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We present techniques for eliminating dispatch overhead in a virtual machine interpreter
using a lightweight just-in-time native-code compilation. In the context of the Tcl VM, we
convert bytecodes to native code, by concatenating the native instructions used by the VM
to implement each bytecode instruction. We thus eliminate the dispatch loop. Furthermore,
immediate arguments of bytecode instructions are substituted into the native code using run-
time specialization. Native code output from C compiler is not amenable to relocation by
copying; fix-up of the code is required for correct execution. Resulting code size increase is
apparently impractical. We evaluate performance using hardware performance counters and
system simulation. Some benchmarks achieve up to 50% speedup, but roughly half slow down,
or exhibit little change. Most slowdown is attributable to I-cache overflow due to increased

code size, and increased compilation time. Larger I-caches broaden applicability of technique.
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Chapter 1

Introduction

Many portable high level languages are implemented using virtual machines. Examples include
UCSD Pascal, Smalltalk, Forth, Java, and also scripting languages Tcl, Perl, and Python. A
compiler translates the language to code for some virtual machine, which then interprets the
code. The virtual machine may provide intimate linkage with a high-level run-time system that
is more sophisticated than a typical general purpose hardware machine — for example, it may
provide garbage collection, object systems, and other services. However, one penalty of the
virtual machine approach is lost performance. Because the virtual machine code is interpreted,
it runs slower — sometimes much slower — than native code.

The efforts to address this performance problem can be divided into two main camps.
Sophisticated techniques can make the process of interpretation faster. Alternatively, compilers
can translate the virtual machine code into native code, and execute that directly. Just-in-time
(JIT) compilers make this translation at run-time. Avoiding a separate, slow, static compilation
step means that a JIT compiler can be a drop-in replacement for an interpreter, preserving the
interactive work modalities of a virtual machine system, especially important for scripting.

Unfortunately, a JIT compiler is typically larger and more complex than the virtual machine
itself. It is large because it involves much of the complexity of a traditional static compiler,
and, in addition, must deal with the complexities of compiling, linking, and loading code in a
system process which is already running. Furthermore, it must not have a large start-up time,

and must generate code quickly, so that the user of an application does not observe substantial
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delay at the beginning of, or during, program execution. Finally, it must generate code whose
performance exceeds the interpreted version by a margin that is large enough to amortize the

cost of compilation. All these factors mean extensive effort is required to develop a JIT.

1.1 Contributions

Our main contribution is two light-weight compiler techniques for translating bytecode for a
virtual machine interpreter into native code. We refer to the first technique as catenation, and
the second as operand specialization. Catenation eliminates the overhead of instruction dispatch
in the virtual machine, while specialization decreases the overhead of operand fetch.

We apply our technique to the widely-used Tecl scripting language. Tcl already has a system
to compile scripts to bytecodes on the fly, and then interpret them. While this compiler improves
performance significantly, many Tcl applications still demand more speed. A native compilation
step is a natural solution. The programming effort required in our approach is substantially
less than a full-blown JIT compiler, but can still improve performance.

We built a system which employs catenation and specialization in a native code compiler
for the Tcl virtual machine. Our compiler plays the role of a JIT, but with lower cost. It is
simpler to develop, eschewing expensive optimizations and reusing code from the interpreter,
which also reduces semantic errors. It compiles very quickly, working with fixed-size native code
templates, and precomputes as much information as possible about these templates to further
reduce delays. This speed is important to retaining the very short interactive edit-run cycle
that motivated a JIT in the first place, instead of static compilation. We also apply a form
of specialization to the catenated code. Such code is uniquely suited to operand specializa-
tion, because catenation yields a distinct, non-generic sequence of native code for each virtual
instruction in the source bytecode program.

A second contribution of our work is an implemetation technique to synthesize these tem-
plates directly from the code for the existing interpreter, suitably manipulated by the C compiler
and various object-code post-processing steps. This approach decreases programmer effort and

semantic errors by reusing code.



CHAPTER 1. INTRODUCTION 3

1.2 Overview of Results

We show that our techniques meet many of their goals, including simplicity, semantic correctness
of interpretation, and high compilation speed. They successfully eliminate dispatch overhead,
and, together with operand specialization, this yields fairly consistent reduction in instruction
counts for a given workload. Our experimental evaluation using 520 benchmarks show that, for
workloads that have small kernels, we reduce execution time, sometimes substantially (up to
60% improvement.)

However, the process of catenation necessarily leads to code expansion. On a modern
computer architecture, catenation grows the working set of many benchmarks beyond the size
of typical instruction caches. While moderate cache size increases improve the advantage of
our techniques, unrealistically generous caches are required to accelerate all benchmarks. Still,
we believe each of our techniques has promise as part of more sophisticated JIT compilers. We
study six benchmarks in detail to understand the effect of our code-expanding transformation

on instruction cache behavior and processor throughput.

1.3 Outline of Thesis

In the next Chapter, we give some background on Tcl, and discuss the performance problems
inherent in its implementation. We briefly describe the bytecode compiler and virtual machine.
We compare the various classical strategies for instruction dispatch in virtual machines. In
Chapter 3, we give a detailed description of catenation and specialization, our lightweight
compilation techniques for VM interpreters, and in Chapter 4, show how to implement the
techniques efficiently. Chapter 4 also describes how to reuse code from the interpreter to yield
the required native-code templates, including the many details that arise when code from the
compiler is copied, and moved, in ways not intended by the compiler or the ABI (application
binary interface.) Chapter 5 discusses our experiments and empirical results. We continue in
Chapter 6 with some related work in the field of virtual machine implementation, and in our
concluding Chapter 7, we summarize our findings and discuss how the work might be extended

to realize a full-blown JIT compiler.



Chapter 2

Background

This chapter covers background material helpful in understanding the rest of this thesis. We
give an overview of Scripting languages in general, and Tcl in particular, including its bytecode
compiler and virtual machine. In this context, we discuss more generally stack machines and

virtual machine dispatch strategies.

2.1 Scripting languages

Our language of interest is Tcl. Tcl is a scripting language with over 500,000 users [31]. Other
popular scripting languages are Perl [42] and Python [21]. All three are implemented with
virtual machines. Scripting languages are popular because they are expressive at a high-level,
provide dynamically-typed variables, have rich built-in standard libraries and data types, and
are extensible. This last point is particularly important—many contemporary programming
tasks consist of reusing existing software components, and/or integrating existing large software
systems. For example, interfacing a web serving application to a database requires exactly this
kind of integration. But reuse and integration require glue, that is, small components to abstract
(wrap) and connect the larger components in a system, customize and configure them, and drive

them with logic. This is called scripting.

Another advantage of scripting is portability, with resulting advantages in ease of deploy-

ment. Since they are high level, and implemented with virtual machines, one version of a
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scripting language program (“script”) can run on many different platforms or architectures

without changes.

Scripting languages often increase programmer productivity [34]. Tcl programmers are said
to require one tenth the time to create the same program in Tcl than in C, and the resulting
program will have roughly one tenth as many lines [30]. For this reason, Tcl and other scripting
languages are used for many tasks requiring rapid development, including “business logic”
and other large system configuration and integration, and, especially, software prototyping.
Sometimes, a prototype results in software of sufficiently high quality that there is no need
to re-implement it in a more traditional language. There are many very large production Tcl
programs that either grew out of such prototypes, or that otherwise use Tcl for business logic,
integration, configuration, embedded scripting, or some other reason. deployed [31]. These
include AOL’s Digital City, which uses Tcl for dynamic web content. Many companies use Tcl
for automation of testing, including Cisco, to test its routers; Cygnus, to run regression tests
on the GNU debugger (gdb) and other developer tools; and NBC, to automate digital video in
its broadcast studios [28].

Performance is the main obstacle to creating entire applications in scripting languages. A
secondary problem is structure. Large software projects demand some structure, or else they
become unmaintainable. By permitting and even encouraging unstructured software architec-
ture, scripting code can be inappropriate for large systems. Although most scripting languages
provide facilities to create highly structured programs, if desired, performance is not easily
improved, because the virtual machine is slow. Many Tcl users have said speed is the biggest

obstacle to using Tcl for more applications [29].

2.2 Improving Performance

The typical approach to improve performance is to recode critical parts of the program in C,
and link them with the interpreter, so they can be called from scripts. This is effective, but loses
some of the advantages of scripting—portability, deploy-ability, and programmer productivity.

The scripting languages have turned out to be full-featured general purpose languages, and
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Tcl bytepode JIT Compiler > Native machine
compiler code

Tcl source

Figure 2.1: JIT compiler will use the output of the existing bytecode compiler

their users want to use them as such. Ideally, they could use the language directly, but extract
better performance from the code.

One obvious way to improve performance is to compile to native code, instead of a virtual
machine interpreter. It is possible to statically compile offline, and deploy the application
already compiled. This is useful, but we strongly believe that JIT techniques, which compile
only at run-time, are most appropriate for scripting languages. First of all, Tcl and other
scripting languages have a dynamic nature, including many constructs, such as eval, which
can create and invoke code on the fly. If such code is to execute natively, run-time compilation
is required. Second, one of the key reasons for the high programmer productivity observed with
scripting languages is the short edit-run cycle. This is in contrast to a longer edit-compile-debug-
run cycle in traditional languages. Compiling automatically at run-time, when the script is run
with its interpreter, retains the shorter edit-run cycle. The run-time JIT overhead is spread over
execution time, because each program procedure is compiled as needed before execution, thus
preserving rapid start-up time. Finally, scripting languages’ high deployability is compromised
if separate binaries must be released for every target architecture. Instead, strong portability
is retained when the virtual machine on the target system is responsible for the native-code
compilation step.

A native JIT compiler might start from the high level source, or it might start from the
bytecode emitted by the existing bytecode compiler. The existing source-to-bytecode compiler
provides a suitable front-end for the JIT. Furthermore, some Tcl modules are distributed only
as bytecodes. So our system starts with these to produce native code, as shown in Figure 2.1.

Our techniques occupy a new design point in the continuum between simple interpretation
and optimizing JIT compilers. As we shall discuss in Section 2.6, there are many other points

in between, representing varying sophistication in interpretation, optimizing and dynamic JIT
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compilation, and multi-mode execution. Our technique lies just at the boundary between
interpretation and native code execution. We execute native code, but it is substantially the

same native code executed during traditional interpretation.

2.3 Language Fundamentals of Tcl

Tcl was invented in 1988 by Dr’ John Ousterhout, then a professor at U. C. Berkeley. It was
originally conceived as an “embeddable” command language. Many large computer software
systems require some sort of “command” or “scripting” language, and these often end up being
idiosyncratic, and mutually incompatible. The idea of Tcl was to provide a re-usable language
component that could easily be integrated into existing applications, and connected to their

existing libraries.

As such, Tcl’s main strengths are that it is very easy to integrate into large existing ap-
plications, and very good as a “glue” language to bind together two (or more) systems with
disparate APIs. However, as it matured, many of its hundreds of thousands [31] of users came
to use Tcl as a programming language in its own right. As such, there exists some demand
to increase the run time performance of Tcl. Because of its popularity in the embedded sys-
tems and digital design communities, there have even been attempts to execute Tcl bytecodes
in FPGA hardware [40] to achieve the ultimate performance. But most users will not have
access to special-purpose hardware, and require a software solution; native-code compilation is
a natural fit. Before we present our ideas on how to do this, we give some background on Tcl
syntax, philosophy, implementation, and performance.

Tecl is, by design, very easy to extend Tcl with C code, and this ameliorates some perfor-
mance constraints. This ease has led to a wide variety of extensions available for Tcl, which
provide access to many existing C libraries in a way that promotes automation, code re-use,
and high performance. For instance, the powerful Expect extension [19] allows programs with
interactive text user interfaces to be scripted by watching for patterns from and sending com-
mands to a pseudo-tty (pty) connected to the application. It has found wide application in the

software testing domain, forming the basis for Cisco Systems’s 1 million line IOS test suite, and
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puts "Hello World"

Figure 2.2: Canonical first program in Tcl

# compute n!, i.e. factorial function

proc factorial {n} {
set fact 1
while {$n > 1} {
set fact [expr {$fact * $n}]
incr n —1

return $fact

Figure 2.3: Tcl proc to compute factorial function

the DejaGNUs test suite used by the GNU C compiler gcc and debugger gdb.

Another popular Tcl extension is Tk, a high-level binding onto X1ib, the client library for
the MIT X11 Window GUI. It enables creating graphical user interfaces in just a few lines of
Tcl code. Tcl and Tk both run on Microsoft Windows and MacOS, in addition to almost all
Unix variants.

The Tcl language is used to script the primitives and objects in these various extension
systems, and create interfaces between them. In the next section, we provide a brief overview

of the core language itself.

2.3.1 Tcl Fundamentals

Figure 2.2 shows a simple program to print the string Hello World to standard output. The
puts command takes an argument and sends it to standard output. The quotes around the
string are necessary because the string contains a space, which would otherwise indicate multiple
arguments to the command. That would be an error, because puts takes only one argument.
Figure 2.3 is a slightly more interesting program, to compute the factorial function. It
demonstrates most of the other the syntactic elements of Tcl. Line 1 begins with a # character,
which indicates a comment — anything up until the end of the line is ignored. Line 3 begins
a proc — that is, a procedure or function. A proc definition needs three things: a name

(factorial); a list of formal parameters ({n}); and a body (Lines 4 - 10.) The body is just
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regular Tcl code, which, while spread over multiple lines, is grouped together into a single
argument by the {} characters.

Line 4 is the first line of the body of the proc; it contains a command. A command in Tcl is
similar to one in the Unix Bourne shell [16]—it consists of the name of the command, set, and
zero or more arguments. In this case, there are two arguments—fact and 1. The command,
and each of the arguments, are separated by white space. The command, the arguments, and
indeed, everything else in Tcl, are simple strings. The semantics of Tcl are that everything is a
string, and until Tcl 8.0 the internal implementation actually worked entirely with strings [18].
This command/arguments format is the extent of Tcl’s syntax; there is no grammar.

The set command on Line 4 sets the value of a local variable, named fact, to 1. There are
two kinds of scope in Tcl, global and local. Variables in procedures are local by default unless
declared otherwise. There is no nested or block scope, although namespaces, while semantically
much like globals, allow variables to be grouped in separate naming scopes.

Line 5 begins a while command; while is a control flow construct, as in other languages.
However, in Tcl, its syntax is a command like any other. It takes two arguments, a condition
and a body of code. It repeatedly evaluates the condition, and, while it is true, evaluates the
body of code. The code is a just a string. Because the string contains white space and other
special characters, it is grouped into a single argument using curly braces.

The condition in this example is $n > 1. The $ in $n signifies variable dereference. That
is, “value contained in the variable named n.” However, there isn’t any dereference occurring;
everything in Tcl is a string, and all the semantics involve simple substitutions. The string $n
> 1 becomes, e.g., 5 > 1, if the value of the variable n is 5. Then, that new string is evaluated.

The substitution-oriented parsing of Tcl consists of a few basic elements:

e {} suppresses all substitution, and groups a string containing white space into a single

string, instead of splitting it up into separate strings.

e \ quotes a special character. E.g. puts "Here is a curly brace: \{"

e $ substitutes the name of a variable with its value
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e "" are like {}, in that they group strings containing white space. However, it does allow
for all other kinds of substitution. e.g.

puts "The value of the variable x is $x"
e newlines and semicolons end statements. e.g. puts "Hello"; puts "World"

e [] essentially causes function call. The string inside the [] is evaluated as a Tcl script, and
the result of the script is substituted for the [script]. We see this syntax on Lines 6 and

12 of our example in Figure 2.3.

Line 6 uses the command expr. In a more conventional programming language, this line
might be written fact := fact * n. But Tcl’s native semantics don’t include any special
provision for arithmetic! Instead, math is implemented with only commands and arguments.
The expr command knows how to do math—that is, to evaluate arithmetic expressions. Its
evaluator also does a second round of substitution, using all the normal Tcl parser substitution
rules.

On Line 7, the incr command takes two arguments, the name of a variable and an integer.
It increments the value of the variable by the integer. If either of its arguments do not meet
these requirements, the interpreter generates an error.

On Line 9, the return statement stops execution of the procedure, and, optionally, returns
a result to the caller.

Arithmetic in loops can be quite slow in Tcl, because of the need to continuously parse
strings into numbers, and format the results of computations back into strings. While there
exist Tcl extensions to perform advanced arithmetic (e.g. on arbitrary precision values) in C,
the problem remains that if the original Tcl language is used, conversion to and from strings
is required on each invocation of extension routines from Tcl. In the next section, we describe

how Tcl performance issues are not confined to this one problem, and introduce a remedy.

2.3.2 The Need for Better Tcl Performance

Earlier, we described Tk, a Tcl extension for creating graphical user interfaces. While some Tk

programs are not performance sensitive, others require hundreds or thousands of Tcl commands
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to be executed on every movement of the mouse pointer. If these commands are interpreted
too slowly, the GUI becomes unusable. By compiling these to native code, the responsiveness
of the GUI will increase.

Extending Tcl or writing Tcl programs using C creates at least two obstacles. First, even
very carefully written C programs are less portable than Tcl. Furthermore, installing them
requires that a user have a compiler, or install a binary library. So C extensions potentially de-
crease the deploy-ability of Tcl applications. Second, because C is a much lower level language,
programmers take much more time to write C programs than Tcl. Tcl programs are typically
ten times shorter, with a commensurate decrease in programmer effort [32].

Therefore, some demand for better performance of Tcl itself remains. In 1995, Brian Lewis,
in the Tcl group at Sun Microsystems, created a “bytecode” compiler for Tcl version 8.0 [18].
This version was compatible with the semantics of earlier versions, but ran much faster — as
much as 10 times faster. The compiler re-uses some of the Tcl compilation ideas in the work of
Adam Sah, a student of Ousterhout’s at Berkeley, which we discuss with other Related Work
in Chapter 6.

Until recently, little has been done to improve Lewis’s bytecode compiler, or exploit the
opportunities it created. There is now some interest by the Tcl Core Team in improving its
performance, but not compiling to native code, as we will do. Our native code compiler can
allow more code written in Tcl, with less in C, thus improving programmer productivity.

In Tel versions before 8.0, the Tcl interpreter implementation followed these rules as de-
scribed above. In Tcl 8.0 and later, the semantics of the interpreter and compiler are consistent
with these rules. However, the internal implementation works differently, for the sake of perfor-
mance. The implementation is not documented elsewhere, except in the code itself. We provide

some tutorial documentation here, since it is the foundation on which we build our later work.

2.4 The Tcl 8.0 bytecode compiler

There are two serious performance problems with the Tcl interpreter before version 8.0. Im-

plementing everything is a string semantics meant a great deal of copying data, and a lot of
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set x 6

set y 7

set z [expr {$x * $y}]
puts "$x * $y = $z"

Figure 2.4: Objects with numeric values and cached string representation

extra work as strings are parsed and re-parsed, for tokenizing and substitutions. Furthermore,
arithmetic requires lots of extra parsing. For example, the argument to the expr command is a
string. Evaluation of expr {7 * 11 * 13} requires a C sscanf of the ASCII strings 7, 11, and
13, before performing the multiplication, and then an sprintf of the result to another ASCII
string, 1001. Evaluating a loop body or a new procedure meant parsing it repeatedly. Tcl 8.0

addresses these performance problems with two techniques:

e a reference-counted object system, which, for every string in the system, attempts to cache

a typed value, such as an integer. This is known as a dual-ported object system.

e a bytecode compiler and virtual machine interpreter, which avoids repeated re-parsing by

compiling each proc or script into a series of bytecode instructions.

Note that the object system only caches special typed values. Because of Tcl’s everything
is a string semantics, and a large body of C code interfacing with the Tcl interpreter (including
the interpreter itself, and its library), each object must always be able to supply a string
representation of itself on demand. This is why the objects are called dual-ported: each one is
a string and a cached value.

For example, consider the code in Figure 2.4. In Lines 1, 2, and 3, the objects stored in
the variables x, y, and z don’t need any string representation. They are stored as integers, and
do not need to translate from or to strings. However, in Line 4, the puts command demands
a string argument, and so the string version of the objects is generated. This string is cached,
and thus will not need to be re-generated, unless it is invalidated by assigning a new value to
the variable.

There are object types for integers, booleans, floats, Unicode strings (to support inter-

national character sets), procedure bodies, and several other internal objects. Objects are
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reference counted, and automatically deleted when their reference count goes to zero. Objects
have copy-on-write semantics, so they can be shared among many uses. A copy is made only
when a shared object is changed. This avoids most copying for read-only data structures, and
is particularly important for large structures.

The virtual machine is defined and implemented as a stack machine, as we elaborate in the
next subsections. It is implemented in the C programming language. It is bundled together
as part of the same program as the Tcl parser, interpreter, compiler, and runtime, and is thus
a drop-in replacement for the non-compiling interpreter in all previous Tcl versions. We will

maintain this transparent deployment strategy in our native-code compiler.

2.4.1 Stack Machines

The Tcl VM is a stack machine, by which we we mean that the opcodes must refer to data on a
virtual stack of objects. There are no registers. Historically, most bytecoded virtual machines
use a stack. There appear to be two main reasons for this. Most importantly, most instructions’
operands are implicitly the top one or more elements of the stack. No register numbers need to
be stored in the operands of the instruction. Thus the instructions are very compact —often
as little as one byte (hence the name, bytecode). This saves storage and memory bandwidth,
but can also directly improve execution time because instruction decode is faster [7]. Secondly,
it is easy to write compilers for stack machines, because compilation processes (e.g. recursive
descent parsing) often naturally lend themselves to a post-order translation of the source code
expressions or parse tree. Finally, the stack machine is said to be architecturally neutral,
because a register machine would have to choose some finite number of registers, which would
likely be different from the number of registers on a real machine. We do not find this latter
argument convincing, but the other reasons are persuasive.

The cost of a stack machine is limited expressive power. While the stack may be many
objects deep, each instruction can only access the topmost items. In some circumstances, extra
operations are necessary simply to move items around on the stack. Register machines do not
have this problem. Furthermore, especially in virtual machines, the stack operations consume a

small amount of extra time, to maintain the stack pointer. Finally, and perhaps most important
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Command 1: set fact 1

0 pushl O # “17
2 storeScalarl 1 # var “fact”
4 pop
Command 2: while {$n > 1} {
5 loadScalarl 0 # var “n”
7 pushl 0 # “17
9 gt
10  jumpFalsel 16 # pc 26
Command 3: set fact [expr {$fact * $n}]
12 loadScalarl 1 # var “fact”
14  loadScalarl 0 # var “n”
16 mult
17 storeScalarl 1 # var “fact”
19 pop

Command 4: incr n -1
20 incrScalarlImm 0 -1

23  pop
24 jumpl -19 #pch
26  pushl 1 #
28 pop
Command 5: return $fact
29 loadScalarl 1 # var “fact”
31 done

Figure 2.5: Tcl bytecode for factorial function in Figure 2.3

for JIT compilers, the stack code can obscure the flow of data in the program, and thus the
semantics of the code [17]. This happens because the depth of a value on the stack changes
as new values are pushed and popped, and is bound to the temporal ordering of instructions
which may actually be independent of the value. This makes it difficult to determine which
transformations are profitable, or even permissible, thus hampering optimization. Usually, the
stack code must be converted to a three-address register scheme before any optimization. We
don’t do any optimizations in our current design, but discuss them along with other future

work, at the end of the thesis.

2.4.2 Examining Tcl Bytecodes

To better understand the bytecode compiler, let’s consider Figure 2.5, the bytecode produced

for the factorial function in Figure 2.3.
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puts "The factorial of 5 is [factorial 5]"
Command 1: puts "The factor..."

0 pushl O # "puts”

2 pushll # ”The factorial ...”
Command 2: factorial 5

4 pushl 2 # ”factorial”

6 pushl 3 # 75

8 invokeStkl 2
10 concatl 2

12  invokeStkl 2
14 done

Figure 2.6: Bytecode for Tcl source (shown) to exercise factorial function in Figure 2.3. See
text for description. The comments in the code show the literal strings indicated by the small

integer arguments to the push opcode, which are indices into the literal table.

The bytecode compiler compiles any Tcl script into a series of 97 different opcodes. Many
of the opcodes have one or more operands, and also can pop data from or push data to a
stack. Most operands, and the contents of the stack, are both in the form of Tcl objects.
The operands can refer to a table of literal objects built by the compiler. For instance, in the
factorial example, the object for the constant 1 is literal 0. When the compiler is able to
clearly discern a local variable, it generates code to access that variable as a slot in an array
of local Tcl objects. This is a big performance advantage, since otherwise the variable must
be looked up by its string name in a hash table — on every access. The language does allow
for dynamic variable names, which are difficult or impossible for the compiler to ascertain.
These can refer either to indexed variables the compiler did identify in simpler code, or to
new variables unseen during compilation. In either case, the virtual machine can resort to the
slower hash lookup for correct execution. Since most variables are local, this is an important
optimization.

The compiler compiles each proc the first time it is executed. No optimization is performed.

Now let’s look at some less idealized code, to get a sense for the mix of low- and high-level
bytecodes in the Tcl virtual machine.

In Figure 2.4.2 we see two important execution modalities making use of the opcode invokeStk1.
This instruction takes a command and arguments, from separate consecutive items on the top

of the stack, and invokes the command with the arguments. This compiled code is really just
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undertaking interpretation. Worse, if the compiler encounters part of a script which it lacks
patterns to compile, it stuffs the whole thing in a string object, pushes it on top of the stack,
and emits the evalStk opcode, which has to then parse, compile and execute the script at

run-time — a slow interpreter.

invokeStk1 is used here on Line 8, to invoke a procedure call. Many Tcl primitives, such
as set, expr, and while, are compiled into lower-level bytecode. But others, such as puts, and
calls to user-defined procs like factorial, use invokeStkl. From the command object on the
stack, invokeStk1 extracts the address of a C callback function, and calls it. The function has

a signature like this:

int Tcl_PutsObjCmd (ClientData dummy, Tcl_Interp *interp, int objc, Tcl_Obj *const objv []);

A ClientData is just a void *, and is used as a closure in the case where one callback will
be used for many Tcl procs. We'll see an example of this in the next paragraph. The interp
is a pointer to the current Tcl interpreter, which maintains all the state for a running script,
including a stack of call frames, all global variables, all defined procedures, etc. There can be
multiple interpreters active in the same program, and, these can run concurrently in one C
thread, or each interpreter can have its own thread; objc is a count of the number of arguments

for this command, and objv is a vector of the arguments.

In the case of a primitive, such as puts or a library extension, the callback can directly
implement the command. On the other hand, for all user-defined Tcl procs, a single C function
is called, and its ClientData points to a Proc structure, which contains the definition of the
proc. This includes the names and number of formal parameters and other information, and
also the Tcl script body of the proc as an ASCII string, and, if it has been compiled, a ByteCode
object. The C function Tc1l0bjInterpProc() creates a call frame, pushes it on the interpreter’s
stack of call frames, copies all the function arguments to the formal parameters, sets up the
execution environment—including building an array to hold the local variables compiled into

slots by the bytecode compiler, and then recursively calls the virtual machine interpreter.
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tdefine Tcl_IncrRefCount(objPtr) \
++(objPtr)—>refCount

tdefine PUSH_OBJECT (objPtr) \
Tcl_IncrRefCount (*(++tosPtr) = (objPtr))

tdefine POP_OBJECT() (*tosPtr——)

for () {
switch (*pc) {
case INST_DUP:
objPtr = TOS; /* top of stack */
PUSH_OBJECT (objPtr);
pc++;
continue;

case INST_PUSH:

Figure 2.7: Sketch of code implementing Tcl 8 virtual machine dispatch loop

2.5 The Tcl 8 Virtual machine

The bytecode instructions output by the Tcl 8 bytecode compiler are executed using interpre-
tation by the Tcl 8 virtual machine. The virtual machine maintains a virtual program counter,
or pc, which points into the currently executing bytecode. Then, in an infinite loop, it executes
a giant switch statement on the next opcode, as shown in Figure 2.7. The opcode does its
work, likely manipulating program state and the virtual machine stack. Then, it increments
the program counter by the number of bytes used by that instruction. The opcode itself always
takes 1 byte, and then there are 0, 1, or 2 immediate arguments. These arguments may each
be 1 or 4 bytes long. The opcode knows its total length, and it is responsible for incrementing
pc appropriately. Finally, the loop runs again.

The loop exits on a done opcode, or in any of several error conditions. The machine also
maintains the object stack, which consists of a finite size array of pointers to objects, and a
stack pointer, which indicates the top of the stack. The machine requires that any bytecode
submitted for interpretation declares the maximum depth stack it will require. This depth
is calculated by the bytecode compiler, since it is used to allocated the stack in the existing
interpreter. This is determined by the compiler when it creates the bytecode object.

Procedure calls in the virtual machine are implemented using one of the invoke_ or eval_
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opcodes. These opcodes invoke Tcl interpreter functions at the C-level that build Tecl stack
frames, invoke dynamic traces, and ultimately make a recursive native procedure call to the
virtual machine itself, which is, of course, re-entrant. The procedure call process may also
require resolving the name of the Tcl procedure into a Tcl bytecode object, or native C function,

but usually the result of this resolution is cached after the first execution.

There have been various attempts at compiling Tcl, which we discuss in Chapter 6. Our
technique lies somewhere between JIT compiling and interpreting bytecode. Since we don’t
translate the code to generate newly-synthesized native code, we feel we’re best compared to

the various instruction dispatch mechanisms for virtual machine interpreters.

The virtual machine interpreter executes the bytecode instructions one after the other. After
fetching each bytecode, it must transfer CPU control to the native code that implements the
bytecode. Because we want the virtual machine to act as much like a real machine as possible,
we seek to minimize the overhead of this fetch and dispatch cycle. As a result, a significant
number of very low-level (at the assembler or machine code level) programming tricks have
been presented as options for control flow — something we normally take for granted. It turns
out, of course, that for the very best performance, we must resort to machine code, and this
means that the best technique varies from one processor architecture to another. In the next

section, we briefly compare these subtle optimizations in the various dispatch strategies.

2.6 Virtual Machine Dispatch Strategies

The lowest-level and most fundamental job of the virtual machine is to dispatch instructions
in sequence. There are several basic techniques to do this, and we enumerate them in the
next section. They are all semantically equivalent; the differences between each are a matter
of fine-tuning for performance or other criteria. Subsequently, we also discuss more advanced

dispatch techniques.
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2.6.1 Basic dispatch techniques

Function table In this technique, each bytecode has a corresponding C function that im-
plements the bytecode’s semantics. The address of each function can be kept in a table,
indexed by the bytecode number. Alternatively, the bytecode program itself can be stored
using the addresses themselves, instead of the bytecode index. That saves an array lookup.
A C for loop fetches bytecodes, looks up the function, calls it, and repeats. Each byte-
code is responsible for incrementing the virtual program counter, pc, by an appropriate
amount, so that after the bytecode executes, pc is pointing to the next bytecode in the
program. A less compact, but potentially faster form of the code does away with inter-
pretation all together: instead of just storing addresses, the bytecode program is a series

of native call instructions.

switch A large C switch statement has cases for each bytecode. Depending on how the C
compiler generates code for the switch, this often turns out similar to the Function table
approach, but uses a simple indirect jump through a table indexed by bytecode number,
instead of a potentially more expensive procedure call. Here, again, a C for loop is
required. After each case, control jumps over succeeding cases to the bottom of the
switch and for loop, and then back to the head of the for loop. Some C optimizers may
implement branch threading [27] to replace these two jumps with a single jump, from the
end of each case to the top of the for loop. Alternatively, some virtual machines use C

goto statements to hard-code this single jump at the end of each case.

indirect threaded Here again, an indirect jump instruction is used, but now it is placed at the
bottom of each case, instead of at the top of a switch construct. There is a table mapping
each bytecode to the native address at the start of the interpreter code that implements
it. The bytecode is fetched from the program, and the address of its body is looked up
in the table. Finally, we execute a jump to that address. This may be implemented with
assembly language (two loads and an indirect branch), or using C language extensions
that permit computed goto, such as those in gcc: goto table[*pc]. In other words,

instead of jumping to the top of the loop for dispatch, dispatch is the responsibility of
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each instruction. Note, this makes each instruction slightly larger, but saves a branch.

direct threaded This is similar to indirect threaded, combined with the table-bypass refine-
ment mentioned above in function table. The bytecode program is stored using native
addresses for bytecodes, instead of the bytecode numbers. This saves a table lookup.
The C computed goto code is simple: goto *pc. This amounts to a load and an indirect
branch. Note that, since machine addresses typically are at least four bytes long, this
makes the bytecode program less compact than if it’s stored with only one byte values for
opcodes. Furthermore, if virtual instruction operands are also stored as machine words,
instead of one- or two-byte values, then all pc arithmetic and dereferencing will be aligned

on word boundaries. This can improve performance on modern architectures.

If the bytecode program is stored on disk, a translation step may be necessary to rewrite
the program instructions to use the machine addresses instead of the bytecodes, because
the addresses are not available until after the interpreter is loaded. This could even
be necessary if the bytecodes are stored in memory, if the front-end that generated the
bytecodes uses single byte instruction codes. This translation is the approach taken in
the virtual machine in GNU’s gcj Java compiler system [3], which includes an interpreter

in its runtime, in case classes are loaded from disk.

2.6.2 Advanced Dispatch Strategies and Other Optimizations

In addition to the simple variations on virtual instruction dispatch, several other more involved
techniques have been developed to improve virtual machine performance. Next, we outline some

of these. The first is not a dispatch technique at all, but rather a different kind of optimization.

Weak Operand Specialization Consider a virtual machine instruction that pushes a single
small integer operand onto the stack, push_int. This is likely to be a very common
instruction, and furthermore, certain operand values will be more common than others.
We can augment the virtual instruction set with new instructions that “hardcode” these
operands, — the new instructions take zero operands, but push a constant whose value

is implicit in the instruction. For example, push 0. We call this Operand Specialization,
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or simply specialization, for short.

Smalltalk 80’s virtual machine [11], for example, takes this approach. It offers 32 in-
structions, each with zero operands, to push any constant from -16 to 15 onto the stack.
Among others, it also has eight 0-operand instructions to load the given operand object
into one of eight local variable slots in a method. In the rare case there are more than

eight slots, a 1-operand version is used that also takes the slot number as an operand.

We refer to this technique as weak operand specialization because it only specializes
certain operand values, and only certain opcodes. In Section 3.3, we present a similar,
but much stronger technique, which we simply call Operand Specialization, which does

not have these limitations.

Super Instructions A virtual machine superinstruction is a macro instruction — a combina-
tion of two or more normal virtual instructions into a single new instruction. The semantic
effect of the superinstruction is equivalent to executing the component instructions in se-
quence. For example, the two instructions push_constant and add could be combined

into a single add_constant superinstruction.

There are at least three advantages to this technique. First, the virtual machine has a
finite dispatch overhead. Suppose this overhead is 10 machine cycles of execution time. If,
say, the push_constant and add instructions require 30 and 20 machine cycles to execute,
respectively, then the cost of executing them is 10 + 10 (two dispatches) 430 + 20, for
a total of 70 machine cycles. With a superinstruction, only one dispatch is required,

yielding a total of 60 cycles.

Second, the add_constant may take less than 30 4+ 20 = 50 cycles to execute. Removing
the dispatch branch leaves straighter code, and the processor may be able to execute it
more quickly. Moreover, a peephole optimizer may be able to improve the code in the
superinstruction, because the flow graph will be larger and less branchy. In this case, for
example, four stack operations (pushl 1 requires a push, and the add must pop, read the
value at top of stack, then write the sum), can be reduced to two (read value at top of

stack, then write the sum.)
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Third and finally, a bytecode program with superinstructions is slightly smaller to store,
because the superinstructions takes up less space than their separate component instruc-

tions.

The vmgen [10] system facilitates the static creation of superinstructions as a part of its
VM-building tools. This includes automatic inclusion profiling instrumentation in VMs,

which can manually inform the designers’ superinstruction selection.

Superinstructions allow us to group multiple bytecode instructions together. This leaves
the problem of the operands of the component instructions. Typically, these operands
are managed by catenating the operand bytes of each component instruction into a larger
single array of bytes. This array becomes the operand of the superinstruction in the new
bytecode program. The implementation of this superinstruction knows where to fetch the

component arguments from within the array of bytes.

How do we choose which superinstructions to offer? The decision may be made statically,
as part of the design of the virtual machine. Smalltalk does this, for example. Or perhaps
the decision can be made still statically, at the time the virtual machine interpreter
is constructed, but based on some dynamic profile of the one or more programs the
interpreter is expected to execute. But clearly, if we choose these optimizations statically,
we can only make a finite number of them, after which we will run out of bytecode

representations.

This potential for combinatorial explosion is particularly evident if we think about com-
bining these techniques. If we specialize 16 push_constant instructions, and combine
these as superinstructions with 32 store_local_slot, we would have 16 x 32 = 512 in-
structions for storing a constant into a local slot. And this example only accounts for

superinstructions of length two!

Selective Inlining This scheme is proposed by Piumarta [33], as a refinement to direct thread-
ing, and exploiting the concept of superinstructions. The idea is to dynamically build the
superinstructions at execution time. In this way, only the superinstructions (called macro

opcodes) needed by the running program are constructed. Piumarta builds maximally-
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sized superinstructions, but their lengths are severely constrained because of the design
and implementation of his system, which we discuss in the next paragraph. Because they
are created at runtime by simply copying machine code, no optimization of macro opcodes
is possible, unlike with some superinstruction systems. Nonetheless, he reports a speedup

of 1 — 2.0 for Objective Caml on the Sparc, running micro-benchmarks.

Piumarta’s design means that macro ops must not span across basic block (single entry
point, single exit point) regions of the virtual program. It is not possible to jump into the
middle of a macro op, nor out of the middle. Therefore, all branches or branch targets

force the end of a forming macro op.

Piumarta implements his macro ops by copying the native code which implements the
virtual ops. While gcc’s labels-as-values extension has been available for some time,
and intended specifically for interpreter implementation, his paper was the first to show
that native code could be copied “out-of-line” and executed elsewhere. This inspired our
technique, which is more general, as we will discuss in Chapter 3. Unlike us, he does
not do any processing on the native code. Therefore, any code which contains native
PC-relative addressing cannot be moved, and thus cannot be a component of a macro op.
On many architectures, e.g. Sparc, this precludes ops containing a C function call. For
low-level bytecodes this is only a moderate disadvantage, since these bytecodes’ semantics
are simple enough not to require function calls. For high-level bytecodes such as those
used by Tcl, or low-level but rich object-oriented bytecodes, as in Java, this is a serious

deficiency. We discuss Piumarta’s work further in Section 6.5.

JITs Perhaps the state of the art software technique for virtual machine implementation is
the just-in-time compiler, or JIT. Rather than just being an evolutionary refinement of
highly optimized implementations for a virtual machine interpreter, the JIT focuses on
actually translating bytecodes into native code. This is done at run-time, and indeed,
compilation is usually deferred until execution of individual methods, or even smaller
units of code. An adaptive JIT may apply varying levels of optimization during initial or

subsequent compilation, sometimes guided by dynamic profiling collected by dynamically
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inserted instrumentation. At the extreme bottom end of optimization, some JITs also
interpret some code some of the time — the code may not be executed frequently enough
to warrant time spent in compilation. Interpretation also makes profiling easier, since

native code does not need to be instrumented.

As expressed earlier, JIT translation may be too time-consuming for some applications,
especially interactive use of scripting tools such as Tcl. Our system attempts to reap
some of the benefits of native code, without requiring a lengthy compilation step. It is
a new design point in the range between interpretation and optimizing compilation. In
addition to being useful as the only execution engine in a virtual machine, it could also
be added to an adaptive JIT, since it could might execute faster than the interpreter, but

compile faster than even the zero-optimization level compiler.

2.7 Native versus virtual machine performance

Compared to native execution, interpretation faces two fundamental performance problems.
Because the interpreter is a virtual machine, it must expend software execution cycles on tasks
that hardware machines get “for free”, at least in terms of cycles required. These are (i) a
dispatch loop to fetch the virtual instructions and sequence their execution, and (ii) instruction
decode logic for each virtual instruction, to determine its format, fetch its operands, etc.

In Section 2.6 on virtual machine dispatch strategies, we described some of the techniques
used in interpretation. They all consume some significant proportion of machine cycles on these
dispatch and decode tasks. In a native machine, substantial hardware resources are used to
implement fetch, decode, and dispatch logic largely in parallel with execution of the actual work
of instructions - e.g. fetch can happen concurrently with an ALU operation.

In a virtual machine, instead, real cycles must be expended before any work can begin.
Furthermore, modern native machines have complex features such as pre-fetch, branch predic-
tion, instruction cache, and out-of-order superscalar execution to run native code workloads.
Interpreter workloads have a different character than typical native workloads, and thus cannot

fully exploit the benefits of those features. Worse, they may even run afoul of the features. [9].
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In addition to this fundamental fetch/decode difference between native and virtual ma-
chines, a number of micro-architectural features are implicated in the interpreter design choices

enumerated in Section 2.6. We briefly summarize these now.

2.8 Micro-architectural implications of virtual machine designs

A virtual machine interpreter is an unusual type of workload to present to the processor hard-
ware. Various features of certain dispatch techniques — e.g. use of calls versus indirect branches
— interact differently with architectural features of modern processors. Ertl [8] presents an in-
formal but empirical discussion of the performance comparison of these techniques. Now, we
briefly consider the impact of virtual machine design on each of several classical processor

architectural techniques.

2.8.1 Branch prediction

Even in straight-line bytecode, the processor executes at least one native branch per virtual
instruction, as a part of the virtual dispatch loop. Thus, branch predictor and branch target
buffer design are very significant. Because the virtual machine workload is atypical, some
processor designs do poorly [9]. Dispatch typically uses some form of native indirect branch,
which is challenging for branch prediction hardware. Note that the branch target buffer can do
a better job on direct-threaded code than switch dispatch. With direct threading, each virtual
instruction has at least one branch dispatching to the next, whereas with switch, dispatch for
every VM instruction is concentrated through a single native indirect branch. The branch
predictor uses the native instruction address as the most significant part of the key it uses to

predict a target address, and thus it will be wrong most of the time [9].

2.8.2 Instruction-level parallelism

Recall that one challenge to good performance in virtual machines is maintaining interpreter
meta-state, such as virtual program counter and stack pointer, in software. One useful technique

is to schedule the native instructions responsible for updating this state so they are interspersed
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with the semantic work of a virtual opcode. As data dependence allows, this can increase
instruction level parallelism (ILP) and reduce the latency introduced by dispatching to the

next virtual instruction.

2.8.3 Cache

Compared to native execution of code compiled from high level languages, interpreters have an
interesting impact on caches in the interface between CPU and memory system. Caches are
necessary because CPU clock rates and computation bandwidth are much higher than main
memory clocks and bandwidth. Most modern CPUs use a so-called Harvard architecture [13],
with two separate level one (closest to the CPU) caches for instructions and data. These can
each be interfaced efficiently to different parts of the CPU, and instruction cache (I-cache)
semantics are slightly more relaxed, with different implementation trade-offs than data- (D-)
caches, because instruction memory transactions are overwhelmingly read-only.

Interpreters in general conflate the roles of the I- and D- caches, because the instructions
being interpreted reside in D-cache. The I-cache only serves the interpreter itself, and its
runtime system and libraries. Thus, the load on the I-cache is slightly less than normal, and
the D-cache does double duty. Worse, D-cache logic for read-write consistency is wasted when
relatively static bytecode instructions are stored there.

Our interpreter technique, on the other hand, returns demand to the I-cache, since we
translate bytecode to native code, and execute that. However, we not only return demand to
the I-cache, but increase it beyond normal levels. This means I-cache is a critical factor in the
performance of our system. We discuss this more in Chapter 5.

Our technique for virtual machine implementation, catenation with operand specialization,

lies somewhere between Selective Inlining and JITs. We describe its design in the next chapter.
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Catenation and Specialization

Our goal is to decrease execution time of Tcl scripts by compiling the Tcl bytecodes to native
code. This goal is subject to a number of constraints. First, we want to perform the compilation
at run-time so we don’t compromise the interactive modality of Tcl usage. Second, we want to
leverage existing and future work on the current interpreter, which correctly implements the
semantics of each bytecode. Finally, we want to accomplish this with a minimum of programmer
effort, which consumes time and introduces the possibility of incorrect semantics.

A full-blown JIT compiler requires too much programmer effort, does not reuse adequate
amounts of interpreter code, and introduces substantial compile-time (and thus run-time.)
delays for small scripts and interactive use. Instead, our approach is a new design-point on the
spectrum between interpretation and compilation. We preserve as much code from the virtual
machine as possible, including the entire run-time system and library, and even most of the
interpreter loop, by crafting a simple compiler directly from the existing interpreter. In this

Chapter, we present two techniques to undertake this compilation.

3.1 Interpreter Performance

Section 2.7 showed how virtual machines are fundamentally different from native machines
because they perform instruction fetch and decode in software. This, then, is the first problem

our system addresses to improve interpreter performance via compilation.

27
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goto *ip++;
(a) C code for minimal dispatch strategy (direct threading).
load r2 = [ri]

add ri
jump r2

rl + 4 ; assuming machine uses 4 byte addressing

(b) Corresponding native code. Virtual instruction pointer ip is allocated to
register ri.

Figure 3.1: Overhead in native instructions for minimal dispatch strategy.

The particular burden that the instruction dispatch loop imposes can be seen by looking at
the assembly code (Figure 3.1a) for the most efficient possible dispatch, direct threaded code
(Figure 3.1b.) The interpreter must, at a minimum, load the address of the next opcode to
be executed, jump to it, and increment the virtual instruction pointer. The overhead in most
interpreters is often considerably higher, but even these minimal operations — a load and two
branches (one direct and one indirect) — are extra work compared to native execution.

The simplest possible compiler must, at least, eliminate this extra work. Our strategy,
which we called catenation, addresses this, as we describe below.

The further burden that instruction decode imposes is exemplified in Figure 3.3. This figure
shows an int_add_immed opcode for a hypothetical virtual machine, and its implementation in
an interpreter. This opcode adds an immediate integer operand to the integer stored in a virtual
accumulator. Because the operand is an immediate, it is, by definition, a part of the virtual
instruction. A native machine fetches the immediate operand of a native instruction as a part
of the instruction; no additional cycles are necessary. But in a virtual machine, the instruction
body itself, after it has already begun executing, must issue and wait for a memory load before
it can begin the work of the addition.

Clearly it would be beneficial if such immediate operands were truly immediate, that is,
implicit in the native instructions used in the bodies of bytecodes with virtual operands. Our

operand specialization strategy makes virtual immediate operands into native operands, avoid-
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ing the extra decode cost.

3.2 Catenation

The bulk of the interpreter loop is contained in giant switch statement, with cases for each
virtual opcode. We call the code in these cases instruction bodies, or just bodies, for short. The
job of the dispatch loop is to sequence the execution of these bodies according to the instructions
in the bytecode program. That is, the dispatch loop executes one body after another. The

overhead of dispatch is any work other than that performed in the bodies themselves.

Let us illustrate this with a simple example. Figure 3.2a shows a short bytecode program
fragment, composed of three bytecode instructions. Note that the push opcode is used twice.
The native code bodies for each of these instructions is shown in Figure 3.2b. We also show
the native code executed for each instruction dispatch by the interpreter loop. In Figure 3.2c,
we show the dynamic sequence of native instructions executed when interpreting this bytecode
program.

Notice, in this example, that a significant portion of the native instructions are for dispatch.
These are overhead instructions. The instructions shown in bold in Figure 3.2c are the only
native instructions that contribute to useful work. Now we are set to understand the idea of
“catenation.” If we simply copy into executable memory the sequence of useful work instructions
— those shown in bold — we have “compiled” a native code program with exactly the same
semantics as the interpreted version. This program will have eliminated all dispatch loop
overhead.

Of course, most programs contain branches and loops, so dynamic execution paths do not
look, as they do in this case, exactly like static code in memory. Catenation handles control
flow by changing virtual machine jumps into native code jumps. Each virtual instruction is
compiled into a series of native instructions at a well-defined address range in memory, and
thus the native jump targets the start of this range. Any interpreter event where execution
must take a non-linear path, including exception handling, is handled similarly, as we explain

in Chapter 4.
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push 2
push 3
add

(a) Sample bytecode program. Note, opcode push is used twice, with different
operands.

push:
Y41
p2
b3

add:
a1
a2
a3
Qa4
as

dispatch:
01 ; jump to top of interpreter loop
02 ; 1d [ip] to get opcode
03 ; increment ip
04 ; jump indirect to instruction body

(b) Definitions of virtual instruction bodies in native code. Each p;, as, etc.
represents a native instruction.

01020304 P1P2P3 01020304 P1P2P3 01020304 Q1 A2030 a5

(c) Dynamic sequence of native instructions executed when interpreting program
in (a).

P1P2p3 P1P2Pp3 A1G2030405

(d) Static sequence of native instructions emitted by catenating compiler for
program in (a).

Figure 3.2: Compiling bytecode objects into catenated copies of native code from interpreter
avoids dispatch overhead



CHAPTER 3. CATENATION AND SPECIALIZATION 31

3.2.1 Benefits of Catenation

Catenation itself does not synthesize or even transform much native code. It just makes copies of
the native code produced by the C compiler when it compiled the interpreter. When we discuss
problems with this approach, below, we point out that this necessarily means the compiled
code itself will not be much faster than interpreted code. It just reduces dispatch overhead, as
described. However, it does have two key advantages over a more sophisticated compiler: it is
faster and simpler.

The catenating compiler can run very fast because most of its work consists of nothing
more than copying native code bytes into memory. Compilation speed is very important for
any just-in-time compiler, because the compile time is a part of execution time. It is particularly
important for an interactive scripting language, since long delays will be perceptible to the user,
who expects instant response to commands.

The catenating compiler is simple because, ideally, the compiled instruction bodies will be
very nearly identical to those in the original interpreter switch statement. Thus, a minimum
of extra effort is required to emit native code. Furthermore, semantics are preserved, and the
entire existing virtual machine run-time and library system is preserved and re-used. Future
changes to the interpreter can be easily leveraged in the compiler.

As we shall see in Chapter 4, where we discuss our implementation, most of the changes
required for catenation, per se, are confined to the interpreter dispatch code. Thus catenation
itself does not require modifications to the implementations of all of the approximately 100
bytecode instructions.

In addition to these two main benefits of simplicity and high speed compilation, catenation
yields several other useful consequences. The first of these is to enable our second key technique
for enhancing interpreter performance, operand specialization. While the interpreter has only
one generic implementation of, say, the push opcode, an catenated program has a separate
version for each static instance of that opcode in the program. This means we can customize
each version to improve performance. We describe operand specialization in Section 3.3.

Another useful consequence of catenation is a much straighter dynamic execution path,

because we eliminate dispatch and lay native instructions out in memory for each static virtual
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instruction. By straighter, we mean it contains less conditional branches. This means that the
processor’s branch predictions may improve. The processor’s out-of-order execution also has
longer straight-line blocks of code to work with, and thus may also perform better.

In addition to removing the expensive indirect branches in dispatch (o4 in Figure 3.2b),
we also remove a memory load (02.) Loads are real work for a processor and memory system,
and their removal improves performance. Better still, the indirect branch is dependent on the
results of the load, presenting a real barrier for superscalar execution.

In summary then, catenation is a simple idea with relatively simple implementation. In
can run very quickly. It removes overhead instructions from the interpreter dispatch loop. The
instructions it removes are particularly difficult obstacles for efficient execution on a modern
microprocessor, and the resulting code is well-suited to further performance improvements. Of
course, most of these benefits come with some converse costs. We discuss these in the next

section.

3.2.2 Challenges to Catenation

Our goals for the catenation strategy fall into two categories. The first is, of course, making
the code go faster. The second is to craft a simple, efficient system with minimal effort. We
will address the problems in each of these categories in turn.

As sketched above catenation does reduce the number of dynamic instructions executed by
bytecode programs. However, it has the potential to degrade performance, too. First, as with
all just-in-time compilers, compilation time is part of our execution time, and if execution time
is too short, the compilation effort cannot be profitably amortized over execution. Catenation
has this effect, but is so efficient that even relatively short Tcl programs can benefit.

Second, and more importantly, the obvious effect that catenation has on the bytecode
program is a significant static code size expansion. Bytecode is designed specifically to be very
compact — typically more compact even than native code [44]. Catenated code has exactly
the opposite character. This is because potentially many copies are made of each bytecode
instruction body, as dictated by the length of the bytecode program. In Tecl, in particular,

the bytecode bodies are already very high-level and large, so catenation can make the emitted
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native code very large.

The resulting burden on I-cache throughput and locality can be significant. The performance
tension between poorer I-cache performance but fewer actual instructions executed is the major
focus of our experimental evaluation in Chapter 5. In a smaller but related effect, the larger
footprint in instruction memory can significantly exercise bottlenecks in the virtual memory
system, including the TLB (translation lookaside buffer) and actual traffic of paging in from
disk. However, this effect is both coincident with, and much smaller than, the I-cache problem,
and so we focus on that.

We can mitigate some of the problems of catenation by extracting even more benefits from
the catenated code. As mentioned above, such code has special properties that make it amenable
to low-level optimization. We exploit distinct copies of each bytecode in catenated code to apply

custom specialization to each copy. This is described in detail in the next section.

3.3 Specialization of operands

In compilers literature, specialized code is code that is less generic [15]. That is, its semantics
are determined more by the code itself, and on a more local level, rather than depending on
data, or distant code. Specialized code can execute faster, because it does not have to fetch
the data needed to drive its semantics. Because values and control flow, for example, are more
deterministic, with each instruction less dependent on loads or earlier instructions, the code
can be executed faster, and with high instruction-level parallelism.

Our system mainly exploits only one form of specialization. We substitute bytecode operands
into the catenated instruction bodies as native immediate operands in the native code. These
operands are, in the parlance of traditional optimization, run-time constants [12]. That is,
the operands are variables in the generic interpreter code, but, because we generate custom
native code, for each bytecode instance, late in the compilation/execution process, we know the
constant values of many of the operands. We can then emit code that contains the constants

instead of references to variables.

For example, consider the instruction body for an int_add constant opcode, shown in
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1d [pc + 11, r1 ; this operand-load will be specialized away
add accum = accum + rl

(a) instruction body of imaginary opcode int_add_constant

add accum = accum + 2

(b) instruction body for specialized opcode int_add _constant 2

Figure 3.3: Specialization replaces memory loads of generic operands with immediate constants
in native instructions

Figure 3.3a. Let us suppose it takes one operand, an integer constant, and increments an

accumulator by the constant.

Even though it takes a constant value, the value is not implied in the opcode. The instruction
specifies it as an operand. Multiple instances of this instruction in a bytecode program, e.g.
“int_add_constant 2” and “int_add_constant 3” may have different values for the operand.
Thus, the instruction body must be generic. The generic version loads the actual constant
from the instruction in the bytecode stream. However, after catenation, a separate copy exists
for each static instance of the instruction. These copies can be specialized to use this run-time

constant, and avoid the memory load, as shown in Figure 3.3b.

There are several ways for instructions to acquire operands. Some opcodes take no operands,
or the operand may be somehow implied by the opcode itself, or taken directly from an accu-
mulator or an execution stack. For other opcodes, operands can be of many different types.
Our example shows the simplest type, a literal immediate integer, used, for example, in an
arithmetic instruction. These integers may be signed or unsigned. Other operands may be
immediate integers, but not really used as literals. Instead, they may index a table, e.g. the
literal table in Java or Tcl, where the actual object (usually stored as a native machine pointer)
or value is stored. Using the value as an operand requires dereferencing this single layer of
indirection. Integers may also represent counts, such as the number of operands to pop from

the stack for a computation, or function call.
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Our operand specialization technique must handle all these types, and understand the sizes,
signedness, and some semantics, of each. This is necessary to correctly emit or fill in specialized
instruction bodies with values that implement the correct semantics of the original, generic
opcode.

Typical specialization techniques work on an intermediate representation of the code (IR).
Our compiler does not use an IR. Instead, we catenated the native instruction bodies at a very
low-level, into new executable memory. To implement operand specialization, we consider the
instruction bodies somewhat less opaquely than catenation. Instead of unchangeable sequences
of code, we treat the bodies as templates. They are of fixed length (measured in instructions
and bytes). The only fields of the instructions we allow to vary are the literal immediates. Thus,
we do not change register numbers, for example. This is discussed in more detail in Chapter 4.

Other transformations in our system also take on the character of specialization. For ex-
ample, our conversion of the indirect jumps, used in the instruction bodies of the virtual jump
bytecode, to direct native branches is a kind of specialization. Furthermore, the unswitching
we perform when eliding the dispatch loop — can be viewed as specialization on the variable
opcode, which is a known constant at each specific point in the catenated program. However,

we treated unswitching and native jump conversion as parts of our catenation strategy.

3.3.1 Advantages of Operand Specialization

As with catenation, fixed-length instruction bodies mean that operand specialization can run at
high speed. Changes may be necessary to each template, as we read operands from the original
bytecode stream, and substitute them into the instruction bodies. The number of substitutions
is a linear function of the number of instructions in the bytecode program we are compiling.
Each substitution typically involves only a few branches, loads, shifts, and stores. This may be
an order of magnitude more work than the simple copying (load, store, increment) performed by
catenation, but is also much faster than real transformations in a more sophisticated compiler
using an intermediate code, and subsequent translation from intermediate to native code. On
the other hand, the fixed-size constraint on each instruction body means we can avoid complex

multi-pass linking steps, and memory allocation of output buffers is very efficient.
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As with catenation, we want to minimize the effort required to change the interpreter into
a specializing compiler. Our simple specialization templates make this possible. However, it is
still a significant amount of programmer work, as we discuss below.

Operand specialization makes the total number of instructions smaller, which also saves
space and time. Of course, the catenation that lays the groundwork for specialization makes
code much larger, but at least the operands themselves consume less room, as they are packed
tightly into native instructions.

In addition to packing the operands into instructions, we are also able to eliminate other
instructions, such as those that load the generic operands from the bytecode stream. For
example, if the operands are from a table of literals, we can do this table lookup at specialization
time, saving more time and space avoiding the dereference. This lookup optimization is also
applied to bytecodes with secondary opcode selectors, like math _func, which takes an integer
argument to indicate which math operation to perform, for example sin, sqrt, etc.

Thus, operand specialization reduces static instructions (makes the code smaller), dynamic
instructions (fewer instructions execute at run time), and also the number of memory loads
(since loads from memory are replaced by loads of immediate constants.) All of these things

favor faster execution.

3.3.2 Challenges to Operand Specialization

Operand specialization is more difficult to implement than catenation. The instruction body
for each bytecode which takes operands must be modified to become a suitable template. There
are many such instructions, some with more than one operand, and, as discussed above, many
types of operands.

Our approach to generating these templates is discussed in more detail in Chapter 4. Briefly,
as with catenation, we use the C compiler, and the C code for the generic bytecode interpreter, as
a basis for building templates. In Chapter 4, we shall see that this technique entails considerable
design and debugging effort to work around the correct, but unsuitable, semantics of the C
compiler for this purpose. Still, it is important to note that these difficulties are not weaknesses

of operand specialization, per se, nor even our approach of fixed-length native code templates.
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Rather, they are a challenge presented by our particular choice of implementation tools for
creating the templates.

While the run-time spent on catenation is quite low, involving copying data in a fixed-
size template, specialization requires considerably more work, interpreting and executing each
change required in the template, for each operand in the bytecode program. Thus, the compile-
time spent on specialization is expected to be larger than for catenation.

Finally, specialization would not be possible without catenation; normally interpreted code
cannot be specialized because the instruction bodies are generic. As discussed above, catenation
dramatically increases static code size, which can cause slower execution. So, while specializa-
tion itself improves executing code, its requirement for catenated code may result in overall
slower code.

Before we conclude our discussion of operand specialization, we should note that many other
kinds of specialization are possible, and might be facilitated by availability of catenated code.
These include using type inference [25] to specialize on the type of an object, and thus elide
virtual dispatch code. This can yield further optimization opportunities, as the control flow
graph is straightened.

Perhaps the most important implication of operand specialization, in our system, is that
it allows us to compile away the bytecode. In this sense, we are a true compiler, because the

executing code does not refer to the bytecode stream after it starts running.

3.4 Summary

Our system lies just on the boundary between interpretation and compilation. It is a true
compiler, but does not undertake any abstract representation nor transformation of the code.
Our goal was to make the Tcl virtual machine interpreter run faster, and, in that sense, it is
perhaps better to consider the system a highly evolved interpreter.

We preserve the existing run-time of the interpreter, and, in particular, base our work on the
implementation of the existing interpreter. Our two key techniques to improve interpretation are

catenation, which eliminates instruction dispatch overhead, and operand specialization, which
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shortens the code, and saves memory loads of operands. Specialization depends on catenation
to first copy generic instruction bodies into individual templates for each virtual instruction in
a bytecode program.

These simple techniques can compile very quickly, preserving the interactive feel of a script-
ing language, and allowing for rapid amortization of JIT compiling costs over even relatively
short execution times. Compared to a more sophisticated compiler using an intermediate code
and optimizations, the generated code quality will be inferior. However, the compile time, and
the engineering effort in constructing the compiler itself, is improved. By using the interpreter
as the basis for the compiler, correct semantics for existing and future bytecode instructions
are easily preserved.

In the next chapter, we will present the details of our implementation of these two key ideas,

catenation and specialization.



Chapter 4

Implementation

In this chapter, we detail the implementation of our design into an efficient working system.
The result is a drop-in replacement for the stock Tcl interpreter, appropriate for running all
Tcl scripts. Its semantics are identical to the stock interpreter, differing only in performance,

with no noticeable compromise in start-up time or interactive responsiveness.

We’ll first present the implementation of the core of the just-in-time compiler itself. The
compiler rapidly translates the bytecode program using a native code “template” for each virtual
instruction. Our presentation of the compiler proper largely assumes these templates already
exist, but describes the data structures in which they are defined and stored, and then how

they are used to compile.

In the latter sections of this chapter, we show how the templates are synthesized. Aside
from the compiler itself, the other key part of our contribution is our engineering process in
crafting the templates from the existing virtual machine interpreter and the C compiler. We
believe this approach is efficient, and it introduces fewer semantic errors than other compilers

which re-implement, rather than reuse, the interpreter.

Our system is implemented on the Sun Sparc microprocessor, running the Solaris operating
system. We target the 32-bit sparcv8 instruction set [14]. We use Tcl version 8.4 as the basis

for our JIT compiler, and also as the baseline for performance evaluation.

39
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Runtime Initialization

Template extraction

substsynthesis
4
JIT Compiler
Tel source Tcl byte_code Catenation Native machine
compiler e code
Specialization
Linking

Figure 4.1: Compilation stages in Tcl JIT

4.1 Core JIT Compiler

Refer to Figure 4.1 for a conceptual diagram of the compiler, and its place in the Tcl system.
The compiler realizes speed and simplicity using the ideas of catenation and specialization. The
working system requires infrastructure to support implementation of these ideas. The speed and
simplicity of the system derives from fixed-length sequences of native code called templates, and
a set of pattern and actions called substs which facilitate quick manipulation of the templates.
To further increase speed, these structures are initialized once at interpreter start-up time. The
JIT compiler can then rapidly translate bytecode to native code at execution time.

In this section, we define what templates and substs are, and describe the data structures
we use to store them. We'll then show how these structures are populated, and finally, but

most importantly, how the templates are actually used to realize catenation and specialization.

4.1.1 Templates

The template is a sequence of native instructions that implement the semantics of the opcode by
manipulating the state of the Tcl interpreter and calling into its run-time library. We require

that each template has various properties. The template code must be contiguous, because
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we extract it from beginning to end. Intervening code would cause severe code bloat during
catenation, and our analysis of the template during specialization would have to deal with
irrelevant pattern matches.

To increase the performance of compilation, we pre-compute as much information as possible
about the templates, so that catenation and specialization can proceed with minimum effort.
The templates and the pre-computed information are stored together in data structures which

we describe now.

4.1.2 The subst data structure

Along with the template, we keep a list of actions that must be taken to specialize it for the
appropriate operands in the bytecode instruction, and other transformations that need to be
made to the template to fit it into the resulting native code output. All this data is stored in a C
data structure instruction desc_aux_t, shown in Figure 4.2 together with related structures.
We now describe these in detail, since they lie at the center of our implementation.

In addition to the native code template, the instruction desc_aux_t also stores meta-
information about the virtual opcode. The information includes the length in bytes (structure
field bc_bytes), including operands, of a given opcode, when in a bytecode program. For
example, an incr_scalarl opcode takes two bytes, one for the opcode itself, and one for
the single-byte immediate operand. We also store the number and types of operands (fields
bc_operands and op_types.) The size of each operand, which we also need to know, is implicit
in its type. Together, this information allows us to derive the offset in bytes of the start of each
operand from the start of the bytecode instruction.

The template’s native code is described simply in two fields: native address (ntv_start)
and length (ntv_len_src.) The address is a pointer into the executable memory of the running
Tecl interpreter process. The raw code for the templates exists in this process, as described in
Section 4.2.

While ntv_len src tells us the number of bytes we must copy from the template into
a catenated code unit, we also store a separate ntv_len_dst field, which is the number of

bytes to allocate to this opcode body during catenation. This may be slightly larger than the
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typedef uint tcl_opcode_t;
typedef uint *iaddr;

typedef enum {

}

SIT_ARG, SIT_LITERAL, SIT_BUILTINT_FUNC, SIT_JUMP, SIT_PC, SIT_.NONE
subst_in_type_t;

typedef enum {

}

SOT_SIMM13, SOT_SETHI, SOT_JUMP, SOT_CALL
subst_out_type_t;

typedef struct {

}

subst_in_type_t subst_in_type; /* how to extract operand from bytecode insn */
subst_out_type_t subst_out_type; /* bit ops necessary to specialize or fizup native template */

uint ntv_offset; /¥ where in template to make substitution */

uint bc_offset; /* where in bytecode insn to grab operand data */

uint bc_size; /¥ size of bytecode operand data */

bool_t bc_signed; /* flag: is bytecode operand data signed? */

uint ntv_offset2; /* where in template to make optional 2nd substitution */

uint jump_insn; /¥ native branch insn to use, for subst_in_type == SIT_JUMP */
int mul; /¥ multiply bytecode operand by this before subst */

int add; /* add this to bytecode operand before subst */

inst_subst_t;

typedef struct {

}

char *name;

tcl_opcode_t opcode;

uint bc_bytes;

uint bc_operands;

InstOperandType op_types [MAX_INSTRUCTION_OPERANDS];
iaddr ntv_start;

uint ntv_len_src; /¥ length of template in bytes */

uint ntv_len_dst; /¥ length, including extra insns we append */
subst_list_t subst_list; /* list of substs for this template */
instruction_desc_aux_t;

Figure 4.2: Data structures for substs, which direct catenation and specialization of each
opcode
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template, because we append synthesized native instructions to bodies for certain opcodes. We
also exploit this facility during development, to introduce extra instructions for profiling or
debugging instrumentation.

The three ntv_ fields are used for catenation proper, that is, copying templates into new
executable memory. All the other fields are for specialization.

Finally, we store pointers into an array of substs. These form, for each opcode, one list
of zero or more substs. Together with the fields describing input operands, these allow us to
implement operand specialization. Referring to the inst_subst_t struct, we see the heart of
the specialization system. Each subst makes a small change in the catenated code, after it is
copied into place. The type of change is controlled by the subst_out_type field; the various

types are enumerated in Figure 4.3.

Each one of these substs corresponds to a given location in the template. This location is
indicated by the ntv_offset field of the subst. Except for SOT_CALL, each of the output types
require additional parameters to fully evaluate the subst. SOT_SIMM13 and SOT_SETHI require
immediate integer values. In each case, the arguments come from the bytecode stream. The
field subst_in_type defines the exact size and type of argument to extract from the bytecode,
and potentially some transformations on the value after it is extracted, but before it is passed
to the SOT.- handlers. The possible values for this field are shown in Figure 4.4.

In the case of SOT_JUMP, there are two arguments. The first is jump_insn, which indi-
cates which Sparc branch instruction to use. The three choices are sparc_branch_always,
sparc_branch_on zero, and sparc_branch non zero, which correspond to the actual Sparc
instructions b, beq, and bne. The appropriate value is filled in at subst creation time, using
table-driven (i.e. hardcoded) logic based on virtual opcode.

The second argument for SOT_JUMP is the branch target, which is computed from the byte-
code input, which will have type SIT_JUMP. Both Tcl VM jumps and native Sparc branches
are pc-relative. So, the VM pc of the current bytecode is added to the given jump offset to
compute the actual bytecode destination. This is translated through a linker “offset” map (see
Section 4.1.4.1, below) mapping from VM pc to native pc. Finally, we subtract the current

native address (i.e., the address of the branch instruction we are emitting) from this target
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SOT_SIMM13 Place a 13 bit immediate signed integer constant into the low-
order bits of a Sparc instruction

SOT_SETHI/OR Set a 32 bit immediate integer constant into a sethi/or instruc-
tion pair

SOT_JUMP Write a branch instruction of a given type, with target directed

at a given address

SOT_CALL Fix up a call instruction after it was relocated during catenation,
so that its target is the same as it was in the template

Figure 4.3: Output types for substs

SIT_ARG a plain operand from the bytecode stream

SIT_LITERAL an operand from the bytecode stream, translated through the
literal table

SIT BUILTIN_FUNC an operand from the bytecode stream, translated through the
builtin math function table

SIT_JUMP the destination VM PC of a VM jump opcode

SIT_PC the VM PC of the VM opcode currently being compiled

SIT_NONE no input is required for this subst. Currently used only for
SOT_CALL.

Figure 4.4: Input types for substs

native pc, to yield a pc-relative Sparc branch offset.

For SOT_SIMM13 and SOT_SETHI, the argument again comes from bytecode operands, but is
an immediate value, rather than a branch target. SOT_SETHI is unlike the other output types, in
that it patches two different native instructions. The Sparc idiom for setting a 32-bit constant in
a register requires first a sethi of the most significant 22 bits of the register, followed by an or
of the 10 least significant bits of the same register. The or may be scheduled anytime after the
sethi, but before any other definition or use of the register. During subst table generation, we
scan forward from the sethi searching for the corresponding or, ensuring we match the same
register, and before any intervening reference. The location of the or instruction is recorded in
the ntv_offset2 field, whereas the location of the sethi is stored in ntv_offset. Both offsets
are relative to the start of the opcode body. All other subst output types use only ntv_offset,

ignoring ntv_offset2.

There are one or more substs for each bytecode operand in a bytecode instruction — some
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instructions take more than one operand. The number of substs per operand is usually exactly
one, but in some cases, an operand needs to be specialized into more than one location in the
opcode body, because the C optimizer employed rematerialization or constant propagation, or
the C code was deliberately written to use the operand more than once without first placing it
in a variable.

The bc_offset field expresses the offset of the first byte of the operand, in bytes from
the start of the virtual instruction (i.e., from the current VM pc during translation.) bc_size
indicates the number of bytes that need to be extracted from the bytecode program — that is,
the size of the operand. Finally, bc_signed is a flag, set when an operand less than 32 bits in
size requires sign extension.

The mul and add fields of a subst are rarely used. During specialization, after each bytecode
operand is extracted, it is multiplied by the constant in mul, and then added to the constant in
add. Usually these values are set to the respective arithmetic identities, i.e. 1 and 0. They are
used to adjust for C compiler optimizations. For example, if the C code increments a pointer to
an object (or, equivalently, indexes an array) by some value z, and the size of the the referenced
object is four bytes, the actual increment will be 4z. In this case, we must multiply the operand

by four, before specializing into the template.

4.1.3 Extracting templates in running interpreter

The initialization pass builds the templates and substs by matching patterns in the runtime
(i.e. running!) executable memory image of the Tcl “interpreter”. To find native code for a
template, this pass consults the array jump range table (see Section 4.2.3), which contains the
starting and ending memory addresses for the instruction body of each opcode in the interpreter.
The initialization phase uses this information to populate the template part of the
instruction_desc_aux_t, and this enables catenation. To implement specialization, we must
also fill in the substs. After establishing the native address range of the opcodes, the initial-
ization pass scans each, from start to end, for certain bit patterns that indicate specialization
points. We call these patterns magic numbers, and they are simply distinctive integer con-

stants. We place these values in the C source code, and ensure they are present at locations
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appropriate for operand specialization, even after passing through the complicated machinery
of the software build process — the C optimizer, in particular. We elaborate this aspect of the
implementation in Section 4.2.2.

The scanning requires work linear in the size of the native code, but we use several passes,
and it does take some time. This is a key reason the scanning work is done only once, in the ini-
tialization phase, and cached for subsequent use by the JIT compiler. Otherwise, it would have
to be performed each time we compiled a bytecode object. Indeed, an early implementation
operated in this way. On long-running procedures, it still performed better than pure interpre-
tation, but the present implementation allows profitable compilation of much shorter-running
procedures, even if they are large and thus require relatively more compilation time.

The initialization pass of our JIT compiler runs when the Tcl core library is itself initialized.
This is usually when a Tcl script is invoked as a new program by the operating system, but
could occur at other infrequent times, such as when a program using an “embedded” virtual

machine starts or re-initializes itself.

4.1.4 JIT Compilation

The stock Tcl virtual machine calls on the bytecode compiler to compile a Tcl source code
object (a string) to bytecode the first time the source is ever executed. The result is cached
“permanently”. That is, it does not expire after a specific period of time, but, under certain
circumstances, the cache is invalidated, and subsequent executions require that the code be re-
compiled. This can happen, for instance, if assumptions about certain invariants the compiler
made change. For example, if source was initially compiled in one Tcl namespace, and then
used in another, it must be re-compiled.

After the bytecode compilation, and on all subsequent executions of the source code object,
the normal virtual machine interprets the resulting bytecode. We modify this system so that the
interpreter never interprets bytecode, but, instead, jumps to a native code translation thereof.
This translation occurs immediately after the bytecode compilation, and at no other time. In
this section, we describe the implementation of the native code translation that runs each time

a new bytecode object is compiled.
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Recall from Chapter 3 that our compiler is based on two key techniques, catenation and
operand specialization. In Section 4.1.3 we showed how a single pass, running once at initial-
ization time, builds the template and subst data structures which form the basis of catenation
and specialization. The structures are, in essence, simple “instructions” about how to catenate
and specialize the templates. The JIT compiler proper actually ezecutes the “instructions”, via

interpretation.

4.1.4.1 First pass

Given a bytecode object, the native code compiler makes two passes over the virtual instructions.
Each pass looks at each virtual instruction in program order. The first pass determines the
overall size of the eventual native code output, so that a block of executable memory can be
allocated. The compiler emits native instructions into this memory. This pass also builds an
“offset” map, recording the memory address at the starting point of the native code block
corresponding to each virtual instruction. This map is consulted as a part of the “linking”
phase in the second pass. Aside from the bytecode program itself, the key information required
to build this map is the size of the native code extent of each virtual instruction. Recall that

this is stored in the ntv_len dst field of the template, as described in Section 4.1.3.

4.1.4.2 Second Pass

Once the first pass of the compiler computes the sizes and offsets of all the instruction bodies,
and has allocated the executable memory into which we place them, we are finally set to actually
emit code. We do this in our second pass, using our two key compilation strategies, catenation

and operand specialization.

Catenation Once all the preparatory work is done in the initialization phase and first pass
of the compiler, catenation amounts to simply copying data. Thus, it runs very quickly, and
with little I-cache footprint. It copies native code bytes from the template corresponding to the
virtual opcode, followed by “fix-ups” necessary to ensure the code works even after it is moved

in executable memory.
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Recall we use traditional C compilation and linking as a first step to obtain the raw material
for our templates. While we set the relevant compiler and linker options to generate relocatable
code, eventually the run-time linker must make some assumptions about the absolute position
of code in memory. For example, Sparc call instructions code the destination pc as an offset
relative to the current pc. In a given virtual instruction body, we are copying only the call, not
the instructions at the destination. Therefore, during catenation, the destination field of the
relocated call must be adjusted appropriately, so that it calls the same absolute address (say,
a library routine) as the original call in the template. This adjustment is actually deferred

until operand specialization time, using the subst type SOT_CALL.

Similarly, native branch instructions may need fixing after the compiler moves them. How-
ever, they are different from calls, in that the majority of branches are local, intra-template
control flow. These and their targets are moved together, thus their relative positions are un-
changed. We detect intra-template branches that use pc-relative addressing, and do not change
them after catenation. Branches with targets outside the template are appropriately repaired.

For an example of catenation, consider the implementation of the PUSH opcode code shown
in Figure 4.5a. This code uses the indirect threaded code dispatch technique. The C compiler
compiles this source to the code shown Figure 4.5b. Now, consider the trivial Tcl bytecode
program in Figure 4.5¢, to push two objects onto the stack. To interpret bytecode program, the
stock virtual machine would execute the instruction body for push twice, once for each of the
two push instructions in the program fragment. Each time, it would also execute the dispatch
code to get to the next virtual instruction. Referring to Figure 4.5b, observe that the dispatch
code requires eight native instructions, including three memory loads.

Now, recall the key insight motivating catenation. The eight instructions of dispatch code
are all virtual machine overhead. The actual work of the push opcode, which we refer to as
the instruction body, is in the first twelve instructions. The catenated version of the program
in Figure 4.5c will consist of two copies of those twelve instructions, placed consecutively in
memory. None of the dispatch code is required, as control flows directly from the first instruction

body to the next, just as it flows from Line 1 of Figure 4.5¢ directly to Line 2.

We should note that the C code we show in Figure 4.5a is using indirect threaded dispatch
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(recall our detailed comparison of this and other dispatch strategies in Section 2.6.1.) The stock
Tcl virtual machine actually uses for/switch-type dispatch, which is very similar to indirect
threading, in that the C compiler typically implements switch efficiently, as a jump table. In
practice, most compilers, including ours, gcc, compile the switch slightly slower than this,
adding overhead for a bounds check on the switch selector, and the for construct requires an
extra unconditional direct jump, to the top of the loop.

Thus, the real dispatch is even worse than we have presented here, and the real improvement
from catenation more significant. We compare with the indirect threaded version to show
that even carefully crafted interpreter code has overhead. Using the best strategies discussed
in Section 2.6, dispatch can be made even faster. However, there is always some overhead.

Catenation executes fewer instructions than all such strategies, because it eliminates dispatch.

Operand Specialization Having eliminated all the dispatch code using catenation, we are
left with the instruction body. This is the semantic work of an opcode. In the case of push, is is
the first twelve instructions in Figure 4.5¢. Obviously, this work must be performed. But, can it
be improved further? Catenation enables further optimizations. The existing code is somewhat
generic — it allows for any operand, by fetching the operand from the bytecode stream. Recall
that catenation yields a separate copy of the code for each virtual instruction. Thus, we can
specialize the copy using the operand, which is known as a constant. On the first line of our
example in Figure 4.5c, the constant operand of the push opcode is the index value 0.

Operand specialization is implemented via interpretation of the substs corresponding to the
opcode, using the values specified in the operands of the bytecode instruction. In the example,
push’s operand is an unsigned integer index into the object literal table. Referring to Figure 4.6,
note that the operand needs to be placed into the instructions on lines 2 and 3.

The Sparc requires two instructions to set a 32-bit constant, so we have to specialize both.
The subst will indicate the exact byte offsets of these instructions. Furthermore, the operand
specializer will consult the subst_out_type field in the subst to determine exactly how to
undertake the specialization. The native operands of most Sparc instructions are not on exact

byte boundaries. In this case, the sethi/or instruction pair, a bit mask is used to quickly
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tdefine TclGetUInt1AtPtr(p) ((unsigned int) *(p))
#define Tcl_IncrRefCount(objPtr) ++(objPtr)—>refCount
#define NEXT_INSTR goto *jumpTable [*pc];

case INST_PUSH:
Tcl_Obj *objectPtr;

objectPtr = codePtr—>objArrayPtr [TclGetUInt1AtPtr (pc + 1)];
*++tosPtr = objectPtr;  /* top of stack */

Tcl_IncrRefCount (objectPtr);

pc += 2;

NEXT_INSTR; /¥ dispatch to next virtual instruction */

(a) C-language implementation of push opcode

add %16, 4, %16 increment VM stack pointer

add %15, 1, %15 increment pc past opcode. Now at operand

ldub [%15], %00 load operand from bytecode stream

1d [%fp + 0x48], %02 ; load address of bytecode object from stack frame

1d [%02 + 0x4c], %ol load address of literal table from bytecode object

sll %00, 2, %o0 compute array offset into literal table

1d [%o1 + %001, %ol load from literal table

st %ol, [%16] store to top of VM stack

1d [%o1]1, %00 next 3 instructions increment reference count of pushed object
inc %00

st %00, [%o1]
inc %15

increment pc

sethi %hi(0x800), %00 ; the rest is dispatch to next instr

or %00, 0x2f0, %00

1d (%17 + %001, %ol

ldub [%15], %00

s1ll %00, 2, %00

1d [%o1 + %001, %00

jmp %00

nop ; branch delay slot could not be profitably filled

(b) C compiler’s assembly language translation of code in (a)
push O
push 1

(c) Sample bytecode program fragment

Figure 4.5: Use and implementation of push bytecode instruction. In the text, we show how
catenation can eliminate dispatch code, and how this subsequently enables other code to be
removed, in particular by specialization.
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add %16, 4, %16 ; increment VM stack pointer

sethi %hi(operand), %ol ; object to push: specialize operand here (hi 22 bits)

or %ol, %lo(operand), %ol ; object to push: specialize operand here (lo 10 bits)

st %o1, [%16] ; store to top of VM stack

1d [%o1]1, %00 ; next 3 instructions increment reference count of pushed object

add %00, 1, %o0
st %00, [%o1]

Figure 4.6: Template for push opcode, before operand specialization

specialize the values without perturbing the opcode fields of the native instruction.

For push, the operand is an index to the object literal table. We could just emit the index
value into the compiled code, saving one load (line 3 of Figure 4.5b) from the instruction
stream. However, we know a priori that the index will always be used to do a lookup in the
literal table. We have the table available at specialization time, and can treat it as a constant.
We can perform the lookup at compile time, and emit the actual object pointer, instead of its
index. This saves us an additional load in the executed code, on line 7, and we can also remove
the instruction line 6, which simply computes the address for the elided load. Specializing away

loads is particularly profitable, because it reduces memory system traffic.

We actually save two more loads, beyond the two already mentioned, because on lines 5 and
4, the compiler-generated code loads the address of the literal table from the bytecode object,
the address of which is stored in the stack frame. So, specialization saves even more than we
have discussed already. However, even optimally crafted interpreter code would have to load

the operand from the instruction stream, and likely from a literal table, too.

Exploiting catenation, we are able to eliminate still more instructions. The normal inter-
preter dispatches opcodes by fetching them from the bytecode stream, at the current virtual
program counter (vpc). After catenation, dispatch is eliminated, so we do not need the vpc
for this purpose. The normal interpreter also uses the vpc to fetch operand values from the
bytecode stream. But after operand specialization, operand values are stored in the emitted
native code. So, we will not need the vpc for this purpose, either. For certain instructions
involving exception handling, we may still need to consult vpc, see Section 4.1.4.3. However,

it never needs to be stored, nor, more importantly, updated. Therefere, we can remove the
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instructions which maintain the virtual pc. In our example, these would be the instructions on
lines 2 and 12 of Figure 4.5b,

It is possible that a hand-coded interpreter could combine instructions 2 and 3 in Figure 4.5b
into a single 1dub [%15 + 1], %00 and change the final increment of vpc on line 12 to jump
over the entire two bytes of the virtual instruction (add %15, 2, %15 instead of inc.) Our C
compiler, gcc, always chooses to separate the increment and the load. This may be due to an
instruction scheduling heuristic. In any case, it is a clear advantage of our technique to never
store or maintain the vpc. Even a hand-crafted interpreter cannot avoid dedicating a register
to the VM PC, and at least one native increment instruction per opcode body to maintain it.

Returning now to the workings of the specializer, we must indicate to it that it needs to re-
solve the literal object in push’s operand as a run-time constant. We set the subst_in_type field
of a new subst, associated with push, to the value SIT_LITERAL. Upon encountering the pushil
instruction in a bytecode program, the specializer will consult the instruction desc_aux_t for
pushl to learn it has one single-byte unsigned integer operand. After fetching that operand,
the SIT_LITERAL will instruct the specializer to translate it through the object literal table.
The result is passed on the output stage of specialization.

In this case, the operand needs to be specialized into the sethi/or instruction pair in
the template, shown on lines 2 and 3 of Figure 4.6. Therefore, the subst_out_type is set to
SOT_SETHI/OR.

Other opcodes will have one of a few other sorts of operands. The various possibilities
for each operand type are listed in Figures 4.4. After any transformation directed by the
subst_in_type, the compiler needs to know exactly how to place the resulting value into a
template. In addition to SOT_SETHI/OR, seen in our example, there are several other possibilities,
which are listed in Figure 4.3.

One special operand type listed in Figure 4.3 is the offset of a virtual jump. We convert
these jumps to single native branch instructions. An unconditional jump is converted to a single
Sparc b (Branch Always) instruction. The conditional jumps are translated to a small block
of code which pops the boolean condition value from the virtual machine stack. As with other

templates, this code derived from the original interpreter, but the specializer replaces the final
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manipulation of the virtual pc with a single native instruction.

Depending on the type of virtual jump, the native jump instruction is either bne (Branch
Not Equal) or be (Branch Equal). After the native opcode selection, the native destination
address is computed using the virtual destination, translated through the offset map computed
in the first pass (see Section 4.1.4.1). This translation of virtual jumps to native instructions
saves substantial execution time and space, and has particular impact because jumps are very

common in bytecode programs.

4.1.4.3 Exception handling

We mentioned above that we do not need to store or maintain the virtual program counter.
However, we cannot completely dispense with vpc. Any virtual machine system must deal with
unexpected behavior, and Tcl’s is no exception. Indeed, the Tcl language has rich standard
exception handling facilities, and the implementation attempts to unify handling of exceptions
in the interpretation process with the language-level exceptions. Furthermore, the language-
level exceptions are dynamic, and the target handler for a given exception at a given point
in the code may not be known until runtime. Thus, it is looked up in a table, which is
maintained by all three entities: the bytecode compiler, the interpreter, and the bytecode
program itself. At any time, the table maps ranges of vpc values where an exception may
occur, called “exception ranges”, to a tuple containing destination vpc and virtual stack depth,
to enable stack unwinding.

We generate native code so that, when an exception occurs, we jump to a native procedure
which is generic — there is only a single copy in the whole system. This procedure consults
the exception range table cleans up the stack, and jumps to the appropriate exception handling
location in the program. If there is no handler, the error is thrown, right out of the currently
executing bytecode object, and may be caught by some calling execution thread, either bytecode
or C, or may result in interpreter shutdown.

The table lookup needs to know the value of vpc where the exception occurred. We pass
this as an argument to the generic procedure. Recall, though, that we do not store or maintain

the vpc during execution. Instead, we synthesize it as needed, from context. Thus, before each
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call to the generic exception handler, we emit two instructions which set a very short-lived vpc
register variable, as a constant. This is implemented as the UPDATE_PC specialization, and is
described in Section 4.2.2.

Alternatively, we could have used the native program counter as a key to look up the vpc
in the offset table computed during the compiler’s first pass. However, the scan would be quite

slow compared to the present two-instruction implementation.

4.1.4.4 Second-pass Summary

After catenation and operand specialization have compiled all the bytecode to native code in
memory, we must take one more step before the code is ready to execute. Modern processors,
including the Sparc, have a “Harvard” cache architecture, where the instruction and data caches
are split. The JIT compiler emits native code as data, and thus into the D-cache only. Stale
copies of the memory may exist in the I-cache, and when we execute the code, it could be drawn
from this stale copy. Therefore, after emitting, we invoke Sparc stbar and flush instructions
to empty the processor store buffers and synchronize the I- and D-caches. Finally, then, the
code is ready to execute.

In summary, catenation is simple copying of data, with a bit of data transformation along
the way to rewrite branches, etc. As such, it runs very quickly. Interpreting the substs for
operand specialization is more involved, and yet is still very fast, because most instructions
need no specialization, and the rest are handled quickly. The work required is ideally no more

than:
1. One load, of the operand from bytecode stream
2. Two indirect branches, one each for subst input and output type
3. One load, to get native instruction (or two in case of sethi/or) from template
4. Four ALU instructions, to shift and mask operand into template
5. One store, to emit new instruction

This code must be executed for every subst of every bytecode instruction in the program be-

ing compiled. Most virtual opcodes require exactly one subst, although some require zero, two,
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or more. However, all this is much faster than any compiler requiring symbolic transformations
on intermediate code, or any system involving code that is not fixed-sized.

This concludes our discussion of catenation and specialization, and the JIT compiler proper.
The compiler core itself is small, and simple. Most of the complexity and computation have
been pushed into other parts of the system, which run at system-build time, or only once, during

initialization. Therefore, the compiler runs very quickly, and with minimal I-cache footprint.

4.2 Engineering effort

In Section 4.1, above, we described the workings of the core JIT compiler. The compiler
catenates and specializes templates, and our presentation assumed these templates were already
available. But, where do the templates come from? We address this question now.

The other significant part of our contribution is to show how our simple compiler was
crafted by building the templates directly from the existing virtual machine interpreter. We
next present the details of that transformation, which is outlined in Figure 4.7. Starting with
stock virtual machine interpreter, we will show the several steps taken to coax the C compiler,
along with some post-processing of assembly, to produce templates appropriate for catenation

and specialization, like that shown previously, in Figure 4.6.

4.2.1 Decomposing interpreter loop into separate instruction cases

In Section 2.6, we described the Switch-type dispatch used in the stock Tcl interpreter. To make
the interpreter more amenable to change, we first decomposed the cases for each instruction into
separate files, so that our build-time tools could process them individually. A single structured
file would also suffice, but separate files obviate the need to parse a structured file format.

We performed this decomposition using traditional Unix text-processing facilities, but also
manually, using a text editor. An important advantage of our technique is that it adapts well to
enhancements to the stock Tcl interpreter. For example, given a new version of the interpreter,
new bytecode instructions are simply extracted to new separate files.

In the next two sections, we describe how the individual files are changed, manually and
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Decompose interpreter into 1
instruction case per file; compile C to assembly
abstract dispatch

Change instruction cases into selectively "deoptimize"
compilation templates assembly

Y

Catenate templates etc. back

into compilable C conventional shared linking

(@) - Preliminary (b) - Software-build steps,
engineering effort drivenby make( 1)

Figure 4.7: Overview of engineering effort to synthesize compilation templates from existing
interpreter

automatically, to create templates for JIT compilation, and how they are then reassembled into

a single large file, ready for the C compiler.

4.2.2 Creating Templates from Stock Instruction Bodies

After the instructions are in files by themselves, we change each to make it more suitable for
our work. Initially, to experiment with various dispatch techniques, we removed the dispatch
code from the end of each instruction. When re-assembling the cases into a single block of code
at build time (see Section 4.2.3, below), we could add back custom dispatch code. This allowed
us to test several dispatch strategies, without making manual changes to all 97 opcode cases.

Later, we made other changes to each case, turning them into templates suitable for cate-
nation and specialization. Most of these changes are made by manually abstracting interpreter
programming idioms into macros, which could then be redefined to either create an interpreter
for testing, or compiler templates to yield the JIT. Aside from dispatch mechanisms, which we
discussed in Sections 2.6 and 4.2.1, the main idioms we abstract are for argument handling.
This is code that extracts operands from the bytecode instruction stream.

To implement specialization, we redefine this operand-handling code. Continuing with our
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tifdef INTERPRET
#define MAGIC_OP1_U1_LITERAL codePtr—>objArrayPtr [TclGetUInt1AtPtr (pc + 1)]
tdefine PC_OP(x) pc ## x
#define NEXT_INSTR break

#elseif COMPILE

#define MAGIC_OP1_U1_LITERAL (Tcl_Obj *) 0x7bc5c5cl

#define NEXT_INSTR goto *jump_range_table [*pc].start
tdefine PC_OP(x) /* unnecessary */
tendif

case INST_PUSHI:
Tcl_Obj *objectPtr;

objectPtr = MAGIC_OP1_U1_LITERAL;
*++tosPtr = objectPtr;  /* top of stack */
Tcl_IncrRefCount (objectPtr);

PC_OP (+= 2);

NEXT_INSTR; /* dispatch */

(a) C-language implementation of push opcode

Figure 4.8: Use and implementation of push bytecode instruction

example of push, our goal is have the C compiler emit the template in Figure 4.6. The code
in Figure 4.8 accomplishes this. The pushl opcode takes a single one-byte unsigned integer
operand, which indicates the index of an object in the literal table. (Recall that the instruction’s
purpose, of course, is to push this object on the interpreter stack.) We replace this code with a
C preprocessor macro, which, for specialization, is defined as a unique magic constant integer
value. As we discuss below, in Section 4.2.4, we arrange for this constant integer value to pass

mostly unchanged through all the phases of C compilation, optimization, and linking.

The resulting assembly is exactly the code we need for the JIT compilation template. The
compiler’s initialization phase, described in Section 4.1.4.1, searches for the position and type
of the the magic constant. Later, the specializer substitutes actual operand values into that

position.

We must specialize the operands of all bytecode instructions — the operands are not oth-

erwise available, since we chose to completely compile away the bytecode instruction stream.
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magic_opl_ul extract unsigned byte from the bytecode stream

magic_opl ul minusl extract unsigned byte from the bytecode stream, subtract one
from it.

magic_opl ul_literal extract unsigned byte from the bytecode stream, translate
through literal table

magic_opl_u4 extract unsigned word from the bytecode stream

magic_opl u4_literal extract unsigned word from the bytecode stream, translate
through literal table

magic_opl u4 builtin func extract unsigned byte from the bytecode stream, translate
through table of builtin math functions (e.g. sin, cos)

Figure 4.9: Magic constants used in interpreter source code to enable specialization in opcode
templates

Some operands are just specialized directly, as constants, while others enjoy additional pre-
computation treatment as run-time constants, as above with push. The various types of
operands are listed in Figure 4.9.

By inspecting the assembly output of the compiler, we can confirm which native instructions
will be used to load these constants. On a RISC machine, there are only a small number of
choices. Constants which fit in a 13-bit signed immediate field are loaded with mov instructions
(which are actually pseudo-instructions on the Sparc, expanding to or %g0, simml13, %rd;
the %g0 register is always 0.) When we know in advance that our run-time constant will fit in a
13-bit field, we deliberately use a magic constant which will also fit, so the C compiler generates
the shortest possible code.

Longer constants always get set with the sethi/or idiom. Usually, in the C code we
explicitly assign the constant into a variable. In a few places in the interpreter, we use the
constant in an expression directly — indexing an array, for example. In these latter cases, gcc
generates an add instruction with the constant in the simm13 operand field.

Almost every one-byte operand uses mov, and every four-byte operand uses sethi/or. Recall
that some operands are used directly, while others index a table lookup, and the looked-up
value is specialized instead. We use different magic values to indicate whether the operand
needs translation through a table. In any case, the instruction patterns remain the same; only

the magic constant are different. Thus the template scanner can find them all automatically.
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A few cases need an add instead of a sethi/or or mov, where the C optimizer applied copy
propagation. In a few other cases, the magic number is obscured by a multiplicative or additive
constant. For example, the C compiler may optimize address computation for array-indexing
code. These constants are stored in mul and add fields, described above in Section 4.1.2.

This technique is somewhat sensitive to which C compiler we use, and very sensitive to
the machine architecture. However, it is much easier than, say, hand-crafting templates. In
particular, while we need to learn the instruction patterns used in our templates at specialization
points, we do not need to know the exact location of these points. The locations are found
automatically by the scanning process, at subst construction time.

To choose the magic numbers, we collected frequency statistics on one- and two-byte se-
quences in Sparc programs, to find rare constants. Then, we check for exactly one match when
scanning templates (or, in a few cases, which are hard-coded per opcode, exactly two.) The
interpreter aborts if it does not find the expected patterns in the template at initialization.
While we have never observed one, a collision would immediately be found in testing.

In addition to magic numbers for specialization of operands, we also scan the code for C
function calls, and our special UPDATE PC C macro. We generate SOT_CALL substs for the
calls, indicating that the specializer needs to fix-up the targets of native call instructions (see
Section 4.1.4.2).

The C code for the UPDATE_PC macro expands to an assignment to the interpreter variable
pc, the virtual program counter. The value assigned is a magic constant. As discussed in
Section 4.1.4.3, this value needs to be up-to-date only on certain occasions. When we are
catenating the opcode at virtual pc n, we want to specialize the magic constant in any instances
of UPDATE PC with n. Thus, when scanning the templates, we locate the assignments, and emit
substs instructing the catenater to do just that.

The entire subst construction process requires roughly 4 ms on our test machine. This
represents only a marginal increase in interpreter startup time (total startup typically lasts 20
ms), because it only occurs once, and is insignificant compared to run-times of even very short
scripts. Actually interpreting the substs when compiling a typical bytecode object takes only

120 ps. New bytecode objects are frequently created, and, in our system, always translated to
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native code. Thus the two-pass system is substantially worthwhile, because recomputing 4 ms
worth of work on every translation would be far slower (4000 us is 3200% overhead for 120 us

of work!)

4.2.3 Build-time creation of interpreter loop

Given the many separate files, each containing C source for the template for one virtual opcode,
we need to combine them at build time into a single C function, and output a suitable file of C
code. This file contains preamble and epilogue code, including helper functions, C preprocessor
#include directives, etc. and the function itself, Tc1ExecuteByteCode ().

Like the file as a whole, the function itself also contains prologue and epilogue “boilerplate”
code. Its prologue consists of the function definition header, including return type, formal
parameters, local variables, and some setup code. The setup code is described below. The
epilogue contains most of the exception handling code for the interpreter, as well as a small
amount of cleanup code which sets the Tcl interpreter run-time “return result” to the last
item on the evaluation stack, and finally returns an appropriate interpreter error code (usually
TCL_OK). Most of this code is derived, or extracted directly from, the original interpreter.

The controlling code of the Tc1ExecuteByteCode () function would normally be a for/switch
loop. Since we will just be catenating the instruction bodies, we don’t need any dispatch. We
do require, however, exact delineation of the beginning and end of each opcode body. During
construction of the function, we insert labels before and after each body. For example, the mult
opcode gets surrounded by the labels inst mult_start and inst mult_end.

Finally, after the _end: label, we place a computed goto statement with a variable target:

goto *jump_range table[*pc].start;

This gets compiled into an indirect branch, and note that it looks like dispatch code. In
fact, it is dispatch code, but we never execute it, because during catenation we only use the
portion of the opcode body between the _start and _end labels. This does not include the
goto, which comes after the _end. However, the C compiler does not know about catenation.
It assumes the code executes sequentially, as written — that control flows from the end of the

opcode and into the dispatch.
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Indeed, the optimizer has to further assume that the dispatch occurs, and thus that inter-
opcode control then flows non-sequentially. The array jump_range_table contains the addresses
of the start of each opcode body. (See Section 4.2.3.) The compiler thus knows that control
flows to the start of one of the opcode bodies, but it does not know which. Thus, it is forced to
build a control flow graph where each opcode body follows every other. This is precisely what we
need, because that is what happens when we catenate code according to an arbitrary bytecode
program. In this way, all the register allocation, stack usage, etc., setup by the optimizer for

the interpreter, as written, are valid in any catenated program.

The jump_range_table is an array containing the native addresses of the start and end of
the native code for each opcode. Our build script places it after the prologue when constructing
the Tc1ExecuteByteCode () function. In addition to the use just described (i.e., to constrain the
control flow graph), this table is also consulted during catenation. Recall that the catenation
process consists of copying the native code for each opcode, and so it needs to know where the
code begins and ends. In the C code for our compiler, catenation and TclExecuteByteCode ()
are implemented in separate modules, to decompose software complexity. The labels-as-values
part of gcc’s computed goto facility does not allow referring to a label outside of the scope of

the function in which it is declared.

To work around this, we extend TclExecuteByteCode() to accept an extra argument,
init (see Figure 4.10.) This argument is a pointer to a structure with the same type as
jump_range_table. If it is non-null, the function simple copies the jump_range_table, which
is a local variable, into the array referenced by init. At compile time, the compiler must
allow for the possibility that init will be NULL. TclExecuteByteCode() is written so that
this causes control to flow into the C code for the virtual instruction bodies. In this way, the
optimizer cannot see that we never actually call Tc1ExecuteByteCode () except to copy the
opcode addresses. Otherwise, it could treat the instruction bodies as dead code, and not emit
code for them.

Like any typical software built on a Unix system, this process is driven by make (1). It runs

the build script to create a single . c file, and invokes gcc to compile the result to assembly. We

stop the C compiler at the assembly stage because we interpose a post-processing step before
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int TclExecuteByteCode(Tcl_Interp *interp, ByteCode *codePtr, execute_export_t *init)

{

/% ... declare interpreter local variables (e.g. stack, pc) ... */

static jump_range_table_t jump_range_table []= {
{&&inst_pushl, &&inst_pushl_end},
{&&inst_pop, &&inst_pop_end},
{&&inst_load_scalarl, &&inst_load_scalarl_end},

b

if (init) {
init—>jump_range_table = jump_range_table;

return TCL_OK;

}

/% ... interpreter setup code; sets up stack, etc. */

if (! init) {
goto *codePtr—>native_code.code;

}

Figure 4.10: Beginning of TclExecuteByteCode () function

linking. This is described in the next section, 4.2.4. Then, as described in Section 4.2.5, make

continues to drive the process to complete a traditional build.

4.2.4 Deoptimization of assembly

Given the customized opcode implementations, and building them into a function, as described

above, the C optimizer is mostly constrained to build the self-contained opcode bodies we need

for templates. However, the opcode bodies are not perfectly suitable, and require some fixing

before use. We undertake minor changes to the opcode bodies after they are optimized. We

do this by post-processing the compiler’s assembly output, using a Tcl script which parses the

assembly.

The script has minimal knowledge of Sparc assembly language, mostly treating it as text,

but recognizing some patterns, such as labels and branch instructions.

By identifying and

parsing the assembly version of the jump_range_table, it is also able to locate the start and

end labels for each virtual machine opcode body.
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4.2.4.1 Delayed Branch

One optimization that can cause trouble it that of scheduling an instruction to fill the Sparc
branch delay slot. The Sparc architecture [23] defines special semantics for “control transfer
instructions”, including branches. The instruction immediately following a branch is always
executed, whether or not the branch is taken. Originally, this was to avoid a pipeline stall
while the branch target was fetched. Consider the code for the store_scalarl opcode, in
Figure 4.11a. It will get compiled into something like Figure 4.11b. Note how the optimizer
has inserted a copy of the sethi instruction at .L2, after the branch to .L3.

Unfortunately, .L2 corresponds to the end of our opcode body. The rest of the instructions
(including the sethi) are dispatch code we do not use. But, the b .L3 instruction violates one
of our constraints for usable opcode bodies: the non-error exit cases must flow to the instruction
immediately following the end of the opcode body. In this example, that means the exits must
flow to .L2. Here, the code for the else clause indeed flows to .L2, but the instructions for the
then clause end by jumping to .L3, one instruction too far. The result, after catenation, is that
the first native instruction in the body of the subsequent virtual instruction will be skipped!

We rectify this problem by reversing the delayed branch optimization, when necessary.

Post-processing the assembly, we search for code that matches this pattern:

e A branch B whose target T2 is exactly one instruction beyond the end of a virtual opcode

body.

e The instruction immediately prior to T2 has label T1. Note, T is the end of the virtual

opcode body.

e The instruction in the delay slot of (i.e. immediately following) B is the same as the

instruction at T1.

If we match this pattern, we undo the optimization, by changing the target of B from T2
to T1, and changing the delay slot instruction to nop. Fourteen virtual opcodes required this

de-optimization.
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tdefine NEXT_INSTR \
goto *opcode_address_table[*pc].start

5 store_scalarl_start:
JE LK
if (varPtr—>tracePtr == NULL)

/* then clause ... */

10 }
else
/* else clause ... */
}
15
store_scalarl_end:
NEXT_INSTR;

(a) Excerpt of code for opcode store_scalarl

; ... code for then clause ...

; after the then clause, we want to jump to .L2, but the optimizer fills the
; branch delay slot with a copy of the instruction at .L2, and changes the
; target of the branch to the instruction after .L2, now labeled .L3. The

; branch target is now one instruction past the end of the opcode body!

b .L3
sethi %hi(opcode_address_tbl.21), %o0

; ... code for else clause ...

sethi %hi(opcode_address_tbl.21), %o0

or %00, %lo(opcode_address_tbl.21), %00

; rest is NEXT_INSTR dispatch
1d (%17 + %001, %ol

1d [%fp - 6161, %03
1dub [%03], %00

sll %00, 3, %00

1d [%o1 + %001, %00

jmp %00

nop

(b) Excerpt of optimized assembly for (a)

Figure 4.11: Code for store_scalarl opcode, illustrating de-optimization of delayed branch
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inst_foo_start:
if (value2Ptr == NULL) {
result = TCL_ERROR;
UPDATE_PC;
GOTO_checkForCatch;

}
/A

inst_foo_end:
NEXT_INSTR;

inst_bar_start:

if (IS_-NAN (R.d) || IS_INF (R.d)) {
TclExprFloatError (interp, R.d);
+-+tosPtr;
result = TCL_ERROR;
UPDATE_PC;
GOTO_checkForCatch,;

}
/A

inst_bar_end:
NEXT_INSTR;

Figure 4.12: Multiple blocks of identical code may be abstracted into one when C optimizer
applies tail-merging

4.2.4.2 Tail Merging

Another gcc optimization creates difficulties for us. In undertaking code size reduction, the
optimizer employs tail merging [27]. Suppose two (or more) nodes in the control flow graph
have identical contents, different predecessors, and identical single successor nodes. In this
case, the identical nodes may be merged into one, redirecting edges from the predecessor blocks
appropriately.

Because many Tcl opcode bodies share similar features to handle dispatch, errors, etc., the
optimizer found several opportunities for tail merging in the virtual machine interpreter. This
phenomenon is more easily understood in a small example. Figure 4.12 shows implementation

of two hypothetical instructions in which this optimization is applicable.
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Notice that the last three lines of original blocks B1 and B2 are the same, and end in a jump
to B3. This pattern allows the compiler to apply tail merging. Unfortunately, the merged code
violates our criteria for catenating templates: the opcode bodies are no longer self-contained
and contiguous. Instead, one will contain a jump to code stored in the middle of the other. Or,
they both might contain a jump to a copy of the code in some other location. Either violates
our criteria that all the instructions for the opcode body lie between the _start and _end labels.

In our example, tail-merging has moved the UPDATE _PC macro into a shared block of code
in the new B3. Recall that the purpose of this macro is to set a register with the value of the
virtual pc at a particular instruction. By definition, then, there must be a distinct instance
UPDATE_PC for each virtual instruction; the instance cannot be shared.

Fortunately, it is not too difficult to transform the assembly language output of the compiler
to undo this optimization. Again, a Tcl filtering script treats the problem as a text processing
job on the assembly output. It finds the boundaries of all the opcode bodies, loads them all into
memory, and parses the labels in the assembly code, so that the target of any branch instruction
can be mapped to a given opcode body. Then, it searches for an unconditional branch from
one body to another, which in gcc’s case, is a signature for this transformation. To undo this
optimization, we replace the branch with a copy of the code at its destination.

This concludes our discussion of de-optimization of assembly. It is interesting to note that,
after bootstrapping, we have used our catenating Tcl “interpreter” to execute the Tcl scripts
used to perform this post-processing. Such self-compilation is an excellent way to find bugs in

the compiler.

4.2.5 Linking

After the compiler output has been post-processed for de-optimization, etc., it is ready for
assembly with the normal Unix assembler. The resulting object is linked together with all
the other object files for the Tcl interpreter, virtual machine, and runtime library. We use a
traditional shared library linking process. The resulting library is suitable for embedding in any
program, and is also linked with a command-prompt shell and driver program that is suitable

for inclusion as the “#!” interpreter in the first line of Tcl scripts.
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4.2.6 Summary

In this chapter we have presented our implementation of a JIT compiler for the Tcl virtual ma-
chine. The compiler is based on the ideas of catenation and specialization, which use templates
to generate native code. The templates are fixed-size, and contain almost all the code necessary
to implement the semantic body of each virtual opcode. To compile the opcodes in the input
bytecode program, the templates are copied in program order to new executable memory. Then,
to complete compilation and improve performance, the operands in the program are specialized
into slots in the templates.

We derive the templates using a novel approach. Starting with the C code for the original
virtual machine interpreter, we use the traditional C compilation process to synthesize the tem-
plates. This minimizes effort and semantic errors, and makes it easy for compiler development
to track improvements in the interpreter.

A significant proportion of the effort in constructing the compiler is devoted to manipulating
the source code and resulting object code, because the C-compiled code is not amenable to
arbitrary relocation and manipulation as required by catenation, and the C optimizer can
frustrate our strategy of generating templates with slots for run-time constants that can be
used by specialization.

Overall, however, these work-arounds are much smaller than the rest of the core compiler,
and they allow us to exploit the C compiler to manufacture templates which are high-quality and
error-free. Rather than re-implementing the semantics of the existing interpreter, we reuse them.
The entire implementation is much smaller, simpler, and faster than a full-blown traditional
compilation system. In the next chapter, we describe its performance impact on the run-times

of typical Tcl programs.



Chapter 5

Evaluation

To measure the impact of catenation and specialization in our implementation, we constructed
two sets of experiments. We report the results of these trials in this chapter.

The first experiment tries to measure execution time on a small number of Tcl benchmarks,
to determine if our modified interpreter actually improves performance. It also captures detailed
micro-architectural statistics to help learn where these improvements (or, as is sometimes the
case, deterioration) in performance originate.

The second experiment tries to answer questions raised by the first, by running a large set
of benchmarks on both our Tecl interpreter, and the original version, while varying only the
size of the instruction cache. This hypothetical scenario requires a simulation infrastructure,
because of the lack of variety in I-cache sizes within generations of the Sparc CPUs. Using CPUs
from different generations, which have substantial architectural differences, would confound the

results.

5.1 Cycle counts and other Micro-architectural Details

Our first experiment is to measure the execution time of our benchmarks, under stock Tcl and
our catenating VM. The highest precision clock available is the CPU’s cycle counter, available
using the Sparc performance counters [23], which are present in the sparcv8 instruction set

on the Ultrasparc-II and later CPUs. Two 64-bit hardware registers can be programmed to

69
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collect any two of a wide variety of events, such as cycles, instructions retired, cache misses,
branch mis-predicts, etc. Many of these are of interest, but the most valuable are cycles and
instructions. From these we can derive the ratio cycles-per-instruction (CPI), which allow us
to measure the throughput of the out-of-order superscalar CPU on our interpreter workload.
Thus, in addition to measuring time precisely and accurately, using cycles helps understand

why our techniques perform as they do.

The throughput ratio is interesting because we know our technique makes tradeoffs in in-
structions versus cycles. It reduces the number of instructions issued, by completely removing
dispatch code, and specializing away some operand processing. The former reduces branches,
and both reduce load instructions. On the other hand, we increase the size of the working set
dramatically, because of code duplication inherent in catenation. Furthermore, some VM dis-
patch techniques run afoul of certain micro-architectural features designed to speed execution
of traditional, non-VM native programs [9].

To facilitate the experiment, we implemented a Tcl command to collect performance statis-
tics while running arbitrary Tcl code. For any given run, usually consisting of many iterations
of a benchmark, we can track two event counters for three virtual machine subsystems: the
entire benchmark, all time spent in compilation, and time in catenating / specializing compi-
lation. We can also choose whether or not to include events during execution of system code,
on behalf of the application. The events can be selected from most of those available in the
hardware, e.g. instructions retired, machine cycles, various stall and cache statistics, etc.. We
run many iterations (between 10 and 10000) to reduce the error introduced by measurement
overhead and cold caches, and then divide the total elapsed counter by the number of iterations
to yield a per-iteration statistic.

For these experiments, we ran our benchmarks on an otherwise unloaded machine, and
exclude events incurred while the operating system was executing other programs. The machine
is described in Figure 5.1.

The resulting data is shown in the two tables in Figure 5.3, with some details emphasized
graphically in Figure 5.4. Each data column is described in detail in Section 5.1.1. See Figure 5.2

for a description of each benchmark program. We chose EXPR~unbraced because it is contrived
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Machine Sun Microsystems SunBlade Model 100
Processor 502 MHz Ultrasparc Ile
Memory 640 MB RAM

Operating System

Solaris 8 4/01

Instruction cache

16 KB 2-way set associative

Data cache

16 KB Direct-mapped

Level 2 cache

Unified 256 KB 4-way set associative

Figure 5.1: Specifications of hardware used in empirical performance evaluation

to force excessive re-compilation, IF-multi-1st-true because it exercises conditional branches,

MATRIX-mult-15x15 because matrix multiplication is a common compiler benchmark, MD5-

msg-len-10000 and WORDCOUNT-wc2 because each includes a balance of numerical and string

processing typical of Tcl programs, and FACT-fact-13 because it is typical of virtual machine

interpreter research (e.g., see [33].)

5.1.1 Description of Data Table

Some columns in Figure 5.3 appear twice, once each for bc and ntv. These correspond to

the same statistic measured for both the original bytecode interpreter, and the native code

compiler, respectively. A description of each column follows:

Benchmark: Name of the benchmark. Refer to Figure 5.2.

Execute time improve% - cycles: Percentage change in number of native machine cycles

executed (all cycles, including all compilation, system, etc.) by benchmark using a byte-

code version of the interpreter versus a version compiling the bytecodes to native code.

Positive numbers indicate native code is faster. Measured by running benchmark up to

1000 times, and dividing by the number of iterations. Compilation time may thus be

amortized in cases where compile result is cached by interpreter.

Execute time improve% - instructions: Same as B, but using machine instructions in-

stead of cycles.

Cycles per instruction: Average number of machine cycles required to execute each native

machine instruction.
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I-cache stall CPI%: Percentage of machine cycles the CPU spent stalled waiting for machine

instructions to be moved from the L2-cache or main memory into the instruction cache.

Load stall CPI%: Percentage of machine cycles the CPU spent stalled waiting for data to be

moved from the L2-cache or main memory into the data.

Cycles per VM instruction: Native machine cycles required to execute average virtual ma-

chine instruction.

Comp _ntv%: Percentage of execution time spent on compilation, either bytecode or catenat-

ing.

IC_hit%: Percentage of I-cache references that hit, when using the catenating compiler.

DC_hit%: Percentage of D-Cache references that hit.

L2_hit%: Percentage of references to the L2 (also known as external) cache.

Sys%: Percentage of all machine cycles executed during the benchmark which were executed

by the kernel on behalf of the benchmark.

diff nocomp% - cycles: Total execution cycles, but not including time spent on catenating

compilation.

diff nocomp% - instructions: Total execution instructions, but not including time spent on

catenating compilation.

comp% - ntv: When running the benchmark using the catenating compiler, percentage of

compilation time spent catenating alone.

comp% - be: When running the benchmark using the catenating compiler, percentage of com-
pilation time spent on bytecode compilation (that is, the translation of Tcl source to Tcl

bytecodes) only.
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EXPR-unbraced Evaluation of an arithmetic expression using the expr primitive. The expres-
sion is unbraced, meaning that it must be re-compiled at evaluation time to

preserve Tcl semantics

IF-multi-1st-true A large if-elseif-elseif... tree where the first condition is true.

MATRIX-mult-15x15 | multiply two 15x15 matrices stored as 2-level nested Tcl lists

MD5-msg-len-10000 Tcl-only implementation of md5 message digest algorithm, run on 10000 byte

input

WORDCOUNT-wc2 count words from a file

FACT-fact-13 iterative evaluation of factorial function, with input n = 13

Figure 5.2: Description of benchmark programs

5.1.2 Discussion of Results

Referring to the data in Figure 5.3a, we see that three out of seven benchmarks run faster when
using a VM interpreter using our catenating and specializing compiler. These benchmarks,
IF-multi-1st-true, MATRIX-mult-15x15, and FACT-fact-13, are characterized by low average
native cycles per dynamic bytecode executed. In general, they are executing loops of simple

bytecodes that don’t call large bodies of interpreter or system code.

MD5-msg-len-10000 executes substantially fewer machine instructions when using the cate-
nating VM, but this does not translate to reduced execution time, because it executes 46%
more machine cycles. Indeed, the catenating VM proves a difficult load for the CPU to exe-
cute, requiring 3.46 cycles per machine instruction (CPI), compared to only 1.75 for the normal
interpreter. 43% of the CPI is due to the CPU stalling on I-cache misses, which can be seen
clearly in Figure 5.4. This is not surprising, since our catenation technique explodes code size by
factors of roughly 15, on average. If the resulting working set cannot fit in the CPU’s instruction

cache, I-cache stalls will overwhelm savings from 20 cycles of reduced dispatch overhead.

In the case of MD5, the inner loop is not tight enough because it invokes a Tcl subroutine —
and a relatively large one. Tcl subroutine invocation is relatively inefficient, requiring several C
function calls for call frame setup, and a recursive call to the interpreter. These calls, together

with the catenated size of the subroutine, exceed the capacity of the I-cache on the Ultrasparc-
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ITe.

Except for EXPR-unbraced, the benchmarks all exhibit reduced instruction counts. EXPR-
unbraced is designed to require continuous late re-compilation. The semantics of Tcl require
that expr expressions not enclosed in braces cannot be compiled until just before execution.
In column K we see this requires over 76% of runtime spent on compilation! It turns out that
just over half is native code conversion, and the rest is normal Tcl compilation (see columns T
and U.)

Since EXPR spends so much time on compilation, and catenation doubles the length of that
time, this and other workloads requiring lots of late compilation are not good candidates for the
catenating technique, or any technique which increases compilation time. Unbraced uses of the
expr primitive are rare, however, and specifically recommended against in Tcl programming
style guidelines [18]. Because raw instruction count increase overwhelms the subtler issue of
CPI throughput, this benchmark’s I-cache performance is not comparable to that of the others.

WORDCOUNT shows an 11% slowdown with catenation. This small degradation seems to
have several components. It is likely due to slightly worse I-cache and L2-cache performance
(see Figure 5.3b), similar to MD5. WORDCOUNT makes use of system calls to read its input
from a file, and is generally more data intensive than most of the other benchmarks. With a
large number of cycles for each VM instruction executed, it is not sensitive to interpretation
speed, so the small additional compilation time is not repaid.

The WORDCOUNT data load on the L2-cache may interfere with the instruction fetches
which missed in the I-cache due to code size increase. In a VM interpreter, the data cache
does the job of an I-cache — that is, virtual instructions must be serviced from the D-cache.
Thus, we observe interpreter load-stall rates in column I to be quite consistently higher than
catenated rates in column H. However, virtual instructions for a bytecode stack machine are

compact, and most of the D-cache workload is real data, so this effect is very slight.



75

EVALUATION

CHAPTER 5.

"S[TRJOP I0J T'C UOIIAQ )X} 990G "SIDJUNO0D ddURULIONAd )M SYIRWOUS( SUTUUNI WOIJ R)ep ISYI0 PUR SHUNO0I J[ILD) :¢'¢ aIndI,J

(q)
90 | v€ | € | G | 16| 9L | G6 | 26 |26 | L6 € €1-19e)- 1DV
6v | 1G | 6 | 8 | ¥L| OL | 96 | 26 | 86 | 86 I 2oM-1NNODAYOM
9c | ¥9 | T | T |vS| 8E | 16 | 06 | €6 | L. > 00001-u3|-8sw-GaN
ov | ¥G | T | T | S8 | 89 | L6 | 26 |66 | 96 > STXGT-UNW-X Y LVIN
by | 96 | 6 | cC| 29| TG | 00T | 26 | 96 | 88 6T ana-IsT-NINW-4j
8y | 26 | OT | TT [ ZF | OG | €6 | 16 | 88 | €6 9, paseiqun-yd4x3
Oq | AU | AU | DQ | 2Q | AU | DQ | AU | OQ | AlU
%dwod | %shs | %uyz] | %HY DA | %HUDI | %Awdwod SHewydusg
(e)
621 A e L1 9 €91 [EA 8 19 €1-198)-1 V4
185¢ 8z 91 g L ITT vT'1 v 11- 2oM-1NNODAYOM
69C 9C L1 1 3 6LT or'e 9 ot~ 00001-u3|-8sw-GaN
op1 9 €C 4 8 CTA 171 6¢ 8¢ GIXGT-UNW-XIYLVIN
68 61 81 I IC 8t ¥8'1 0¢ €1 anu-1sT-NInw-4|
266 ST 0T 0z ST €0C 01 €L 6L paseiqun-ydqx3
2q AU 2q AlU 2q AlU suoilonJisul mw_u\AU
uoinaisul INA . uolonJaisul o,anoidwi
sad sapAn %IdD Ilels peoT %IdD 11e3s ayoed-| suiypew sad sapA) su 21n9%3 spewydudg




CHAPTER 5. EVALUATION 76

5.2 Varying I-cache Size

Examining the results from the previous section, we see that except in cases contrived to force
large amounts of re-compiling of Tcl source (EXPR-unbraced), our technique does decrease the
number of instructions executed. However, it often increases the number of cycles executed, and
thus overall run-time. A large part of this increase is due to I-cache misses, because catenation

dramatically increases the code size of the workload, often beyond the size of the I-cache.

To further explore this effect, we undertook a subsequent experiment, to compare the orig-
inal interpreter and our catenating version, while running different sizes of I-cache. While all
processors in the Ultrasparc 11 family have a 16 KB I-cache, the Ultrasparc-III processors have
32 KB. We were unable to locate an unloaded Ultrasparc-III, and the architecture is different
enough from the Ultrasparc-II to make it difficult to compare only on the basis of I-cache size.
Instead, we chose the Simics full-machine simulator [22], which we had also used to collect

instruction traces during the development process.

Simics boots and installs an unmodified Solaris operating system from the manufacturer’s
CD-ROMs. It models several types of Sun machines accurately, including processors, memory
subsystems, etc. As such, it is a very faithful simulation platform. Unfortunately, it does not

implement the Sparc hardware performance counters used in our earlier experiments.

Furthermore, Simics is a full-machine simulation, and thus makes no distinction between
when the simulated operating system has the CPU, and when simulated user processes have it.
Thus it cannot directly provide separate accounting for, say, CPU time consumed by one user
process of interest, versus time consumed by the operating system on behalf of that process.
More importantly, it is difficult to exclude time consumed by another, uninteresting user process

which we do not wish to measure.

While we ran the operating system in single-user mode for these experiments, the system
still undertakes some activity unrelated to our benchmarks, and thus it is necessary to isolate
our statistics collection to only the periods of time when they are running. While this is
difficult without operating system source code, we were able to devise an accurate replacement

for the per-process cycle and instruction counters, using advice from Simics developers. By
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tracking all “change” events to the simulated MMU context registers, we are able to follow
context switches, and thus maintain a per-process data structure accounting for elapsed cycle

and instruction counts.

We make this information available to user processes on the simulated machine via a special
“magic instruction” interface, which essentially provides an API for communicating between
the process and simulator when the user executes a prescribed machine instruction not normally
used in the Sparc instruction set. We then encapsulated this APT in a Tcl command which can
count the number of simulated cycles and instructions executed when running a given number
of iterations of a Tcl script. The iteration count and script are specified as arguments to the
command.

We ran a large number of benchmarks from the TclBench benchmark suite [41], often used
for evaluating the performance of various versions of Tcl. The suite includes many programs
typical of Tcl applications, including file and string processing, list manipulation, etc., each
executed on a variety of sizes of input.

We configured the simulated Sun Fire 3800 (Serengeti) machine with 512 MB of RAM, an
Ultrasparc 111+ (Cu Cheetah+) processor, a 64 KB 4-way set associative data cache, and a
1024 KB direct mapped unified L2 cache. We ran four sets of experiments, setting the size of a
4-way set associative instruction cache to 32, 128, 512, and 1024 KB. The L2 cache used a line
size of 64 bytes, while both L1 caches had 32 byte lines. Missing in the L1 cache induces a 15
cycle latency, and missing the L2 results in a 100 cycle penalty.

With two Tcl interpreters and four I-cache sizes, each of the 520 benchmarks was run 8
times, resulting in a large amount of data. However, our purposes here require reporting only a
few basic numbers (see Figure 5.5.) For the 32 KB I-cache, 46.1% of the benchmarks ran faster
with the catenating interpreter. That is, slightly more than half of the benchmarks actually
ran slower using our technique. On the other hand, with a simulated 1024 KB I-cache, and a 4
MB L2-cache, 66.3% ran faster. Simulating an infinite size I-cache — a memory hierarchy with
no penalty for fetching instructions from main memory — we find that 84.6% of benchmarks
run faster. The rest run so quickly that they are unable to amortize the additional compilation

time required for native code.
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Figure 5.5: Varying simulated I-cache sizes to study code expansion effect versus decreased
instruction counts when comparing native-code compiler to original interpreter.

We can see a more detailed picture of how I-cache size affects performance in Figure 5.6. It
shows the speedup of all benchmarks for the four cache configurations above. We have sorted
by speedup the benchmarks separately per cache size, and thus the way to read the graph is to
see, for example, that for a 32 KB I-cache, 100 benchmarks ran between 16% and 60% faster.
For an infinite cache, 200 benchmarks ran between 20% and 70% faster.

The results indicate that larger instruction cache sizes result in more improvement in each
benchmark for catenation, or, in the cases with slowdown, less slowdown. While this is the-
oretically interesting, the experiment mainly serves to verify that degraded instruction cache
performance due to the code-expanding effect of catenation are the main constraint to its appli-
cability. To be useful, catenation must be applied selectively, using mixed-mode interpretation,
or by somehow choosing not to use compilation at all on a given code object. We briefly discuss

these ideas in our Future Work section in Chapter 7.
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Chapter 6

Related Work

While compilers have been a well-studied area of Computer Science since they first appear in the
early 1950s [1], interpreters have received less attention. Interpreters are used extensively in the
practice of programming, but they are often considered inappropriate for performance-sensitive
applications, and thus we observe fewer attempts related to improving their performance. In
this chapter we discuss some of the research related to our efforts.

Interpreters often appear at the heart of language environments such as Smalltalk, Forth,
Java — and Tcl. Together with the large virtual machines in these environments, interpreters
facilitate portability, extensibility, and dynamic features such as introspection. Our presentation

here is organized partially along the lines of these language systems.

6.1 Forth

Named by its inventor Charles Moore in 1968, the Forth programming language actually started
in 1958 as an interpreter of programs containing floating point math primitives [35]. In 1961
it acquired the concept of a stack machine, and later added an additional “return” stack for
procedure calls. A significant part of the Forth philosophy includes portability, but with close-
to-the-machine implementation and semantics. The Forth interpreters were major early users
of indirect- and direct-threaded code.

Anton Ertl [8], investigates various implementation strategies for indirect- and direct-threaded

81
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dispatch in a Forth system, and measures their performance on various microprocessors. The
data itself is interesting, but most revealing is his conclusion that various modern micro-

architectural features have a major impact on the performance of different dispatch strategies.

6.2 Smalltalk

The Smalltalk language began around 1972 at Xerox PARC. Together with its major influence
Simula, it is one of the first object-oriented languages [11]. The object system, including
garbage collection, and object-based execution paradigm are significantly different from typical
hardware, and included features such as animated bit-mapped graphics that were beyond the
abilities of that hardware. Thus, the system was implemented as a virtual machine. This
machine provided a bytecode interpreter, an object storage system, and primitive methods.
The rest of the system was implemented in Smalltalk itself, on top of this foundation. This
includes the compiler, which translates Smalltalk source methods to bytecode.

Smalltalk is highly interactive, dynamic, introspective, and supports an incremental devel-
opment environment. Most of the system is closely coupled with the virtual machine interpreter,
and so the virtual machine interface had to be maintained in any implementation. Each imple-
mentation could run the same Smalltalk image (essentially an object database), as long as it
closely followed the virtual machine standard specified in The Blue Book [11].

Smalltalk was so useful that substantial applications were built on it, and demand for
increased performance grew. Deutsch [6] presents a just-in-time bytecode to native code com-
pilation system for Smalltalk, perhaps one of the first for any language. It made relatively
naive translations, and allowed for mixed-mode (interpreted bytecode mixed with native) code.
It included method inlining, and improved performance substantially.

Today, the highest-performance Smalltalk systems use this native code approach. While
the bytecode compiler employs some optimization, there has not been a great deal of activity
on improving the interpretation proper of Smalltalk bytecodes. However, the Smalltalk-80
system defined in the Blue Book standard is an evolved version of earlier systems, and includes

innovations such as some standard superinstructions, which we discussed in Chapter 2.
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The Brouhaha Smalltalk virtual machine implementation [26] uses indirect threaded code
to interpret standard Smalltalk bytecodes without a compilation phase. The interpreter is
constructed using a process similar to our own. The C compiler is exploited at interpreter-
build time to generate native code from mostly portable C source. Each bytecode instruction
implementation is placed in a separate C function. Assembly language output from the compiler
is post-processed to strip prologue and epilogue code. Unlike our system, however, after they
are linked and loaded, the instruction implementations are not moved, copied, or specialized.
Instead, they are used for efficient interpretation, and mechanisms such as the virtual program

counter and stack are retained.

Like some other virtual machines, Smalltalk employs special opcodes for particular constant
values, such as push_literal. This opcode takes one operand, an index into a literal table,
and pushes onto the evaluation stack the appropriate literal. In addition, it has an entirely
separate opcode, push_1st_literal, to push the literal table object with index 1. Indeed, it
has 16 separate opcodes to push each literal table entry from 0 to 15, and many other bytecodes
which pack operand bits into opcode bits. This saves space and time, because the bytecode
program can be more compact, and fewer loads are required to decode it (although more bit-
level shifting and masking is necessary during decode.) However, it substantially pollutes the

bytecode space, which only allows for 256 different entries.

In comparison, our technique allows a more flexible bytecode encoding, with more possible
bytecodes, and simpler operand extraction. At the same time, using specialization, it exploits
all of the benefits of the above approach using special opcodes, for any operand value. Instead
of being limited to efficiently pushing, say, the first 16 literal values, we can compile bytecode
which pushes any literal value and emit equally dense native code. Furthermore, because
specialization is a late compilation, we can propagate the run-time constant value and actual
pre-load the literal pointer. So, our technique subsumes customization of bytecodes for certain

operands, and executes fewer native instructions in any case.
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6.3 Java

Like Smalltalk, Java’s object system is integrated in the virtual machine, with a well-defined
standard [20]. Due to its widespread popularity, it has attracted a great deal of attention in
the compiler research community. Many different interpreter techniques have been deployed to
execute Java. For example, the interpreter included in the virtual machine of the GNU Java
Compiler, gcj, does a pre-pass over the bytecode before execution to translate it to direct-
threaded code [3]. Essentially, bytecode opcode numbers are replaced with 32-bit addresses
pointing to C switch statement cases with the implementations of each opcode, using gcc’s
labels-as-values extension.

Many just-in-time compilers (e.g., [43], [39]) have been implemented for Java, which attempt
to realize high-performance without changing the bytecode-based software-deployment model,
a major part of the Java standard. Some of these, such as HotSpot [24] use advanced run-time
dynamic optimization to improve the generated native code. For example, in a form of profile-
directed optimization called polymorphic inline caching, HotSpot instruments virtual dispatch
indirect call instructions to learn the class of the receiver object. If there is a strong bias in
the distribution of types, the method for the most popular classes can be inlined, after suitable

protection with “guard” instructions.

6.4 Tcl

Aside from the bytecode compiler and virtual machine built in to the Tcl interpreter in version
8.0 [18], there have been several attempts at “compiling” Tcl code. The main reasons to compile
Tcl scripts are performance, deploy-ability, and protection of intellectual property (source code.)

In this section, we discuss some of these efforts.

6.4.1 tc

Perhaps the earliest work is Adam Sah’s, which was based on versions of Tcl before version 8.0.

For his Master’s Thesis [37], Sah! invented dual-ported objects, which associate a type with

!Sah was a student of Qusterhout’s at Berkeley.
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each string object in the Tcl system, and attempt to cache the value of the typed object. For
example, in addition to storing “123”, the object also stores type integer and value 123.

To see how this improves performance, consider an arithmetic primitive, for example. If
only a string value is available for each integer object, it must be parsed into an integer (e.g.,
using the C sscanf function) before the primitive can perform arithmetic, each time it is used.
Worse, the result must be converted back to a string. With a dual-ported object, the parsed
and typed value is cached in the object, along with the string. Primitives can then refer to the
value directly, instead of parsing.

Tecl 8.0’s object caching system is largely based on Sah’s work. Sah also stored a pre-parsed
version of scripts, essentially avoiding repeated tokenization. However, tc did not attempt any

compilation to bytecode or native code.

6.4.2 ICE 2.0 Tcl Compiler

The ICE 2.0 Tcl Compiler project [36] created a commercial stand alone static (ahead-of-
time) Tcl version 7 to C compiler in 1995, and then a later version in 1997 that also targeted
bytecode and included a conservative type system. The compiler offered an approximately 30%
improvement in execution time over the Tcl 8.0 bytecode compiler. Both the ICE compilers
were static, that is, required a separate compile step. This precludes using the compiler as
a drop-in replacement for the original interactive Tcl interpreter, an important modality for
scripting languages. The Tcl 8 compiler, and our interpretation technique, both preserve that
modality. The source code of the ICE Compilers was never released to the research community,

and is no longer actively developed.

6.4.3 TclPro

TclPro [4] was a commercial software development environment released by Scriptics, a company
formed by John Ousterhout, Tcl’s inventor, to commercialize the language. TclPro contained a
lint-like static syntax checking tool, a debugger, an IDE (integrated development environment)
and, finally, a “compiler”. The compiler’s main purpose was intellectual property protection

via source code obfuscation, rather than performance. The compiler simply serialized and
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externalized to disk the Tcl 8 bytecodes resulting from bytecode compilation of scripts. This
potentially saves some time by avoiding the compile step at runtime. However, the compiler is

so fast that reading the bytecodes from disk takes time comparable to compilation.

6.4.4 kt2c

The Kanga Tcl to C converter [5] is largely intended for intellectual property protection, rather
than performance improvement. It is an incomplete prototype, but deserves mention because
of its conceptual relationship with our work. Based on the Tcl 8 virtual machine, it translates
ahead-of-time Tcl 8 bytecodes to C source code in external files, which is then compiled by a
C compiler. The resulting objects have the necessary linkage to be dynamically loaded into
a running Tcl interpreter as extensions, but precludes Tcl’s interactive mode of work, and
complicates deployment.

The C source generated essentially copies the C-level implementation of each bytecode
instruction body into the target program, based on the input bytecode object. This is con-
ceptually similar to our catenation process, except it works with source code instead of native.
Some operands are specialized into the source, but preserve the Tcl VM literal table, and thus
obscuring the value of most constants from the C optimizer. Virtual jumps are converted to
native C goto statements. The system is incomplete, does not handle all bytecodes, and does

not handle exceptions, including catch.

6.4.5 s4

A member of the Tcl core development team, Miguel Sofer, created an experimental Tcl VM
called s4 [38]. Among other things, this VM tries to speed up some of the slower but common
bytecodes. Some bytecodes require time-consuming calls to helper procedures to handle complex
dynamic Tcl semantics, and s4 tries to inline the common fast cases of these procedures into
the instruction bodies in the main interpreter loop. For example, some Tcl variable handling
bytecodes must resolve the variable names in hash tables to extract an objects to manipulate
the variable. These objects are cached by s4, which also inlines the case of a cache hit, so the

typical path through the instruction body requires no procedure calls. Rarely-used features
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such as Tcl’s variable “traces”, which allow the program to schedule arbitrary code that runs
when a variable is read or written, are out-lined to separate procedures.

When compiled with a suitable C compiler, e.g. gcc, s4 also uses indirect threading for
dispatch. It also introduces an extra stack to handle reducing the reference count of stack
objects consumed during interpretation.

Later, Sofer moved some of the changes into the mainline Tcl interpreter, including caching
variable name resolution, and other inlining of the fast typical case of common helper proce-
dures, and indirect threaded dispatch. He also experimented with wordcode, which uses 32-bit
aligned instruction opcodes and operands, with the goal of eliding the many shift and mask
instructions and pipeline penalties necessary when using 8-bit data in RISC memory systems.
However, he reported no noticeable improvement here. We observe this 32-bit format could

easily support direct threaded code.

6.5 Selective Inlining

In Section 2.6 we defined the concept of superinstructions. The limited expressive power of the
finite number of bits in a bytecode opcode field means that only a finite number of superinstruc-
tions may be defined. Because superinstructions are combinations of two or more instructions,
there are potentially a very large number. This means that only a small proportion of po-
tential superinstructions can actually be allowed. Choosing the right superinstructions is thus
important, and profile-directed techniques are helpful.

If the virtual machine may be presented with an arbitrary bytecode program to execute,
then the optimal set of superinstructions cannot be known in advance, when the machine is
built. Piumarta’s technique of Selective Inlining [33] addresses this, by building and caching
macro ops (superinstructions) dynamically, at runtime. In a technique based on GNU C and
an existing virtual machine interpreter, he builds one superinstruction, by concatenating copies
of the native code for each component instruction into new executable memory.

Note that, as with our approach, concatenating at runtime foregoes the free peephole opti-

mization opportunities when statically building superinstructions at interpreter-build time as
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in vmgen [10].
Piumarta implements his elegant and portable technique in less than 100 lines of GNU C.
However, it is severely limited, because it is not able to move code in instruction bodies with

any of the following attributes:

e instruction body contains native instructions with native pc-relative semantics, such as
most functions calls on RISC processors. When moved, the native instruction will be

wrong, because it is pc-relative.

e destinations of VM branches must be left alone, at least in direct threaded code, because

the code contains the absolute native address of destination

e flow-control bytecodes that end VM basic blocks must appear only at the end of superin-
structions. Piumarta technique manipulates the VM program counter (vpc) only once per
superinstruction, at the end, as with a normal VM instruction. A flow-control instruction
might need to leave a superinstruction early, if it wasn’t at the end, and the vpc would

not be correct.

Our approach does not have any of these limitations. Piumarta benchmarked his tech-
niques in a VM for the OCAML language. He finds that the performance improvements of
direct threading and his “selective inlining” can depend on CPU architecture. In one bench-
mark, computing Fibonacci numbers, a direct threaded VM ran in about 55% of the time of a
for/switch dispatch on all three architectures tested- Pentium, Sparc, and PowerPC. Relative
to direct threaded code, execution time of selective inlined code ranged from 26% to 35% |,

averaging 29%. The selective inlined code was half as fast as native compiled C.

6.6 DyC

DyC [12] is a selective dynamic compilation system based on annotations in C source that
inform the system about run-time constants, which are used in run-time code generation to
exploit specialization by partial evaluation. The authors motivate one of their papers using the

example of a bytecode interpreter — in this case, m88ksim, a simulation of a Motorola 88000
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CPU. The input data for this benchmark is a bytecode program. DyC treats the entire bytecode
program as a constant, and, using an optimization they call complete loop unrolling, is able to
essentially accomplish the same effect as our catenation. Because they do this at the level of
a control flow graph in intermediate form, they are able to run a subsequent optimization and
code emission phase. They still aren’t able to do enough automatic optimization to promote
virtual machine registers (or stack slots) to native registers. Furthermore, this process is static
and quite expensive, and thus might not be appropriate for a dynamic scripting language which
frequently compiles and re-compiles. At static compile time, they specialize their run-time
specializer so it runs faster and is pre-loaded with most of the analysis for optimization and code
generation. This is more general than, but similar to, our subst system which pre-computes
the necessary fix-ups. However, we interpret the substs while, in a sense, they compile them.
They report speedups of 1.8 on m88ksim, but do not discuss the complexities of I-cache and
code explosion.

Furthermore, in an earlier version [2] of the DyC work, the authors describe a mechanism
called the Stitcher, an interpreted system which appears similar to our substs in that lists of

small data objects guide the specialization of native code.



Chapter 7

Conclusions

We set out to speed up the Tcl interpreter using a simple native code compiler. We believe it
is important for this compilation to be very fast, to retain the interactive usage modality of Tcl
scripts. We discovered and present a technique on the boundary between interpretation and
compilation, which reduces the number of instructions executed and, for some benchmarks,
reduces the number of machine cycles, and thus total execution time. In this chapter we

summarize our findings, discuss their implications, and briefly outline potential future work.

7.1 Summary

Using the interpreter for the Tcl 8 virtual machine compiled by gcc for the Sparc, we found high
overhead — about 20 cycles — for the dispatch of each bytecode. As written, this interpreter
uses a C for/switch construct for dispatch. We believe this is typical of many interpreters
coded in C.

Several other techniques for dispatch are available to reduce this overhead. Some well-known
approaches, such as “indirect threading” and “direct threading”, are possible to implement
relatively portably in C using language extensions such as gcc’s “computed goto”. But because
of suboptimal code generation by the C compiler, it may be necessary for a programmer to craft
dispatch code directly in assembly. Even then, some overhead is an unavoidable consequence

of interpretation. On the other hand, many virtual machines requiring high performance resort
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to powerful but complex just-in-time compilers which use native code. These are necessarily
less portable, and require a potentially time-consuming compilation stage.

We propose new techniques, catenation and operand specialization, to completely eliminate
dispatch overhead from an interpreter. The techniques bridge the gap between true compilation
and interpretation. The key idea is to use the “instruction bodies” from the actual interpreter
as the basis for a simple “template” compiler. We “catenate” these bodies sequentially, as
directed by the input bytecode program, to yield native code with no dispatch. Catenation
creates a unique code segment for each virtual instruction in the program, instead of the generic
implementations an interpreter must use. We exploit this to specialize the operands of the
bytecodes into the new native code. This makes the native code smaller, faster, and independent
of the input bytecodes, which can be discarded.

In a sense, then, we have “compiled away” the bytecode. However, almost all the runtime
infrastructure of the interpreter remains, so it is better to think of this system as an advanced
interpretation technique, rather than a true compiler.

Finally, we have devised a technique to create the compilation templates from the original
interpreter. We modify the interpreter source to abstract dispatch code, force instruction
bodies to be self-contained, and replace operand fetch code with magic numbers. These magic
numbers are run-time constants in the resulting templates, and we can substitute real operand
values. Because this specialization occurs relatively late in the compilation process, some partial
evaluation is possible, such as looking up constant objects and arithmetic functions in indexed
tables.

Further post-compile and runtime steps are required to actual implement catenation and
operand specialization. These steps are pre-computed at interpreter start-up time for each
template. The result is a simple compilation which can run very quickly: conversion from
bytecode to native code executes in 50 - 100% of the time required for the first-stage compilation
from Tcl source to bytecodes. The original compilation step itself is fast enough as to be
imperceptible in an interactive scripting environment, and, crucially, our native code system
retains this characteristic.

By eliminating machine instructions for bytecode dispatch, and keeping native compilation
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overhead low, we succeed in reducing the number of instructions executed by the CPU.

7.2 Implications

On a modern superscalar CPU with a cache memory hierarchy, instruction counts are not
the whole story. In our favor, by eliminating dispatch and employing operand specialization,
we present the CPU with a workload containing fewer branches and loads — major pipeline
hazards. On the other hand, catenation drastically expands code size, which can then easily
exceed the capacity of typical instruction caches. Together, these effects can speed up some
benchmarks more than 60%. Unfortunately, our measurements indicate the benefits of fewer
and simpler instructions are overwhelmed by the latency introduced by I-cache misses in roughly
half our benchmarks.

We’ve shown that our techniques work better given larger I-cache sizes. We conclude that

a number of scenarios might make practical use of this compiler:

1. Workloads that fit better in the I-cache, either because the working set is small, the

I-cache is large, or both.

2. Machines with simple memory subsystems that do not include instruction caches or penal-
ties for large working sets. While such systems are rare today, some embedded systems

may meet these criteria.

In addition to the matter of performance, we also set simplicity, and semantic correctness
as goals for our implementation technique. Actually, simplicity is partly implicated by per-
formance, and our fast compilation speed is evidence of the simple design, in addition to the
compact implementation. Furthermore, after passing all the nearly 2000 tests in the Tcl test
suite, we believe semantic correctness has been achieved, and this is partly due to the reuse of
interpreter code.

On the other hand, we believe the technique of reusing interpreter C code, coaxing the
compiler to create templates, and massaging these into a suitable form, is not a good platform

for general just-in-time compiler research. The semantic information in the C code is not
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at a sufficiently high-level, and a more abstract “intermediate representation” would be more
suitable. Rather than relying on the C compiler, more direct control over code generation is
necessary to experiment with different compilation techniques. Infrastructure for intermediate
code and code generation will, however, be much larger and slower than our system.

To realize a more practical system, instead of applying our system to narrow application
areas such as embedded processors, or discarding it in favor of a more traditional compilation
infrastructure, we believe it may be possible to enhance the system, while still retaining the
basic strategies of catenation and specialization, to achieve good performance on a wider array

of workloads. We discuss this in the next section.

7.3 Future Work

Compared to the interpretive technique of selective inlining, where superinstructions are formed
dynamically based on profile feedback (see Chapters 2 and 6), our catenation allows any byte-
code instruction to be moved. This could only improve the flexibility, and thus the performance,
of selective inlining. A synthesis of selective inlining and our infrastructure might yield an in-
terpreter superior to either. However, we believe that such a system must still be considered
selective inlining, if perhaps a superior implementation thereof.

Another direction found in some JIT compilers is “mixed mode” interpretation. In such a
system, bytecodes are sometimes interpreted, and other times compiled and executed native.
The result is very similar to selective inlining, but operands are handled more efficiently because
of specialization.

Mixed mode could be profitably applied to catenation. With catenation, because nearly
all interpreter infrastructure is maintained, switching from interpretation to native execution
would be very fast. Theoretically, switching would require only restoral of the virtual program
counter (one or two machine instructions to load a constant into a register), and a jump to the
interpreter.

Implementation of this idea would require two versions of every instruction body: one for

interpretation, and another as a compilation template. Achieving very low switch time would
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require considerable implementation finesse, because the interpreter state (e.g. execution stack)
would have be identical not only at the C level, but also at the register level. In addition to the
fast switch time, we would continue to enjoy the high speed of our naive compilation, facilitated
by our fixed-size templates and absence of an intermediate form.

To profitably use mixed mode, one must decide when to interpret, and when to run native.
With catenation, the heuristic is quite clear, since its weakness is excessive code size increase.
Therefore, the right approach would be to compile bytecodes with small instruction bodies.
These cause the least code bloat, and yet suffer most from dispatch overhead.

The granularity of the mode switch decision could be either entire procedures, or even
individual bytecodes. To decide when to switch, the heuristic could use micro-benchmarks
to measure I-cache size, and statically aggregated metrics of code expansion as bytecode was
compiled. Alternatively, an adaptive approach could be used by exploiting the same hardware
performance counters we used in Chapter 5. One could compile and execute native until I-cache
miss rates increased, and then bias more toward interpretation.

In conclusion, catenation is a novel interpretation technique with the potential to increase
performance of workloads whose working sets fit into the instruction cache after the translation
to native code. It is often not practical for programs with larger working sets, but may form
the basis of a practical technique when combined with mixed-mode or selective interpretation.
While our engineering strategy of exploiting the C compiler for code generation is expedient
for implementing catenation, we believe a more traditional code generation infrastructure is

appropriate for mixed-mode or other more sophisticated interpreters.
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