Integrating High-Level Synthesis into MPI

Andrew W. H. House*, Manuel Saldafia’ and Paul Chow*
*Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto, Toronto, ON, Canada M5S 3G4
{ahouse, pc}@eecg.toronto.edu
tArchES Computing Systems, Toronto, Canada
ms@archescomputing.com

Abstract

In this paper, we investigate how easily we can port existing HPC appli-
cations that use MPI to run on HPRC systems, using three commercial high-
level synthesis tools in conjunction with the ArchES-MPI software/hardware
communication layer. Specifically, we examine how each tool interfaces with
our existing message-passing hardware, and we present a sample application
that illustrates how the interface can be used.

Keywords

FPGA; high-level synthesis; MPI; programming models; parallel program-
ming; reconfigurable computing; HPRC;

1. Introduction

High-performance reconfigurable computing (HPRC) sys-
tems using multiple FPGAs are becoming more common, but
a standard programming model has yet to emerge. It would be
desirable to simply take existing high-performance computing
(HPC) applications and map them automatically to hardware,
but current C-based high-level synthesis (HLS) tools lack
support for the features software programmers rely on to build
highly-parallel HPC applications, such as Message Passing
Interface (MPI) libraries [1] for inter-process communication.

HLS tools intended for HPRC applications (such as
Impulse-C [2]) address this problem by providing vendor-
specific APIs for communication with host processors or other
platform-specific resources. This allows the host processor
to manage system-wide communication via MPI, while the
hardware accelerator is implemented separately. Our previous
work on TMD-MPI [3], [4] attempts to remove this separation
between programming models by providing an implementation
of MPI intended for HPRC software and hardware.

Since our desire is to map existing software HPC applica-
tions to HPRC systems, we are most interested in how closely
existing HLS tools can use software-like application code,
and—more importantly—how easily they can be interfaced
with our existing ArchES-MPI platform (a more advanced
version of our previous work on TMD-MPI). To that end, this
paper provides a case study showing how well three current

We acknowledge the CMC/SOCRN, NSERC and Xilinx for the hardware, tools
and funding provided for this project, and AutoESL and Impulse Acclerated
Technologies for providing evaluation licenses for their tools.

C-to-gates HLS tools (Forte Cynthesizer [5],Impulse Acceler-
ated Technologies’ Impulse-C [2], AutoESL’s AutoPilot [6])
interface with our ArchES-MPI environment.

2. Background and Related Work

Tools such as Auto-Pipe (and its associated X language)
[7] or SCF [8] provide new frameworks for heterogeneous
application development by allowing the definition of data flow
between tasks, and then mapping each task to one or more
specific implementations on a particular target platform. This
facilitates design exploration, but existing HPC applications
would have to be extensively redesigned to work in these
environments. In this context, we thus maintain our focus on
using MPI as the communication model, and interfacing that
model (via ArchES-MPI) with C-based HLS tools.

While interest in C-to-gates HLS tools is high, little has
been published regarding existing commercial tools. A number
of qualitative comparisons can be found online, such as the
comprehensive evaluation presented in [9] wherein 10 different
C-based HLS tools are compared and evaluated against a small
benchmark set. Among the conclusions reached in that study
was that I/O interfaces were a major limiting factor in ease-
of-use.

In [10], three disparate high level programming models
(Mitrion-C, Impulse-C, and DSPLogic) were compared on the
Cray XD1 in an explicit HPRC context. They were evaluated
empirically to quantify ease-of-use and efficiency of results,
but in this scenario each language had a platform-specific
API to interface with the XD1, and so the results are not
directly applicable to our work here. Unlike these previous
comparisons of HLS tools, our interest is not in comparing
the tools in general, but rather evaluating how well they can
interface with other hardware components and how effectively
they can integrate the use of the ArchES-MPI communication
layer.

3. The ArchES-MPI Platform

This section provides a brief overview of our previous
work on ArchES-MPI [4]. ArchES-MPI was developed to
provide a well-known programming model for specifying and
developing HPRC applications by adopting MPI [1], one of
the most popular and effective standards in HPC.

to/from On-Chip
Network

Command o
FIFOs L 128-bit wide

(72-bit + 1 = Data

Control bit) T FIFOs

Hardware Engine
(HW)

Fig. 1.
(MPE)

FIFO Interface of the Message Passing Engine

The current ArchES-MPI design flow involves software pro-
totyping of a parallelized application, profiling the prototype
on the target system, and then replacing selected software
processes with custom hardware compute engines. These
hardware engines are designed using traditional hardware
design flows based around VHDL or Verilog, and this is the
bottleneck in the design flow. The use of C-based HLS tools
with our HPRC MPI layer would bring us closer to the desired
goal of automatic retargeting of existing HPC applications.

ArchES-MPI implements a small subset of the MPI stan-
dard that provides a robust communication infrastructure. The
core of its functionality is implemented as a packet-switched
network used to transmit messages between processes. This
network can connect multiple hardware and software processes
within a single FPGA, across multiple FPGAs, on attached
CPUs, or on another node in a higher-level network. The
ArchES-MPI network encapsulates this information, so the
routing of messages is transparent to the application program-
mer.

Thus, ArchES-MPI is applicable to all of the HPRC ar-
chitectures we discussed in [11]. It can work in acclerated
multiprocessor systems where CPUs have accelerator FP-
GAs connected via PCI or Ethernet, multi-FPGA application-
specific reconfigurable multiprocessor systems such as the
BEE3 [12], and heterogeneous peer multiprocessor systems
such as those made possible by the Intel Xeon FSB FPGA
socket fillers [13] from Nallatech.

Processors (hard or soft) access the communication layer via
a software library; hardware compute engines connect to the
network by a standardized interface to a hardware Message-
Passing Engine (MPE). The MPE is a pre-designed hardware
block used by compute engines that implements the protocols
necessary to interface with the ArchES-MPI network. The
compute engines talk to the MPE using one of the most
common hardware interface abstractions: the FIFO.

The MPE interface consists of four FIFOs, split into Com-
mand and Data input/output pairs, as illustrated in Figure 1.
Message transactions are initiated by writing commands to the
Command FIFOs; data is read and written via the Data FIFOs.
This split facilitates pipelining and stream processing by
allowing hardware to overlap communication and processing,
but does depart from a strict adherence to the software MPI
model, which uses buffers to transfer data.

sc_bv<128> hwEngine : : MPE_READ()

sc_bv<128> din;
{
CYN_PROTOCOL(” stream_recv”);
while (!data_in_exists.read()) {
wait (1);

cmd_in_read = 0;
cmd_out_control = 0;
cmd_out_write = 0;
data_out_control = 0;
data_out_write = 0;

din = data_in_data.read();
data_in_read = 1;

wait (1);
data_in_read=0;

return din;

}

Fig. 2. Method to read from Data FIFOs in Cynthesizer

4. Interfacing With the MPE

The use of ArchES-MPI and the MPE allows for a stan-
dardized approach for system-level communication. While we
do not expect to match software MPI calls exactly due to
the streaming nature of the MPE, we would like to attain
a similar interface in the HLS tools under consideration
(Cynthesizer, Impulse-C, and AutoPilot) to ensure familiarity
for MPI programmers.

Note that we are investigating this interface in the context
of translating an existing MPI-based software process into
a hardware engine, not as an approach for designing whole
applications. This is meant to be the last step of the ArchES-
MPI design flow, not the first, and thus the scope of our interest
is quite limited.

4.1. Forte Cynthesizer (SystemC)

Forte Design Systems’ Cynthesizer tool uses SystemC as its
input language, and requires that users divide the application
into protocol sections (timed, cycle-accurate descriptions of
operations on input and output ports) and untimed data pro-
cessing sections. Directives can be used in the data processing
sections to suggest synthesis approaches such as pipelining,
loop unrolling, or array flattening. It also supports a bit vector
data type that is easy to cast to computational types, and
thus a single set of non-overloaded function calls can provide
an effective API, since Cynthesizer (unlike the other tools)
supports synthesis of nested function calls.

Interfacing with FIFOs in Cynthesizer is relatively simple,
as SystemC can describe the port interface and protocols
exactly. This interface is controlled by a cycle-accurate state
machine, but the C-like syntax allows for a simpler imple-
mentation than conventional HDLs. This state machine can be
divided into smaller, task-specific state machines that are en-
capsulated in SystemC functions, as shown in Figure 2. Calls
to those functions can be embedded in the data processing

#define READ_DATA WORD(data ,rc)
rc = co_stream_read (strm_mpeData_to_host, \
&(data),sizeof (data))

#define WRITE_DATA WORD(data)
co_stream_write (strm_host_to_mpeData , \
&(data),sizeof (data));

#define READ_DATA_WORD(dw) \
dw=«xmpeData_to_host;

#define WRITE_DATA_WORD (dw) \
«host_to_mpeData = (dw);

Fig. 3. Macros reading/writing data FIFO in Impulse-C

section, and Cynthesizer generates the master state machine
that controls the MPE.

4.2. Impulse-C

Impulse Accelerated Technologies” Impulse-C is aimed at
the HPRC market, with a focus on implementing algorithms.
While largely similar to ANSI C/C++, it also provides its
own libraries defining arbitrary-precision data types, type
conversions, and other non-standard constructs. Directives can
also be used to guide optimization.

Impulse-C also include an abstraction for streams: commu-
nication channels that must be opened before use, and closed
when finished. Streams are read and written via explicit calls
to library methods. These streams are mapped onto FIFOs in
the target technology in a section of configuration code. We
can implement the MPE interface by defining streams of the
appropriate sizes to replicate the MPE FIFO interface. These
streams can be hidden behind macros, as shown in Figure 3,
to provide a software-like interface.

4.3. AutoPilot

AutoESL’s AutoPilot targets system-level design. An Au-
toPilot C/C++ program closely resembles ANSI C/C++, albeit
with limitations on how pointers can be used. It also provides
tool-specific libraries for arbitrary-precision arithmetic as well
as optimization directives. However, information such as target
technology and all structural elements are contained in a
separate file.

The interface to the MPE is defined in the program as a
set of four pointers to variables of appropriate size, and then
those pointer names are mapped to FIFOs. Writing or reading
the FIFO in the program is then implemented as writing or
reading from a pointer to a variable. This can be seen in the
read/write macros shown in Figure 4. These macro calls to the
MPE interface hide the pointer notation, providing an interface
that looks similar to MPI software calls. As with Impulse-C
and Cynthesizer, type conversion can be complicated and is
non-standard.

5. Vector Accumulator Example

To evaluate the effectiveness of our interfaces, we imple-
mented a simple vector accumulator application. The vec-
tor accumulator hardware compute engine works by waiting
until a message is received and using the message tag to

Fig. 4. Macros for reading/writing data FIFO in AutoPilot

sc_bv<22> actualSize = MPE_RECV_INIT(”00000000”,
”0000000000000001100100”, MPI_ANY_TAG);

else if (receivedTag.range(2,0) == C_ACC_OPCODE)

{
sc_uint <32> d0, dl, d2, d3, a0, al, a2, a3;
sc_bv<128> acc;
for (int i = 0; i < receivedVectorSize/4; i++)

CYN_INITIATE (CONSERVATIVE, 4, pipe);

din = MPE_READ();

d0 = din.range (31,0).to_uint ();

acc = accumulator[i];
a0 = acc.range(31,0).to_uint ();

a0 += doO;

acc = ((static_cast< sc_bv<32> > (a3)),
(static_cast< sc_bv<32> > (a2)),
(static_cast< sc_bv<32> > (al)),
(static_cast< sc_bv<32> > (a0)));

accumulator[i] = acc;

Fig. 5. Cynthesizer code sample for integer vector accu-
mulator (floating point unsupported)

determine which operation is being requested: load, store,
accumulate, and so on. After decoding the requested operation,
the hardware engine executes it, which may include initiating
additional message send or receive transactions to move data,
or performing the accumulation computations.

As can be seen from the code listings in Figures 5, 6, and
7, the computational code for each tool looks very similar
when the MPI layer is in place. Each of the tools also infers
FPGA on-chip memories from arrays. The main differences
are in how each tool handles its respective data types and
optimization directives, but all three versions of the computa-
tional code are quite understandable to users with knowledge
of ANSI C/C++. More comprehensive code samples can be
found in our poster [14].

6. Conclusion

The C-based HLS tools we looked at in this paper have
many similarities: libraries for arbitrary and fixed precision
arithmetic, memory inference from arrays, optimization direc-
tives, and some means of external interface. Unfortunately,
there are significant differences in these shared features that
make porting programmer experience and code to different
systems problematic. Likewise, since these tools all aim at

MPI_RECV (MAX_VECTOR_SIZE, 0 ,MPI_ANY_TAG,
rxX_src ,rx_count ,rx_tag);

else if ((rx_tag & C_OPCODE MASK) == C_ACC_OPCODE)

co_float d0, d1, d2,
co_uintl28 accl28;
// accumulate

for (i=0; i<rx_count/4;

d3, a0, al, a2, a3;

i++)

#pragma CO PIPELINE
READ_DATA_WORD(data_wd ,rc);

d0 = to_float((co_uint32)
co_bit_extract128_u(data_wd, 0, 32));

accl28 = accumulator[i];

a0 = to_float((co_uint32)
co_bit_extractl128_u(accl28, 0, 32));

a0 += dO;

accl28 = (co_uintl28)float_bits (al);

accl28 |= ((co_uint128)float_bits(al) << 32);

accumulator[i] = accl28;

Fig. 6. Impulse-C code sample for vector accumulator

MPI_RECV (MAX_VECTOR_SIZE, 0 ,MPI_ANY_TAG,
rX_src ,rx_count ,rx_tag);

else if ((rx_tag & C_OPCODE MASK) == C_ACC_OPCODE)

uintl128 data_wd, accl28;
fp_int_t dO, dl1, d2, d3, a0, al, a2, a3;

for (i=0;
{

i<rx_count/4; i++)

#pragma AUTOPILOT pipeline II=1
READ_DATA_WORD(data_wd);

d0.u = apint_get_range (data_wd, 31, 0);
accl28 = accumulator[i];

a0.u = apint_get_range (accl28, 31, 0);
a0.fp += dO.fp;
accl28 = 0;

acc128 |= apint_set_range (accl28,31,0,a0.u);

accumulator[i] = accl28;

Fig. 7. AutoPilot code sample for vector accumulator

different markets, each has some unique features not available
in the others (such as floating point support, board support
packages, or synthesis of nested function calls) that further
emphasize their differences.

However, as we showed in the vector accumulator example,
the use of the ArchES-MPI hardware communication layer

with these HLS languages smooths over many of the major
differences. If users can be isolated from the details of the
HLS system in this way, it can make the use of the HLS tools
more attractive for HPRC applications.

The HLS tools could further facilitate this integration with
MPI by adopting a standardized representation for arbitrary-
and fixed-precision data types and type conversions, and
supporting a standard “bit vector’-style data type. Much of
the difficulty in interfacing the tools with the MPE came from
navigating their individual type systems, and most of the code
differences in the sample implementations are related to this. A
standardized data representation would simplify the integration
details, and make it easier for the ArchES-MPI platform to
hide the communication differences and for users to write their
HPRC applications.

References

[11 MPI: A Message-Passing Interface Standard, Message Passing
Interface Forum Std., Rev. 2.2, 4 September 2009. [Online]. Available:
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

[2] D. Pellerin and S. Thibault, Practical FPGA Programming in C.
Prentice Hall, 2005.

[3] M. Saldaia and P. Chow, “TMD-MPI: An MPI implementation for
multiple processors across multiple FPGAs,” in IEEE International
Conference on Field-Programmable Logic and Applications (FPL 2006),
August 2006, pp. 329-334.

[4] M. Saldaia, A. Patel, C. Madill, D. Nunes, D. Wang, H. Styles,
A. Putnam, R. Wittig, and P. Chow, “MPI as an abstraction for software-
hardware interaction for HPRCs,” in Second International Workshop on
High-Performance Reconfigurable Computing Technology and Applica-
tions (HPRCTA) 2008. 1EEE, 16 November 2008.

[5] M. Meredith, High-Level SystemC Synthesis with Forte’s Cynthesizer.
Springer Netherlands, 2008, ch. 5, pp. 75-97.

[6] AutoESL Design Technologies, Inc, “AutoPilot High-Level Synthesis,”
2009. [Online]. Available: http://www.autoesl.com/images/stories/
datasheets/autopilot_datasheet.pdf

[71 M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley, and J. Maschmeyer,
“Auto-Pipe and the X language: A pipeline design tool and description
langauge,” in 20th International Parallel and Distributed Processing
Symposium, 2006 (IPDPS 2006), 25-29 April 2006.

[8] V. Aggarwal, R. Garcia, G. Stitt, A. George, and H. Lam, “SCF:
A device- and language-independent task coordination framework for
reconfigurable, heterogeneous systems,” in HPRCTA ’09: Proceedings of
the Third International Workshop on High-Performance Reconfigurable
Computing Technology and Applications. ACM, 2009, pp. 19-28.

[9] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, and
A. D. George, “Survey of C-based application mapping tools for
reconfigurable computing,” Presented at the 2005 MAPLD International
Conference, 7-9 September 2005, Washington, D.C. [Online]. Available:
http://klabs.org/mapld05/presento/215_holland_p.ppt

[10] E. El-Araby, M. Taher, M. Abouellail, T. EI-Ghazawi, and G. B. Newby,
“Comparative analysis of high level programming for reconfigurable
computers: Methodology and empirical study,” in 3rd Southern Con-
ference on Programmable Logic (SPL’07), February 2007, pp. 99-106.

[11] A. W. H. House and P. Chow, “Investigation of programming models for
emerging FPGA-based high performance computing systems,” in Pro-
ceedings of FCCM 2008, the IEEE Symposium on Field-Programmable
Custom Computing Machines, 2008.

[12] J. D. Davis, C. P. Thacker, and C. Chang, “BEE3: Revitalizing computer
architecture research,” Microsoft Research, TechReport MSR-TR-2009-
45, 1 April 2009. [Online]. Available: http://research.microsoft.com/
pubs/80369/BEE3_TechReport.pdf

[13] “Intel Xeon FSB FPGA accelerator mod-
ule” [Online]. Available: http://www.nallatech.com/index.php/
Intel- Xeon-FSB-Socket-Fillers/fsb-development-systems.html

[14] A. W. H. House, M. Saldafia, and P. Chow, “Integrating high-level
synthesis into MPIL,” poster, May 2010. [Online]. Available: http://www.
eecg.toronto.edu/~pc/research/publications/house.fccm2010.poster.pdf

