters. Currently, the controller exits setup mode after writing to 8 registers, but the number of register writes can be made into a parameter as well. To take it another step further, register reads and register writes can be controlled by an OPB master at any time, not just in a setup mode at the beginning. An example of this is implemented in the MicroBlaze_MP3Decoder_Rel_Ver1 example that was made available to our class.

In the Tag Slot and in the first Data Slot on the incoming data line to the controller, the Codec communicates information such as whether it’s ready to accept data and which slots contain valid data. These checks can be implemented in a future improved version of the controller.

The C_AB parameter of the pselect module is currently hard-coded according to the address range of the controller. A function called Addr_Bits and described in the “Designing Custom OPB Slave Peripherals for MicroBlaze” tutorial can be added to automatically return the proper value for any given base and end addresses.

Another feature that could be added to the controller is a processor-controlled reset of the FIFO that holds the incoming audio data. The current START register initiates the operation of the controller; another memory-mapped register can be implemented to clear the FIFO’s contents and have the controller start recording again.

Format Converter

When the Ethernet sends packets to the server, we intended to send the audio data as produced by the Codec, i.e. 16-bit quantized data. Since we did not get to actually test the transmission of these packets, it’s not known whether this format is recognized by the receiver. A possible alternate format to use is the wav format
. Aside from adding a specific header that precedes the data, the audio samples need to be converted to 16-bit 2’s complement signed integers, ranging from –32768 to 32767. The twos complementer
 that can be generated with the CORE Generator might be useful for implementing this conversion.

ChipScope Insertion

All the ChipScope insertions that were done made use of the ICON core and the ILA core. In the module that tests the memory-mapped FIFO, part of the ILA data bus was used to probe OPB interface signals. These were put in place prior to discovering a specific type of ChipScope core for analyzing the OPB interface. This core is called the Integrated Bus Analyzer for CoreConnect On-Chip Peripheral Bus (IBA/OPB). When generating this core, there are options that can be chosen to monitor certain set of OPB signals.

Networking Component

The hardware system of the network system should be sufficient for the VoIP application. If more memory is needed, another EMC core should be added to address another bank of on-board memory.

The reason while the laptop is dropping the packets sent by the system needs to be debugged. Once the laptop picks up the packet send by the system, the next step will be to pick up the audio data from the OPB bus using the Audio Data Path. A small program can be written on the receiver (laptop), and pipe the data to the sound card.

Description of Design Tree

Audio Data Path System

All the files related to the audio data path are placed in the AUDIO_DATA_PATH folder. Figure 7 shows the folder’s hierarchy structure.

AUDIO_DATA_PATH

|-- Project

system.xmp

|-- pcores

|-- ac97ctrl_v1_00_a

|-- afifo_wrap_v1_00_a

|-- converter_v1_00_a

|-- sfifo_wrap_v1_00_a

|-- AC97_Loopback

|-- XPS

system.xmp

|-- pcores

|-- ac97ctrl_v1_00_a

|-- ModelSim

|-- MemMapped_FIFO

|-- XPS

system.xmp

|-- pcores

|-- cfifo_wrap_v1_00_a

|-- converter_v1_00_a

|-- ModelSim

Figure 7: Structure of AUDIO_DATA_PATH directory

There are 3 directories in the AUDIO_DATA_PATH folder: Project, AC97_Loopback and MemMapped_FIFO. The Project directory contains files with the components in the audio data path system integrated. This is the XPS project that can be further developed. The other 2 directories were used for earlier testing of individual components in the system. They are included as examples of how to use testing and debugging tools such as ChipScope and ModelSim.

The Project directory contains the XPS project for the audio data path system as described by Figure 2. The pcores directory contains the 4 cores that were described in the IP Blocks section of this document: ac97ctrl_v1_00_a, afifo_wrap_v1_00_a, converter_v1_00_a and sfifo_wrap_v1_00_a.

The AC97_Loopback directory contains files used for testing the loopback operation of the AC97 controller. There are 2 sub-directories: XPS and ModelSim. The XPS folder contains the XPS project used for the actual hardware testing. The core ac97ctrl_v1_00_a in this project has ChipScope cores inserted and all the necessary port connections have been made. In the ModelSim directory, the VHDL testbench and the VHDL design files used for simulations are included.

The MemMapped_FIFO directory contains files used for testing a memory-mapped FIFO. Its structure is similar to that of the AC97_Loopback directory. The XPS folder has the XPS project used for actual testing with the board, and the ModelSim folder holds the testbench and files used for simulations.

Networking Component

The EDK project directory structure of the networking component is shown in Figure 8.

[image: image4.png]D data
Detc

2 microblaze_0
2 peores

2 sw_services.

Figure 8. Directory structure of Networking component

__xps: contains files used by Xilinx Platform Studio (XPS).

code: contains the C source code files.

data: contains the User-constraint file (UCF).

etc: contains files used by Embedded Development Kit (EDK) .

microblaze_0: contains files used the “0” instance of Microblaze processor. This includes the drivers for different peripherals and library files.

pcores: contains the user-defined hardware cores.

sw_services: contains the user-defined software libraries. This is were LWIP resides.

Useful Resources

[1] http://www.sics.se/~adam/lwip/

Contain not very up-to-date documentations on LWIP.

[2] OPB Ethernet Media Controller data sheet

Contain information about the EMAC core as well as the Ethernet Protocol.

[3] Stefan Nilsson, Frederik Schmid and Jimmie Wiklander, “MB-lwIP, An lwIP implementation for MicroBlaze” http://jota.sm.luth.se/~petmag-8/smd153/projekt/rapporter/
An Microblaze Port of the LWIP networking library on out-dated Xilinx EMAC core.

[4] TruSite – Three-pronged tool for debugging TCP applications. http://www.lightspawn.org/articles/72.html
[5] Ethereal - Ethernet Packet Sniffer. http://www.ethereal.com/

32 entries

15 entries

32 bits

full

wr_en�

wr_data

32

Format converter

empty

rd_en�

rd_data

16

16 bits

Async FIFO

full

wr_en�

wr_data

16

AC97 Codec

Mic input

OPB

MicroBlaze

Processor

OPB Slave Attachment

Sync FIFO

Read FIFO Wrapper

Data Phase

Tag Phase

Slot #

SDATA_IN

SDATA_OUT

SYNC

Res-erved

Res-erved

Res-erved

Res-erved

Res-erved

Res-erved

Res-erved

Res-e

v

d

AC97 C

r

AC97 C

r

AC97 C

r

AC97 Ctrl

R

h Data

L C

 Data

Status Data

Status Addr

Tag

Res-erved

Res

erved

R

s

erved

es-e

ved

Re

-erved

Res-erved

Res-erved

Res-erved

R Ch Data

L Ch Data

Ctrl Data

Ctrl Addr

Tag

12

11

10

9

8

7

6

5

4

3

2

1

0

OPB Slave Attachment

AC97 Ctrl

Audio Controller Wrapper

FPGA				

		 Bit_Clk OPB_Clk

		(12.288MHz) (50MHz)

Sdata_Out

Bit_Clk

Sync

Sdata_In

LSB

MSB

wr_err

bit [3]

data_count

bits [26:31]

unused (padded to ‘0’s)

bits [4:25]

rd_err

bit [2]

full

bit [1]

empty

bit [0]

� http://www.vocalvillage.net/

� The Codec’s data sheet can be found at � HYPERLINK "http://cache.national.com/ds/LM/LM4549A.pdf" ��http://cache.national.com/ds/LM/LM4549A.pdf�, which also describes the AC97 data format.

� See the “Designing Custom OPB Slave Peripherals for MicroBlaze” tutorial at � HYPERLINK "http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/opb_tutorial.pdf" ��http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/opb_tutorial.pdf�

� � HYPERLINK "http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf" ��http://www.xilinx.com/ipcenter/catalog/logicore/docs/async_fifo.pdf�

� � HYPERLINK "http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf" ��http://www.xilinx.com/ipcenter/catalog/logicore/docs/sync_fifo.pdf�

� � HYPERLINK "http://www.xilinx.com/ise/verification/chipscope_pro_um.pdf" ��http://www.xilinx.com/ise/verification/chipscope_pro_um.pdf�

� Cores are taken from zbt_test.tar.zip example available from the course example archive.

� http://savannah.nongnu.org/projects/lwip/

� http://www.unusualresearch.com/tinytcp/tinytcp.htm

� http://www.xilinx.com/xapp/xapp663.pdf

� Stefan Nilsson, Frederik Schmid and Jimmie Wiklander, “An lwIP implementation for Microblaze”, http://jota.sm.luth.se/~petmag-8/smd153/projekt/rapporter/lwip_report.pdf

� Please refer to EST guide, Chapter “Microprocessor Library Definition”.

� These functions modify functions from the xapp663 and the implementation made by Stefan Nilsson et al.

� http://www.lightspawn.org/articles/72.html

� For details on the Ethernet Protocol, see “Ethernet Protocol” section of the Ethernet Media Access Controller datasheet.

� � HYPERLINK "http://ccrma-www.stanford.edu/CCRMA/Courses/422/projects/WaveFormat" ��http://ccrma-www.stanford.edu/CCRMA/Courses/422/projects/WaveFormat�

� � HYPERLINK "http://www.xilinx.com/ipcenter/catalog/logicore/docs/twos_comp.pdf" ��http://www.xilinx.com/ipcenter/catalog/logicore/docs/twos_comp.pdf�

_1143114385.vsd

