
4

Improving Software Diagnosability via Log Enhancement

DING YUAN, University of Illinois at Urbana-Champaign and University of California, San Diego
JING ZHENG, SOYEON PARK, YUANYUAN ZHOU, and STEFAN SAVAGE,
University of California, San Diego

Diagnosing software failures in the field is notoriously difficult, in part due to the fundamental complex-
ity of troubleshooting any complex software system, but further exacerbated by the paucity of information
that is typically available in the production setting. Indeed, for reasons of both overhead and privacy, it
is common that only the run-time log generated by a system (e.g., syslog) can be shared with the develop-
ers. Unfortunately, the ad-hoc nature of such reports are frequently insufficient for detailed failure diag-
nosis. This paper seeks to improve this situation within the rubric of existing practice. We describe a tool,
LogEnhancer that automatically “enhances” existing logging code to aid in future post-failure debugging.
We evaluate LogEnhancer on eight large, real-world applications and demonstrate that it can dramatically
reduce the set of potential root failure causes that must be considered while imposing negligible overheads.

Categories and Subject Descriptors: D.2.5 [Testing and Debugging]: Diagnostics; D.4.5 [Operating
Systems]: Reliability

General Terms: Reliability, Languages

Additional Key Words and Phrases: Log, failure diagnostics, debugging, software diagnosability, program
analysis

ACM Reference Format:
Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S. 2012. Improving software diagnosability via log
enhancement. ACM Trans. Comput. Syst. 30, 1, Article 4 (February 2012), 28 pages.
DOI = 10.1145/2110356.2110360 http://doi.acm.org/10.1145/2110356.2110360

1. INTRODUCTION

Complex software systems inevitably have complex failure modes; errors only trig-
gered by some combination of latent software bugs, environmental conditions and/or
administrative errors. While considerable effort is spent trying to eliminate such prob-
lems before deployment, the size and complexity of modern systems combined with
real time and budgetary constraints on developers have made it increasingly difficult
to deliver “bullet-proof” software to end-users. Consequently, many software failures
still occur in fielded systems providing production services.

An earlier version of this article appeared in Proceedings of the 16th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’11).
This research is supported by NSF CNS-0720743 grant, NSF CCF-0325603 grant, NSF CNS-0615372 grant,
NSF CNS-0347854 (career award), NSF CSR Small 1017784 grant and NetApp Gift grant.
Author’s addresses: D. Yuan (corresponding author), J. Zheng, S. Park, Y. Zhou, S. Savage, Department
of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093; email:
diyuan@cs.ucsd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/02-ART4 $10.00

DOI 10.1145/2110356.2110360 http://doi.acm.org/10.1145/2110356.2110360

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:2 D. Yuan et al.

1.1. Production Failure Reporting

Production failures are problematic at two different levels. First, they demand tremen-
dous urgency; a production failure can have direct impact on the customer’s business,
and system vendors must make the diagnosis and remediation their highest priority.
Unfortunately, this goal conflicts with a second problem: the substantial difficulty in
analyzing such failures. Indeed, diagnosing rare failures can be challenging even in
a controlled setting, but production deployments are particularly daunting since of-
ten support engineers are given insufficient information to identify the root cause, let
alone reproduce the problem in the lab.

To address this problem, a range of research efforts have focused on techniques for
capturing external and non-deterministic inputs, thereby allowing post-mortem deter-
ministic replay [Chen et al. 2008; Crameri et al. 2011; Devietti et al. 2009; Dunlap
et al. 2008; Guo et al. 2008; LeBlanc and Mellor-Crummey 1987; Lee et al. 2010; King
et al. 2005; Montesinos et al. 2008; Narayanasamy et al. 2005; Olszewski et al. 2009;
Park et al. 2009; Subhraveti and Nieh 2011; Veeraraghavan et al. 2011; Vlachos et al.
2010; VMWare; Xu et al. 2003; Zhang et al. 2006]. However, these approaches have
been slow to gain traction in the commercial world for several reasons, including high
overhead, environmental complexity (e.g., interactions between multiple licensed soft-
ware and hardware from different vendors), and substantive privacy concerns.

A more established vehicle for diagnosis is the “core dump”, which captures memory
context and execution state in a file. However, core dumps have their own drawbacks.
They are typically collected only at the time of the crash failure. They only capture
program state but no execution history information (which is frequently critical for
diagnosis), and the comprehensive capture of process state can once again preclude
sharing such files due to privacy concerns.1

Consequently, the sine qua non of production failure debugging remains the log
file. Virtually all software systems, whether commercial or open source, log impor-
tant events such as error or warning messages, as well as some historic intermediate
progress/bookkeeping information generated during normal execution. It is a common
industry practice for support engineers to request such logs of their customers upon
failure, or even for customers to allow their systems to transmit such logs automati-
cally (i.e., “call home” [Dell 2008]). Since these logs focus on the system’s own status
and “health”, they are usually considered to be less sensitive than other data. More-
over, since they are typically human-readable, customers can inspect them first (either
after a failure or during initial contract negotiations). Consequently, most modern sys-
tems today from EMC, NetApp, Cisco, Dell are able to collect logs from at least 50% of
their customers, and many of them even have enabled the capability to automatically
send logs to the vendor [Cisco; Dell 2008; EMC 2005; NetApp 2007].

1.2. Diagnosing via Log Messages

Thus in many cases, log messages are the sole data source available for vendors to di-
agnose reported failures. Support engineers then attempt to map log message content
to source code statements and work backwards to infer what possible conditions might
have led to the failure. While a range of research projects have shown that statisti-
cal machine learning techniques can be used to detect anomalies or catch recurring
failures that match known issues [Aguilera et al. 2003; Barham et al. 2004; Cohen

1Some systems, such as Windows Error Reporting [Glerum et al. 2009] and Mozilla’s Quality Feedback
Agent [Mozilla QFA] attempt to mitigate the privacy issues through data minimization (typically limiting
the scope of captured state to the execution context and stack trace) but at the cost of yet reduced debugging
effectiveness. Indeed, these systems succeed because they aggregate large numbers of failures with common
causes, rather than due to their ability to substantively aid in the debugging of any singular failure instance.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:3

Fig. 1. Example of real-world patches just for the purpose of enhancing log messages.

et al. 2005; Ha et al. 2007; Xu et al. 2009], the detective work of mapping log messages
to source statements and then sifting through potential causes of individual crashes
remains a heavily manual activity.

Recent work on the SherLog system [Yuan et al. 2010] addresses the first part of
this problem by automating this manual inference process. SherLog is a post-mortem
diagnosis tool that uses failure log messages as starting points to automatically infer
what source code paths may have been executed during a failed execution. Although
SherLog can conduct deeper inference than manual efforts, it is still limited by the
amount of information available in log messages, just like manual inference by pro-
grammers. If a log message does not contain enough information, automatic log in-
ference engines have limited starting information to disambiguate between different
potential causal paths that led to a failure. It is precisely this limitation that moti-
vates the work in this paper. In Section 4.2 we will show three real-world cases to
demonstrate how automatic log inference engines like SherLog can perform better af-
ter log messages are enhanced with more causally-related information (automatically
by LogEnhancer).

At its essence, the key problem is that existing log messages contain too little in-
formation. Despite their widespread use in failure diagnosis, it is still rare that log
messages are systematically designed to support this function. In many cases, logging
statements are inserted into a piece of software in an ad hoc fashion to address a sin-
gular problem. For example, in many cases, an error log message may simply contain
“system failed” without providing any further context for diagnosis. While there are a
number of “rules of thumb” for designing better logging messages (e.g., such as logging
the error symptoms [Schmidt 2009] and the thread ID with each message [Yuan et al.
2010]), these still do not capture the specific information (e.g., state variable values)
that are frequently necessary to infer a problem’s root cause. Instead, developers up-
date log messages to add more information as they discover they need it. Figure 1
shows three such enhancements, each of which expanded the log messages to capture
distinct pieces of diagnostic state. In our work we propose to systematically and auto-
matically add such enhancements to log messages, and thereby improve the diagnostic
power of logging in general.

1.3. Our Contributions

In the remainder of this article, we present a tool called LogEnhancer, that modifies
each log message in a given piece of software to collect additional causally-related
information to ease diagnosis in case of failures.2 To be clear: LogEnhancer does
not detect bugs or failures itself. Rather it is a tool for reducing the burden of failure
diagnosis by enhancing the information that programmers should have captured when

2We target for production failure diagnosis even though our work can also be useful for in-house testing and
debugging.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:4 D. Yuan et al.

writing log messages. Such additional log information can significantly narrow down
the amount of possible code paths and execution states for engineers to examine to
pinpoint a failure’s root cause.

In brief, we enhance log content in a very specific fashion, using program analy-
sis to identify which state should be captured at each log point (a logging statement in
source code) to minimize causal ambiguity. In particular, we say that the “uncertainty”
around a log message reflects the control-flow paths or data values that are causally
related but cannot be inferred from the original log message itself. Using a constraint
solver we identify which candidate variable values, if known, would resolve this ambi-
guity. Note we are not trying to disambiguate the entire execution path leading to the
log message. For example, a branch whose directions have no effect for the execution
to reach the log message will not be resolved since it is not causally-related.

We explore two different policies for deciding how to collect these variable values:
delayed collection, which captures only those causally-related key values that are “live”
at the log point or can be inferred directly from live data, and in-time collection, which,
in addition to those recorded in delayed collection, also records historic causally re-
lated key values before they are overwritten prior to the log point. The latter approach
imposes additional overhead (2–8% in our experiments) in exchange for a richer set
of diagnostic context, while delayed collection offers the reverse trade-off, annotating
log messages with only variable values “live” at log points, while imposing minimal
overhead (only at the time an existing message is logged). We also develop a variant
of the delayed collection method that derives equivalent information from a core
dump (thus allowing a similar analysis with unmodified binaries when core files are
available).

Finally, we evaluate LogEnhancer with 8 large, real-world applications (5 servers
and 3 client applications). We find that LogEnhancer automatically identifies 95%
of the same variable values that developers have added to their log messages over
time. Moreover, it identifies an additional set of key variable values (10–22) which,
when logged, dramatically reduce the number of potential causal paths that must be
considered by a factor of 35. We also selected 15 representative, real-world failures
(with 13 caused by bugs and 2 caused by mis-configurations) from these applications
to demonstrate how the enhanced log messages can help diagnosis. In all these cases,
the enhanced log messages would quickly reduce the number of possibilities of partial
execution paths and runtime states, helping both manual diagnosis and automatic log
inference engines like SherLog to narrow down and identify the root causes. Finally,
we show that both log size and run-time overhead are small, and almost negligible
(with the delayed collection).

To the best of our knowledge, our work is the first attempt to systematically and au-
tomatically enhance log messages to collect causally-related information for diagnosis
in case of failures. It can be used to enhance every existing log message (oblivious to
what failure might occur in production) in the target software prior to release.

2. OVERVIEW

To explain how LogEnhancer works, we first examine how diagnosis is performed man-
ually today. Figure 2 shows a simplified version of a real world failure case in the rm

program from the GNU core utilities. This is a particularly hard-to-diagnose failure
case since it has complex environmental requirements and only manifests on FreeBSD
systems using NFS that do not have GLIBC installed. In particular, when executing rm

-r dir1 for an NFS directory dir1 in such an environment, rm fails with the following
error message:

rm: cannot remove ‘dir1/dir2’:Is a directory

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:5

Fig. 2. Highly simplified code for rm in coreutils-4.5.4. Different colors highlight which information can
be inferred given the log message, for example, “Must-Execute” reflects code paths that can be completely
inferred based on the given log message. Variable values that cannot be inferred are also highlighted.

2.1. Manual Diagnosis

Upon receiving such a failure report, a support engineer’s job is to find the “log point”
in the source code and then, working backwards, to identify the causally-related
control flow and data flow that together could explain why the message was logged.
Pure control flow dependencies are relatively easy to reason about, and upon in-
spection one can infer that the error message (printed at line 16) can only be logged
if the conditional at line 12 (is dir == T NO) is taken and the conditional at line 13
(unlink(filename == 0)) is not taken. This suggests that rm treated filename (dir1/dir2
in this case) as a non-directory and subsequently failed to “unlink” it. Indeed, purely
based on control flow, one can infer that lines 14–15, and 20–22 could not have been
executed (highlighted in Figure 2 as “Must-Not-Execute”), while lines 1–4, 11–13, and
16–19 must have been executed (similarly labeled in the figure as “Must-Execute”).
Already, the amount of ambiguity in the program is reduced and the only remaining
areas of uncertainty within the function are on lines 5–10, and lines 23–32 (also
highlighted in Figure 2 as “May-Execute”).

However, further inference of why is dir equals T NO is considerably more compli-
cated. There are two possibilities for the branch at line 4, depending on the value of
dp, and both paths may set is dir to be T NO. Further, since dp is a parameter, we must
find the caller of remove entry. Unfortunately, there are two callers and we are not sure
which one leads to the failure. In other words, given only the log message, there re-
main several uncertainties that prevent us from diagnosing the failure. Note that this
challenge is not a limitation of manual diagnosis, but of how much information is com-
municated in a log message. In Section 4.2 we will show that automatic log inference
engines such as SherLog can do no better than manual inference in this case.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:6 D. Yuan et al.

Fig. 3. Remaining uncertainty if dp was printed at line 16. The code is the same as Figure 2.

In addition to control flow, backward inference to understand a failure also requires
analyzing data flow dependencies, which can be considerably more subtle. We know
from our control flow analysis that the conditional at line 12 is satisfied and therefore
is dir must equal T NO. However, why is dir holds this value depends on data flow.
Specifically, the value of is dir was previously assigned at either line 5 or 9, and has
data dependencies on either the value of dp->d type or sbuf.st mode, respectively. De-
termining which dependency matters goes back to control flow: which branch did the
program follow at line 4?

Unfortunately, the error message at line 16 simply does not provide enough infor-
mation to answer this question conclusively. The conditional at line 4 is uncertain:
either path (line 5, or line 7 to 10) could have been taken (indicated as “may-execute”
in Figure 2). Similarly, the values of dp->d type and sbuf.st mode are also uncertain,
as is the context in which remove entry() was called. While the ambiguity is modest in
this small example, it is easy to see how the number of options that must be considered
can quickly explode when diagnosing a system of any complexity.

However, a complete execution trace is not necessary to resolve this uncertainty.
Indeed, if the program had simply included the single value of dp in the logging state-
ment at line 16, the situation would have been far clearer (we illustrate it in Figure 3,
given this new information). In this case dp is nonzero, and thus the code at line 5 is
now in a “must-execute” path, while lines 6–10 “must not” have executed. In turn, it
removes the need to consider the value of sbuf.st mode since is dir can now only depend
on dp->d type.

The remaining uncertainties then include: (1) which function (remove cmd entries or
rm 1) called remove entry? (2) What was the value of dp->d type at line 5? Resolving
these would require logging some additional information such as the call stack frame,

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:7

and dp->d type (or, some equivalent value that can be used to infer dp->d type’s value
at line 5; we discuss this optimization in Section 3.2).

If this ambiguous error was reported frequently, developers might add exactly these
values to the associated log statement to aid in their diagnosis. However, relying on
this, software development cycle is both slow and iterative, and is unlikely to capture
such state for rare failure modes. The goal of LogEnhancer is to automate exactly the
kind of analysis we have described: identifying causally-related variable values for
each “log point” and enhancing the log messages to incorporate these values. Moreover,
because it is automatic, LogEnhancer can be applied comprehensively to a program,
thereby capturing the information needed to diagnose unanticipated failures that may
occur in the future.

2.2. Usage

LogEnhancer is a source-based enhancement tool that operates on a program’s source
code and produces a new version with enhanced data logging embedded. It can be
used to enhance every existing log message in the target software’s source code or to
enhance any newly inserted log message. The only real configuration requirement
is for the developer to identify log points (i.e., typically just the name of the logging
functions in use). For example, the cvs revision control system uses GLIBC’s standard
logging library error() and simply issuing

LogEnhancer --logfunc="error" CVS/src

is sufficient for LogEnhancer to do its work.
Upon being invoked, LogEnhancer leverages the standard make process to compile

all program source code into the CIL intermediate language [Necula et al. 2002], then
identifies log points (e.g., statements in cvs that call error()), uses program analysis to
identify key causally related variables, instruments the source code statically to collect
the values of these variables and then recompiles the modified source to generate a new
binary.

During production-runs, when a log message is printed, the additional log enhance-
ment information (variable values and call stack) will be printed into a separate log
file. LogEnhancer can also be optionally configured to record additional log enhance-
ment information only when error messages are printed.

In the rm example, at the log point at line 16, the following information will be
collected: (1) dp: helps determining the control flow in line 4; (2) The call stack: helps
knowing which call path leads to the problem; (3) dp->d type or sbuf.st mode depending
on the value of dp helps determining why is dir was assigned to T NO; (4) filename: since
it’s used in unlink system call, whose return value determines the control flow to log
point at line 16; (5) dirp in function remove cwd entries if this function appears on the
call stack.

During diagnosis, LogEnhancer’s enhancement result can be manually examined by
developers along each log message, or can be fed to automatic inference engines such
as SherLog, which automatically infer execution paths and variable values. Section 4.2
shows three such examples.

2.3. Architecture Overview

The complexity in our system is largely in the analysis, which consists of three princi-
pal tasks.

(1) Uncertainty Identification. This analysis identifies “uncertain” control-flow and
variable values that are causally-related and whose state could not be resolved
using only the original log message. Starting from each log point and working

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:8 D. Yuan et al.

backwards, we identify the conditions that must have happened to allow control
flow to each log point (e.g., is dir == T NO and unlink(filename) are such conditions
in rm). Using these conditions as clues, we continue to work backwards to infer
why these conditions occurred through data-flow analysis (e.g., dp, dp->d type and
sbuf.st mode are identified through data-flow analysis of is dir). This process is
repeated recursively for each potential caller as well (e.g., the data dependency
on dirp from remove cwd entries is identified in this step). To prune out infeasi-
ble paths, LogEnhancer uses a SAT solver to eliminate those combinations with
contradictory constraints.

(2) Value Selection. This analysis is to identify key values that would “solve” the un-
certain code paths or values constrained by the previous analysis. It consists the
following substeps: (i) Identify values that are certain from the constraint, and
prune them out using a SAT solver; (ii) Parse the uncertain values into the con-
ditional value format, for instance, [dp]:dp->d type, indicating the value dp->d type

is only meaningful under condition dp!=NULL; (iii) Identify the values that would
be overwritten before the target log point; (iv) Find equivalent values that can
be used to infer those overwritten key values; (v) From the uncertain value set,
find the minimum set by eliminating redundant values that can be inferred by re-
maining uncertain values. (vi) Rank the uncertain values based on the amount
of relevant branch conditions involved. Finally, LogEnhancer builds an Uncertain
Value Table for each log point to store the identified uncertain variable values to
be recorded.

(3) Instrumentation. Before each log point, LogEnhancer inserts a procedure
LE KeyValues(LogID) to record the variable values in the Uncertain Value Table cor-
responding to the LogID, where LogID is a unique identifier for each log point. At
run-time, LE KeyValues() collects these variable values from the stack and heap only
at the log point (delayed collection). For in-time collection, LogEnhancer further
instruments source code to keep a “shadow copy” of any key values that will be
overwritten before the log point and cannot be inferred via equivalent values live
at the log point.

2.4. LogEnhancer’s Assumptions

No tool is perfect, and LogEnhancer is no exception. There is an inevitable trade-off be-
tween the completeness and scalability offered by our analysis. We make certain sim-
plifying assumptions to make implementation practical and to scale to large real world
programs, at the cost of a few incomplete (missing certain variable values) and/or un-
sound (logging non-causally related variable values) results. However, LogEnhancer
would not impact the validity of diagnosis since all values recorded by LogEnhancer
are obtained right from the failed execution. We briefly outline the issues surrounding
our assumptions and their impact in the following.

(1) How far and deep can LogEnhancer go in analysis? Without any limitation, any
program analysis or model checking approach would hit the path explosion prob-
lem on real world software. Similar to most previous work on program analysis
and model checking, even though theoretically we can go as far and deep as we
would like, it is impractical to do so for large real world software. Therefore, we
need to set some limits in the depth of our inter-procedural data dependency anal-
ysis. Given the problem of inferring causally related information, our design only
focuses on analyzing functions that must have a causal relationship with the log
point (i.e., functions that are on the call-stack or their return values are causally
related to a log point), while ignoring the side-effects of other functions. Moreover,
we do not perform program analysis more than one level deep into functions that

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:9

are not on the call stack at the log point. Each function is analyzed only once,
ignoring the side effects caused by recursive calls.
Although we limit our analysis in this fashion, we still identify an average of 108
causally related branches for each log point (with a max of 22,070 such branches
for a single log point in PostgreSQL). Moreover, our experience is that the values
with most diagnostic power are commonly on the execution path to a log point and
such values are naturally collected using LogEnhancer’s style of analysis.

(2) What and how many values are logged per message? The core of our analysis is to
first identify causally related branches to each log point and then infer a compact
set of values that resolve those branch choices. In our evaluation, 108 causally
related branches are identified for each log point on average, that can be resolved
by 16.0 variable values (this includes the impact of removing redundant values).

(3) How can we address the privacy concerns? Just as existing log message contents,
the information we record focuses narrowly on system’s own “health.” Because we
are recording only a small number of variable values per message, this makes it
much easier (than core dumps) for users to examine to make sure that no private
information is contained. It is also easier to combine with some automatic privacy
information filtering techniques (e.g., Castro et al. [2008] can filter data that can
potentially leak private user information). In addition, collected logs can be ana-
lyzed at customers’ sites by sending an automatic log analysis engine like SherLog
[Yuan et al. 2010] to collect back the inferred and less-sensitive information (e.g.
the execution path during the occurred failure).

(4) How do we handle inter-thread or inter-process data dependencies? Due to the lim-
itation of our static analysis, we do not analyze data dependencies across threads
or processes. Any values that are causally related to the log point through these
dependencies thus would be missed. In most cases, such dependencies do not in-
terfere with our analysis since most shared data do not make big impact on control
flows and are not causally related to a log message. However, in some rare cases,
we may not log enough information to figure out why certain shared key variables
have some particular values. The substeps (iii)–(v) in our value selection might
also be inaccurate on shared data since the inter-thread data-flow is not analyzed.
Therefore, for applications with very intensive inter-thread data dependencies on
control variables, we might disable these substeps and conservatively treat any
shared data as overwritten ones at the log point.
Note this limitation is not that we cannot handle concurrent programs. For con-
current programs, we still analyze the intra-thread/process data flow to identify
key variables to log. Such variables are useful for diagnosing failures in programs
(sequential and concurrent). Five of our evaluated applications are concurrent,
including Apache, CVS, Squid, PostgreSQL and lighttpd. Section 4 shows our eval-
uation results on these applications. Note that a majority of failures in real world
are caused by semantic bugs, and even misconfigurations, not by concurrency bugs
[Li et al. 2006].
Addressing this issue would require more complicated thread-aware code analysis.
For each variable that is causally-related to the log message, in addition to analyze
the intrathread or intraprocess data flow, we also need to analyze any interthread
or interprocess modifications. Although theoretically we can still use the same
Uncertainty Identification algorithm to recursively follow intrathread/process and
interthread/process data-flow, we imagine practical scalability and precision issues
might arise. Given an uncertain variable value V in function F, any modification to V

that might be executed concurrently with F needs to be considered. Without precise
information on which functions might be executed concurrently and pointer alias-
ing, we might end up analyzing huge number of dataflows that are not causally

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:10 D. Yuan et al.

related to the log point. This might add exponential overhead to our analysis, and
more importantly, include huge number of noisies in the set of variable values we
decide record to enhance each log message. Annotations can be used in expressing
which functions are concurrent [Detlefs et al. 1998; Flanagan et al. 2002], while
techniques presented in RacerX can help to automatically infer this information
[Engler and Ashcraft 2003]. Previous work [Naik and Aiken 2007; Naik et al.
2006] also shows for memory safe languages like Java where pointer usages are
are limited, it is possible to analyze the concurrency behavior of a program much
more precisely. Addressing these issues remains as our future work.

(5) What if there is no log message? If a software program generates no log message at
all, LogEnhancer offers no value. Fortunately, this is usually not the case in most
commercial and open source software. As mentioned in our Introduction, most
commercial and open source software already contains significant amount of logs
as logging has become a standard practice. Hence we focus on enhancing existing
log messages, and assume that such log messages exist.

3. DESIGN AND IMPLEMENTATION

LogEnhancer’s source code analysis is implemented using Saturn static analysis
framework [Aiken et al. 2007]. Saturn models C programs precisely and allows user
to express the analysis algorithm in a logic programming language. It is summary-
based, which conducts its analysis for each function separately, and then a summary
is generated for each function. At the calling sites of a function, its summary is used
instead of going deep into this function. Saturn also provides a SAT solver.

In this section, due to space limit, we will not repeat the all the details of Saturn.
Except for the data-flow analysis described in Section 3.1, all the discussions on anal-
ysis processes, design and implementation issues are specific to LogEnhancer.

3.1. Uncertainty Identification

For each log printing statement in the target software, the goal of Uncertainty Iden-
tification is to identify uncertain control or data flows that are causally-related to the
log point but cannot be determined assuming the log point is executed. Our analysis
starts from those variable values that are directly included in the conditions for the
log point to be executed. It then analyzes the data flow of these variable values to
understand why these conditions hold.

Within each function f , LogEnhancer starts from the beginning and goes through
each statement once. At any program point P within f , LogEnhancer simultaneously
performs two kinds of analysis: (1) data-flow analysis that represents every memory
location f accesses in the form of constrained expression (CE); (2) control-flow analysis
that computes the control-flow constraint to reach P. If the current P is a log point L P,
LogEnhancer takes the control-flow constraint C, and converts each memory location
involved in C to its CE. Thus both the control and data flow branch conditions related
to the log point can be captured together in one constraint formula, and it is stored
as the summary of f to reach L P. The same process is recursively repeated into the
caller of f . At the end of the analysis, for every function f ′ along a possible call-chain
to a log point L P, the summary of f ′ is generated, which captures the causally-related
constraint within f ′ to eventually reach L P.

3.1.1. Data-Flow Analysis. LogEnhancer directly uses Saturn’s memory model for data-
flow analysis. Saturn models every memory location (in stack or heap) accessed by
function f at every program point P in the form of constrained expression (CE). A CE
is represented in the format of V=E:C, indicating the value of V equals to expression E un-
der condition C. At the beginning of each function f , Saturn first statically enumerates

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:11

Fig. 4. The constrained expression for is dir at line 16. Cyes and Cno are constraints for is dir to hold
value T YES and T NO respectively.

all the memory locations (heap and stack) accessed by f , and initializes each location
V as V=V:True, indicating the value of V is unknown (symbolic). This is only possible
because we will model the loops as tail-recursive functions, thus each function body is
loop free (see Handling Loops later in this section). At an assignment instruction P,
V=exp;, the value of V would be updated to exp:C, where C is the control-flow constraint
to reach P. At any merge point on the control-flow graph (CFG), all the conditions
of V from every incoming edge are merged. This will prune all non causally-related
conditions to reach P. Figure 4 shows the CE of is dir in rm at log point 1.

Each variable involved in the CE is a live-in variable to the function f , i.e., variable
whose value is first read before written in f [Aho et al. 2006]. Thus we can represent
all memory locations accessed by f with a small and concise set of variable values (i.e.,
live-ins) to reduce the number of redundant values to record. For example, is dir is
not a live-in variable, and its value can be represented by a small set of live-in values
such as dp, T YES, etc., as shown in Figure 4.

3.1.2. Control-Flow Analysis. At each program point P, LogEnhancer also computes the
constraint for the control-flow to reach P. At a log point L P, every variable value in-
volved in the control-flow constraint would be replaced by its constrained expression.
Then this constraint is solved by a SAT solver to test its satisfiability. An unsatisfiable
constraint indicates no feasible path can reach L P, thus we can prune out such con-
straint. The satisfiable constraint thus contains all the causally related control and
data-flow conditions to reach L P. Thus if we know all the variable values involved in
this constraint C, we can deterministically know the execution path lead up to L P.
Then this constraint C will be stored as a part of this function’s summary, along with
the location of L P. This records that function f would reach L P under constraint C.
Non-standard control flows such as exit, abort, exit and their wrappers are identi-
fied and adjusted on the CFG. longjmps are correlated with setjmps through function
summary in a similar manner as described in Yuan et al. [2010].

In the rm example, the control-flow constraint within remove entry to reach log point
1 would be is dir==T NO && unlink(filename)!=0. Then is dir is replaced by its CE, as
shown in Figure 4. The SAT solver determines T YES cannot satisfy this control-flow
constraint, thus T YES and its constraint are pruned. The remaining result is a simpli-
fied, feasible constraint Cr, which is stored as the summary of remove entry indicating
the conditions for remove entry to reach log point 1.

Cr = (dp && dp->d type!=DT DIR || !dp && !S ISDIR(sbuf.st mode)) && unlink(filename)

3.1.3. Inter-Procedural Analysis. After analyzing function F, the above process is then
recursively repeated into the caller of F by traversing the call-graph in bottom-up
order. In rm, after analyzing remove entry, LogEnhancer next analyzes its caller remove

cwd entries in the same manner: a linear scan to compute the CE for each memory
location and control-flow constraint for each program point. At line 25, it finds a call-
site to a function with a summary (remove entry), indicating that reaching this point
might eventually lead to log point 1. Therefore LogEnhancer takes the control-flow
constraint (Cc = (readdir(dirp)!=NULL)), and replaces every variable with its CE (in
this case the CE for dirp).

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:12 D. Yuan et al.

Besides Cc, for context sensitivity, LogEnhancer also takes the Cr from remove entry

and substitutes it to a constraint that is meaningful in remove cwd entries:

C′
r = (readdir(dirp) && readdir(dirp)->d type!=DT DIR || !readdir(dirp)) && f==Sym

Here, readdir(dirp) is the substitution for dp in Cr since the dp in remove entry is not
visible in the caller’s context; S ISDIR(sbuf.st mode) is pruned also because it is not
visible in the caller’s context; f==Sym is the substitution for unlink (filename). Sym is
a symbolic value and f is the substitution of filename in caller. f==Sym indicates we
should plug in the CE of f to track the inter-procedural data-flow, while not enforcing
any constraint on f’s value. Finally, C′

r ∧ Cc is stored as the summary for remove cwd

entries to reach log point 1.
Such bottom-up analysis traverses upward along each call chain of the log point.

It ignores functions that are not in the call chains to this log point—we refer them
as “sibling functions”. Sibling functions may also be causally related to the log point.
Therefore, if one of sibling function’s return values appear in the constraint to the log
point, LogEnhancer also analyzes such function and identifies the control- and data
flow dependencies for its return value. This analysis is implemented as a separate
analysis pass after the bottom-up analysis. Currently we limit the analysis to follow
only one level into such functions due to scalability concern. However, there is no theo-
retical limit, and we can carry the analysis deeper. If a causally related sibling function
is a library call with no source code (e.g., unlink() in the rm example), we simply plug
in its parameter into our constraint so we may choose to record the parameter.

3.1.4. Handling Loops. Loops are modeled as tail-recursive functions [Aiken et al.
2007], so each function is cycle-free, which is a key requirement allowing us to stati-
cally enumerate all the paths and memory locations accessed by each function. Such a
loop is handled similarly as ordinary functions except that it is being traversed twice,
to explore both loop entering and exiting directions. Variable V modified within the
loop body are propagated to its caller as V==Sym, to relax the value constraint since we
are not following the multiple iterations as in runtime. This way, constraint from the
loop body can be conservatively captured.

3.1.5. Efficiency and Scalability. Uncertainty Identification scans the program linearly,
a key to our scalability to large applications. We further use preselection and lazy SAT
solving for optimization. The former preselects only those functions that on the call-
stack of any log point to analyze, and the latter queries the SAT solver lazily only at
the time when function summaries are generated.

3.1.6. Pointer Aliasing. Intra-procedural pointer aliasing is precisely modeled by
Saturn’s constrained expression model [Aiken et al. 2007]. Inter-procedural pointer
aliasing analysis is only performed on function pointers to ensure that LogEnhancer
can traverse deep along the call-chain. The other types of pointers are assumed to be
nonaliased, which might cause us to miss some causally-related variable values. Note
that for Value Selection we will enable inter-procedural alias analysis for all types of
pointers for conservative liveness checking.

3.2. Value Selection

This step is to select, from all constraints identified by the previous step, what key
variable values to record at each log point. The Value Selection consists of the following
three steps. In this section, we refer an expression without any Boolean operator (&&,
||, !) as a uni-condition. For example, dp!=NULL is a unicondition (note != is not one of

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:13

the three Boolean operators). A constraint is thus a formula of uniconditions combined
together using Boolean operators.

(1) Pruning determinable values. Some variable values can be inferred knowing that
a given log point is executed. We call them as determinable values. For example,
in constraint a==0 && b!=0, "a" can be determined that it must equal to zero, while
b’s value is still uncertain. A determinable value V is identified if: (i) V is involved
in a uni-condition uc that is the necessary condition to constraint C (i.e., ¬uc ∧ C is
unsatisfiable); (ii) uc is in the form of V==CONSTANT. A determinable value thus can
be pruned out since it need not to be recorded.

(2) Identifying the condition for a value to be meaningful. After the previous step, all
remaining values are uncertain. However, not every value is meaningful under
all circumstances. In rm, dp->d type is meaningful only if dp!=NULL. Recording a
nonmeaningful value could result in an invalid pointer dereference or reading a
bogus value. Therefore, for each value that is not pruned, we also identify un-
der what condition this value would be meaningful, representing it in a format as
[C]:V, indicating value V is meaningful under condition C. Our run-time recording
will first check C before recording V.

(3) Liveness checking and Equivalent Value Identification (EVI). A value can also be
dead (overwritten or disappear together with its stack frame) prior to a given log
point and we cannot delay the recording until the log point. To identify such dead
values, we perform conservative liveness analysis, that is, if one variable value
might be modified before the log point, we conservatively mark it as “dead”. To
be conservative, we run Saturn’s global pointer alias analysis [Hackett and Aiken
2006] before the liveness checking. Any pointers passed into a library call where
source code is unavailable are conservatively treated as dead after the call (we
manually exclude some common C libraries such as strlen); Any extern values not
defined inside the program are also conservatively treated as dead.
However, we do not give up on recording dead values so easily. For each dead value,
we try to find some equivalent variable values which live until the log point and
can be used to infer back the dead value. More specifically, a value EV is equivalent
to another value V iff: (i) it is defined as EV=V op UV, where UV are other live values,
and (ii) both have the same control flow constraint. Therefore, if a dead value V has
an equivalent EV, we simply record EV and UV.

(4) Ranking. Finally, we rank all selected values based on the amount of uncertain
branch conditions they contribute. Ranking can be used to prioritize our runtime
recording and presenting the recorded values to users.

Since the constraint tracks the causal relationship among the uncertain variable
values, our ranking implementation is thus simple: values are ranked by the count of
their appearances in the constraint formula. For example, as shown in Section 3.1.2,
the constraint to reach the log point 1 in the rm example is:

Cr = (dp && dp->d type!=DT DIR || !dp && !S ISDIR(sbuf.st mode)) &&

unlink(filename).

With this constraint, dp would be ranked the highest since it appeared twice, while all
other values appeared only once.

Currently in our setting, we do not set any threshold on the number of variables we
record at log point. So the ranking is only used when presenting the recorded values
to users.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:14 D. Yuan et al.

Fig. 5. Runtime recording for Delayed Collection.

3.3. Runtime Value Collection

This section describes how LogEnhancer modifies the application’s original source code
to collect the variable values. We describe two value collection policies: delayed collec-
tion and in-time collection.

Delayed Collection. We instrument the source code of the target application right be-
fore each log point by adding a function call LE KeyValues() to record the values of iden-
tified live variables via their addresses. The addresses of these variables are obtained
from the compiled binary by parsing the DWARF debugging information [DWARF].
Local variables’ addresses are the offsets from the stack frame base pointer. Heap val-
ues’ addresses are represented the same way as how they are referenced in the original
code. Each live value represented by its address and the condition for it to be meaning-
ful is stored into an Uncertain Value Table (UVT) that corresponds to a log point. At
the end of our analysis, each UVT is output to a separate file. These files are released
together with the target application.

Figure 5 shows the runtime process of LE KeyValues(). It is triggered only at the log
point, that is, when a log message is being printed. When triggered, it first uses the
LogID of the log point to load the corresponding UVT into the memory. It then obtains
the current call stack, using it to index into the UVT to find what values to record.
For each value, the condition for it to be meaningful is first tested. A local variable’s
dynamic address is computed by reading the offset from UVT and then add this offset
to its dynamic stack frame base pointer obtained by walking the stack. Note that UVT
is only loaded into the memory during the execution of LE KeyValues(), so the delayed
recording does not add any overhead during normal execution, that is, when no log
message being printed. We also record the dynamic call stack.

By default, LogEnhancer records only basic type values. For example, for a pointer
value, we only record the address stored in this pointer. To further provide meaningful
diagnostic information, we add two extensions. First, if the variable is of type char* and
is not NULL, then we record the string with a maximum of 50 characters (of course,
if the string is shorter than 50, we record only the string). Second, if the variable is
a field within a structure, in addition to that field, we also record the values of other
fields. This is because structures are often used to represent multiple properties of a
single entity, such as a request in apache httpd.

Although we are already very cautious in our design to record only meaningful and
valid values to ensure memory safety, due to the limitation of static analysis, we might
still access an invalid memory location (e.g., caused by multi-threading). To be con-
servative, we further ensure memory safety by intercepting SIGSEGV signals without
crashing the running application. For applications such as apache who also intercepts
SIGSEGV signals, we add a wrapper to filter out those obviously caused by our log
recording. In our experiments, we have never encountered such signal.

We also implement a variation of the delayed method as a core dump analyzer (re-
ferred as a Core Dump Digger) that automatically identifies the key values (or its

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:15

Table I. Evaluated Applications

Application Version Lines of code
Log Points

All Default verbose level

ln 4.5.1 20K 26 14 (ERROR)
rm 4.5.4 18K 28 25 (ERROR)
tar 1.22 66K 210 176 (ERROR)
apache 2.2.2 228K 1,654 1,093 (WARNING)
cvs 1.11.23 111K 1,088 762 (ERROR)
squid 2.3.S4 70K 1,116 402 (ERROR)
postgresql 8.4.1 825K 4,876 4,403 (WARNING)
lighttpd 1.4.26 53K 127 127 (ERROR)

Lines of code is measured by SLOCCount [SLOCCount]. Note all the de-
pendent library code that are scanned by LogEnhancer are counted. “All”
shows the total number of log points for the most verbose level. “Default
verbose level” shows the number of log points under the default verbose-
level. The description of the default verbose level is in the brackets.

equivalent values) from a core dump at a log point (if there is such core dump). Not
every log point has a core dump, especially those bookkeeping or warning messages.

In-Time Collection. In addition to instrumentation at log points, the in-time collection
method further saves a shadow copy of every dead value X that has no equivalent value
by instrumenting the code in following way:
- if (X)

+ if (LE InTime(&X, Lint32) && X)

LE InTime() always returns 1. It simply copies Lint32 number of bytes starting from &X.
Note that LE InTime() can record X directly without checking any condition since it is
within the same context as the use of X.

All recorded values from LE KeyValue() and LE InTime() are first stored into buffers
in memory (both currently 40 KB), respectively. At error messages, both buffers were
flushed to disk. LE KeyValue()’s buffer is also flushed when it becomes full, whereas
LE InTime() simply recycles the shadow buffer from the beginning. Each thread has its
own private buffer.

4. EVALUATION

We use LogEnhancer to enhance each of the total 9,125 log messages in 8 different
real-world applications as shown in Table I. Five of them are server applications,
including 2 web servers (apache httpd, lighttpd), a database server (postgresql), a con-
current version control server (cvs), and a web cache (squid). For server applications
where there are multiple log files, we enhance all messages printing into the error
log file. Currently we do not enhance other types of log files such as access logs. In
the default verbose mode, all applications only print error and/or warning messages.
Therefore, during normal execution with the default verbose mode, there is few log
message printed besides a few messages indicating system start/stop.

For any diagnosis tools like LogEnhancer, the most effective evaluation method is
of course a user study by having it used by real programmers for a period of time and
then report their experience. Unfortunately, this would be a time-consuming process
and also it is hard to select samples to be representative. Given these constraints, we
try to evaluate LogEnhancer both quantitatively and qualitatively using three sets of
experiments.

(1) Value selection. First, we investigate how well our algorithm captures the vari-
ables that are useful for failure diagnosis by comparing against manual selection

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:16 D. Yuan et al.

Fig. 6. Variable values at each log point. We compare the number of variables per message logged manually
by developers with the ones inferred automatically by LogEnhancer. “Overlap” shows the number of variable
values that are selected by both programmers and LogEnhancer. The percentages of overlap are marked
beside each bar. “LE-additional” shows the additional variable values only identified by LogEnhancer.

(variables that have already been recorded in existing logging statements by pro-
grammers). Then, we also evaluate how many new variables are selected for log-
ging in addition to those in this intersection set (i.e., how many new variable values
would be logged by LogEnhancer) and how effective these additional logged values
can help reducing the number of code paths to be considered in post-mortem diag-
nosis.

(2) Diagnostic effectiveness. In the second set of experiments we select 15 real world
failure cases caused by 13 bugs and 2 mis-configurations to show the effectiveness
of the information collected by LogEnhancer in failure diagnosis. In particular, we
also show how automatic log inference tools like SherLog can be improved given
the information added by LogEnhancer into log messages.

(3) Logging overhead. The third set of experiments evaluate the overhead introduced
by LogEnhancer’s run-time logging.

All the experiments are conducted on a Linux machine with eight 2.33GHz Xeon
processors and 16GB of memory. Since the analysis is done offline, LogEnhancer cur-
rently runs as single process, single thread (even though the analysis can potentially
be parallelized to reduce the analysis time [Aiken et al. 2007]).

4.1. Effectiveness in Variable Recording

Figure 6 shows LogEnhancer’s comparison with existing log variables included man-
ually by programmers into log messages over the years. On average, 95.1% (with
minimum 89% and maximum 98%) of these log variables can be selected automati-
cally by LogEnhancer. In all the applications except squid, LogEnhancer achieves a
coverage over 95%.3 This high coverage is an evidence that our design matches with
the intuition of programmers in recording key values to help diagnosis. It implies that
LogEnhancer can do at least as good as manual effort.

The small fraction (4.9% on average) of existing log variables that are not automat-
ically selected by LogEnhancer is mainly bookkeeping information that is not very
useful for inferring the execution path to the log point. For example, when CVS de-
tects an invalid configuration entry, it outputs the line number of that entry in the

3Many variable values are converted to human readable strings when printing to log message. For example
“inet ntoa” converts an IP address into string. We count the value as covered by LogEnhancer only if by
recording the non-textual value we can deterministically infer text string.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:17

Fig. 7. Number of Uncertain Branches reduced by LogEnhancer. We compare the amount of uncertain
branches that are causally related to each log point given different types of information recorded: without
any variables (the original uncertainty space); existing variables included by developers; call stack in ad-
dition to existing variables; variables inferred by LogEnhancer and call stack using the delayed collection
method.

configuration file. Since this line number is not used in any branches, it is thus missed
by LogEnhancer. Note that the invalid entry string itself is identified by LogEnhancer.
So even without the line number, by recording the configuration entry string itself is
enough for users/developers to locate the error in the configuration file.

There are four main categories of manually identified variables that are missed by
LogEnhancer, together contributing to 97% of the few missed cases. (1) Bookkeeping
values logged immediately after initialization (37%): For example, in Squid, imme-
diately after receiving a request, the length of the request is logged before it is
actually used. All these log messages are verbose mode messages that do not indi-
cate any error and are not enabled in default production settings. This explains why
LogEnhancer covered only 88.7% of the existing log variables in Squid: majority (64%
as shown in Table I) of the log messages in Squid are verbose mode messages, and
many of them are in such style. (2) The line number of invalid entry in configuration
file (28%). (3) General configuration (host-names, PID, program names, etc.) (24%)
that are not causally related to the log point. Note causally related configuration infor-
mation would be identified LogEnhancer. (4) Redundant multivariables (8%) that are
always updated together while only one is used in branch. LogEnhancer only identifies
the one used in branch while the missed values can be inferred from the identified one.

In addition to automatically select most of existing log variables (manually included
by programmers), LogEnhancer also selects an average of 14.6 additional new vari-
able values for each log message. Recording these values (including the call stack)
can eliminate an average of 108 uncertain branches for each log point, as shown in
Figure 7. From the 108 original uncertain branches per log point, existing log vari-
ables can reduce it to 97, whereas the LogEnhancer’s delayed recording scheme can
reduce this number to 3, meaning that, on average for each log point, there are only
3 un-resolved branches for programmers to consider to fully understand why the log
point was reached. These remaining branches are caused by uncertain values that are
dead at log points, and can only be recorded by our in-time collection (if overhead is not
a concern). If we record only the stack frames in addition to the original log messages,
the number of uncertain branches are only reduced from 97 to 40 on average. Table II
shows the detailed number of uncertain branches.

Table II also shows the number of variable values identified by LogEnhancer at
different analysis stages. On average, 16.0 uncertain values are identified for each log
point (“all”). 14.6 of them can be recorded at log points (“logged”) without introducing

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:18 D. Yuan et al.

Table II. The Number of Uncertain Branches and Uncertain Variable Values per Log Point

Application
Uncertain Branches Number of variables

w/o recording any variable LogEnhancer (delay)
all live loggedavg med max min avg med max min

ln 41 43 78 7 2.9 1 8 0 11.3 9.8 10.1
rm 28 27 57 6 1.4 1 9 0 10.2 9.3 9.5
tar 114 35 1419 2 2.2 1 20 0 22.6 19.5 21.6

apache 115 78 626 1 3.5 2 35 0 17.2 14.7 15.9
cvs 139 62 3836 1 6.5 3 38 0 12.2 8.7 10.6

squid 67 19 4409 1 1.3 0 17 0 13.0 11.6 12.5
postgre 270 61 22070 1 1.2 0 48 0 20.9 14.7 18.1
lighttpd 86 88 222 5 6.4 6 40 0 20.7 15.2 18.8

The large difference between average and median in “w/o any var” is caused by small number of log
points inside some library functions, that have a huge number of uncertain branches accumulated
from huge number of possible call stacks. Once we differentiate different call stacks, this difference
between average and median significantly reduces.

Fig. 8. Number of variables used in branches.

normal-run overhead. Among these 14.6 variables, 12.9 of them were not overwritten
before log point (i.e., they are “live”), and the rest 1.7 are recovered from Equivalent
Value Identification (EVI). On average 49% of the dead values can be recovered by our
EVI. The remaining 51% dead values can be collected only via in-time collection, with
the cost of some overhead to normal execution.

Effectiveness in reducing the number of variables to record. Figure 8 shows the effectiveness
of LogEnhancer’s value selection in reducing the number of variables to record. It
compares the total number of variables used in all the branches through out the entire
program, the number of variables used in all uncertain branches for all log points, and
the number of these uncertain variables if represented live-in form. For example, in
Apache, there are 10,798 variables used in branch conditions in the entire program,
however only 2,585 of them are in uncertain branches to some log points. Further,
these variable values can be inferred by only recording 1,210 live-in variables with
LogEnhancer. Consequently, on average LogEnhancer identified 17.2 uncertain values
for each log point in Apache (Table II).

Ranking of variable values. Figure 9 shows how the number of uncertain branches are
reduced as the number of recorded variables increases in Apache, sorted based on each
variable’s contribution in uncovering uncertain branches (i.e., its ranking).

The contribution of each variable value is the average across all log points in
Apache. By recording the single highest ranked variable we can eliminate an average

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:19

Fig. 9. Ranking of uncertain variable values in Apache. We show the accumulated number of uncertain
branches each variable involved.

Table III. Analysis Performance

Analysis Time and Memory Usage

ln 3 minutes 579MB rm 2 minutes 172MB
tar 1.5 hours 263MB apache 2.1 hours 1.3GB
cvs 3.0 hours 1.7GB squid 3.8 hours 2.3GB
postgres 10.7 hours 1.5GB lighttpd 20 minutes 532MB

of 25% of the uncertain branches to each log point. 50% of the uncertain branches can
be eliminated by recording only 3 variables.

Analysis performance. Table III shows the analysis time of LogEnhancer on each
application. For all applications except postgresql, LogEnhancer finishes the entire
analysis within 2 minutes to 4 hours. For postgresql, it takes 11 hours since it has
4,876 logging points in a large code base. Since we expect LogEnhancer to be used
offline prior to software release, the analysis time is less critical. Besides, the
summary-based design allows it to be parallel or incrementally applied [Aiken et al.
2007]. The memory usage in all cases is below 2.3GB.

4.2. Real-World Failures

We evaluated LogEnhancer by analyzing 15 real-world failures, including 13 software
bugs and 2 configuration errors, to see how our enhanced log messages would help fail-
ure diagnosis. In all these cases, the original log messages were insufficient to diag-
nose the failure due to many remaining uncertainties, while with LogEnhancer’s log
enhancement these uncertainties were significantly reduced and almost eliminated.
Due to page limit, in this section we will show 3 cases in detail to demonstrate the
effectiveness of LogEnhancer. The other 12 cases are summarized in Table IV.

We also compared the inference results of SherLog [Yuan et al. 2010] (referred to as
SherLog in this section) before and after LogEnhancer’s enhancement.

Case 1 rm. For the rm failure described in Figure 2, LogEnhancer recorded the
call stack being: ...remove cwd entries:25 -> remove entry. In addition, LogEnhancer
records the following variable values at log point 1: dp=0x100120, filename="dir1/dir2",

dp->d type = DT UNKNOWN. Programmers can now infer that the failed execution must
took the path at line 5 and came from caller remove cwd entries. They can also tell that
readdir returns a non-NULL value dp, but dp->d type’s value is DT UNKNOWN in the failed
execution—which is exactly the root cause: the programmers did not expect such type

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:20 D. Yuan et al.

Table IV. Real-World Failures Evaluated by Us

Failure Description
rm reports a directory cycle by mistake for a healthy FS.
cp fails to replace hardlinks given “–preserve=links”.

ln ln –target-directory failed by missing a condition check.
apache1 denies connection after unsuccessful login attemp.
apache2 OS checking procedure failed causing server to fail.

apache3 Server mistakenly refuses SSL connections.
apache4 A structure field wasn’t initialized properly causing

unpredictable failure symptoms.
squid wrong checking function caused access control failed.
cvs login with OS account failed due to misconfiguration.

tar 1 failed since archive stat.st mode improperly set.
tar 2 tar failed to update nonexisting tar-ball.

lighttpd Proxy fails when connecting to multiple backends.

Fig. 10. Apache bug example. Patched code is highlighted.

for dp->d type. In such case, just as if dp is NULL, the program should also use lstat to
determine the directory type. So the fix is straightforward as follows:
4: - if (dp)
4: + if (dp && dp->d type!=DT UNKNOWN)

Without LogEnhancer’s enhancement, SherLog inferred a total of 13 possible call
paths (not even complete execution paths, only function call sequences) that might
have been taken to print the error message. Developers need to further manually
determine among these which one actually lead to the failure. SherLog also failed to
infer the value of dp and dp->d type, leaving no clues for developers to infer branch
direction at line 4. With LogEnhancer’s result, SherLog can pinpoint the only possible
call path, and developers can easily examine the value of dp and dp->d type.

Case 2 Apache bug. Figure 10 shows a bug report in apache. With only the error
log message at line 3, the developer could not diagnose the failure. So he asked the
user for all kinds of run-time information in a total of 95 message exchanges. Actually

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:21

Fig. 11. Apache configuration error. The dependencies to identify variable mech are marked as arrows.

only two pieces of information are key to identify the root cause. One is the value of
c->keepalives and the other is the request type, r->proxyreq, which are unfortunately
buried deep in huge amount of not very relevant data structures.

LogEnhancer automatically identifies c->keepalives and r->proxyreq to collect for
this log message. c->keepalives is identified since it is in the constraint for the program
to reach the log point. To reach the log point, proxy process response needs to be called
by proxy http handler at line 23 and it is control-dependent on determine connection’s
return value. determine connection’s return value is further data-dependent on the
value of c->keepalives at line 15. Therefore c->keepalives is in the constraint to reach
the log point. r->proxyreq is identified in the similar manner.

If the developers had used LogEnhancer to enhance their log messages automati-
cally, LogEnhancer would have helped them saving a lot of time discussing back and
forth with the user. Interestingly, after such painful experience, the programmers
added a patch whose sole purpose was to log the value of c->keepalives in this function.

Without LogEnhancer’s enhancement, SherLog inferred 63 possible call paths and
not be able to infer the value of c->keepalives nor r->proxyreq. With LogEnhancer’s
enhancement, SherLog can narrow down to only one possible call path, and infer the
value of c->keepalives and r->proxyreq.

Case 3 Apache configuration error. A misconfiguration in Apache resulted in a fail-
ure with the log message shown in Figure 11. It warns no space on disk, while users’
file system and disk were perfectly healthy with plenty of free space available. From
the source code, it is certain that the message was printed at line 6, as a result of an
unsuccessful call to create() at line 4. However, developers had no other clues why
this call failed.

LogEnhancer in this case identifies mech as a key value to collect, since it is used
at line 10 in function mutex method, whose nmutex is causally related to the log point. If
apache had been enhanced by LogEnhancer, the log message would record the value
of mech being APR LOCK DEFAULT and the value of nmutex->meth being apr mutex unix sysv

methods. This indicates that apache was using the default lock setting which caused
the failure. In a multithreaded mode, apache should use fnctl-based lock instead. To
fix this, users should explicitly add “AcceptMutex fcntl” into the configuration file.

Note that, without LogEnhancer’s enhancement, SherLog cannot infer the value of
mech from the original log message and would not be able to narrow down to the lock
setting configuration as the root cause.

4.3. Overhead

Execution time. Table V shows the LogEnhancer’s recording overhead during appli-
cations’ normal execution under the default verbose mode. For server applications,
the overhead is measured as throughput degradation when the server is fully loaded.
For rm, ln and tar, the overhead is measured in increase of execution time. Few log

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:22 D. Yuan et al.

Table V. Overhead of LogEnhancer

Applications and Slow-down
rm 0.0% <1.0% tar 0.0% 1.5% apache 0.0% 3.9% postgre 0.0% 7.6%
ln 0.0% <1.0% cvs 0.0% 1.7% squid 0.0% 8.2% lighttpd 0.0% 3.4%

The first number is the overhead for the delayed collection, and the second is for the in-time collection.

Fig. 12. Normal execution overhead on fully loaded Apache for different verbose modes. These overheads
are normalized over the unmodified code under default verbose level (WARN).

Table VI. Comparison between LogEnhancer and Core Dump

Failure
Time (ms) Size (bytes)

LogEnhancer coredump original log LogEnhancer coredump

ln 0.45 630 45 62 55M
rm 0.45 610 51 176 55M

tar 2 0.39 630 95 93 55M
cvs 0.44 60 52 53 772K

apache 1 0.41 670 196 354 3.2M

messages are printed in the default mode during normal execution. Thus there is no
overhead for LogEnhancer with the delayed collection method. The in-time collec-
tion incurs small (1.5–8.2%) overhead due to shadow copying. This number can be
reduced by eliminating those shadow recording in frequently invoked code paths (e.g.,
inside a loop). For example in postgresql, by disabling two instrumentations in the
hash seq search library function, the slow-down can be reduced to 1%.

Figure 12 shows LogEnhancer’s performance during normal execution with other
verbose modes. Turning on debug level log causes 49.1% slow-down even without
LogEnhancer. With LogEnhancer, there is only additional 3–6% overhead on top of the
original. In other words, regardless verbose mode, the additional overhead imposed by
LogEnhancer is small.

Memory overhead. As mentioned in Section 3.3, delayed collection does not introduce
any memory overhead during normal execution since no log message is printed. For
in-time collection, the only memory overhead is the size of the in-memory buffer, which
is set to 40KB in our experiment. If a log point is executed at run-time, LE KeyValues()

introduces additional memory overhead by loading the UVT into the memory. In all the
8 applications, the median and average sizes of UVT are 395 bytes and 354 kilobytes
respectively.

Comparison with core dump. Table VI compares LogEnhancer’s recording time and
data size with core dump at a failure. We reproduced 5 failures in Table IV and forced
a core dump to be generated at each log point using gcore [GCORE] library call. The
log size of LogEnhancer does not include the size of the original log.

On average, LogEnhancer only needs 0.43 millisecond to print the log message. This
time includes the time to print the original log message and the additional variable

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:23

values. The size of additionally recorded data is only 53-354 bytes on average. In
comparison, core dumps require 1000 times recording time, and 55MB in size. The
large overhead of core dump makes it impractical to be generated at each log message.
Note that as the core dump’s size/time largely depends on the memory footprint size
at the time of the failure, the purpose of our comparison here is merely to show the
magnitude differences between the two.

Table VI shows that LogEnhancer’s log size is 53-354 bytes, which is in the same
magnitude as original log message. A large portion of this log is the call stack encode
in clear text. We can further compress this portion since calling contexts are likely to
be the same for a log point.

5. RELATED WORK

Our work builds on previous efforts in a number of areas. In this section, we discuss
each in turn.

5.1. Log Analysis for Failure Diagnosis

Existing log analysis work focuses on post-mortem diagnosis using logs. Some learn
statistical signatures to detect anomalies [Aguilera et al. 2003; Barham et al. 2004;
Cohen et al. 2005; Ha et al. 2007; Xu et al. 2009] while others inferring partial
execution paths and run-time states [Yuan et al. 2010]. Xu et al. [2009] use statistical
techniques to efficiently learn a decision tree based signature from large amount of
console logs. This signature can be used to effectively detect and diagnose anomalies.

SherLog [Yuan et al. 2010] uses static analysis to infer the partial execution paths
that can connect the runtime log messages. It infers both control and data value infor-
mation post-mortemly, providing a similar user-experience as an interactive debugger
without dynamically reexecuting the program.

LogEnhancer is different but complementary with these log analysis work like
SherLog [Yuan et al. 2010] in several aspects.

(1) LogEnhancer has a completely different focus: it aims to improve software’s
diagnose-ability by adding more causally related information in log messages to
make failure diagnosis easier. Such information benefits not only manual diagno-
sis but also automatic log analysis engines like SherLog.

(2) LogEnhancer logs only those variables that cannot be inferred (manually or auto-
matically with SherLog) from what are already available in log messages. SherLog
cannot resolve the 108 causally related uncertain branches to each log message
that are identified by LogEnhancer given only existing log messages.

(3) Although LogEnhancer leverages summary-based static analysis similar to
SherLog, the different objectives lead to several major new design and implemen-
tation issues. For example, LogEnhancer needs to perform uncertain control/data
identification, value selection, liveness analysis, equivalent variable identification,
and finally instrumenting the source code and log those select variables at runtime.
None of these would be needed in a log inference engine like SherLog.

(4) As the real world case studies in Section 4.2 have shown, SherLog can significantly
benefit from LogEnhancer’s log enhancement information.

5.2. Logging Design

Existing guidelines for logging design are purely empirical [Kernighan and Pike 1999;
Schmidt 2009]. Kernighan and Pike [1999] argued the importance of well-designed
logging in diagnosis. Schmidt [2009] summarized some empirical logging practices. To

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:24 D. Yuan et al.

the best of our knowledge, LogEnhancer is one of the first to automatically enhance
log messages.

5.3. Use of End Execution State for Failure Diagnosis

Several systems collect partial memory image when a system crashes. Windows Error
Reporting [Glerum et al. 2009] monitors the system for crashes or hangs, and records
a “mini-dump.” Crash Reporter [Apple 2004], NetApp Savecore [NetAppSavecore] and
Google Breakpad [GoogleBreakpad] also collect compressed memory dumps.

Some work infer diagnostic information from core dump or other end execution
states. Their techniques are applicable on LogEnhancer’s recording result as well.
PSE [Manevich et al. 2004] can perform off-line diagnosis of program crashes from
core dump. Weeratunge et al. [2010] diagnose Heisenbugs by diff-ing the core dumps
from failing run and passing run. ESD [Zamfir and Candea 2010] uses static analysis
to infer a feasible path from the coredump and error report.

As discussed early in Introduction, our work is complementary to core dumps.
LogEnhancer can collect historic, intermediate information prior to failures and also
provide diagnostic information when no core dump is available. It also significantly
reduces overhead and data size by recording only causally-related information. Fur-
thermore, our Core Dump Digger derives equivalent information as delayed collection
from a core dump if a core dump is available.

Triage [Tucek et al. 2007] performs diagnosis at the user’s site at the moment of
the failure. Since Triage operates at the user’s failure site, it could replay the failure
multiple times by reloading from the recent checkpoints to infer various diagnostic
information. To support checkpointing, Triage requires OS kernel modification and
support. In comparison, our approach is much more light-weight. LogEnhancer does
not need any special support from the OS or third party application/library.

5.4. Profiling for Diagnosis

Many of diagnostic tools collect run-time profiling such as low-level performance coun-
ters [Bhatia et al. 2008; Cohen et al. 2005] or execution traces [Ayers et al. 2005; Chen
et al. 2008; Chilimbi et al. 2009; Ha et al. 2007; Liblit et al. 2003; Vlachos et al. 2010;
Zhao et al. 2008]. Liblit et al. [2003] sample profiling information from many users
to offload the monitoring overhead, and isolate the most correlated information using
statistical techniques. Clarify [Ha et al. 2007] does instruction level profiling for nor-
mal and failure runs, and trains a classifier to classify each profile into to some known
problems. Chen et al. [2008] propose hardware solution to accelerate instruction-level
monitoring. Rather than collecting tailored, causally related information for each log
message as LogEnhancer, these profiling tools collect general information. Our work
is complementary to these work in that we collect causally related information specific
to each log messages.

5.5. Logging for Deterministic Replay

Many works [Crameri et al. 2011; Devietti et al. 2009; Dunlap et al. 2008; Guo
et al. 2008; King et al. 2005; LeBlanc and Mellor-Crummey 1987; Lee et al. 2010;
Montesinos et al. 2008; Narayanasamy et al. 2005; Olszewski et al. 2009; Subhraveti
and Nieh 2011; Veeraraghavan et al. 2011; VMWare; Xu et al. 2003; Zhang et al.
2006] targets deterministic replay of failed execution, which generally requires high
runtime logging overhead especially for multiprocessor systems. To reduce the over-
head, recently DoublePlay made clever use of spare cores on multiprocessor. Our
work is complementary and mainly targets to the cases when failure reproduction is
difficult due to privacy concerns, unavailability of execution environments, etc.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:25

5.6. Other Static Analysis Work

Compiler techniques similar to LogEnhancer are also used to address some other soft-
ware reliability problems [Cadar et al. 2008; Costa et al. 2007; Kadav et al. 2009;
Zamfir and Candea 2010]. KLEE [Cadar et al. 2008] and ESD [Zamfir and Candea
2010] use full symbolic execution engine to expose bugs in testing or infer paths from
core dump. Although LogEnhancer also uses symbolic execution, due to the very dif-
ferent objectives, it starts from each log message and walks backward along the call
chain to conduct “inference”, instead of walking forward to explore every execution
path. In addition, our work also has to use many other techniques and analysis such
as control/data flow analysis, variable liveness analysis, equivalent variable analysis,
runtime value collection, etc.

6. CONCLUSIONS

In this article we presented a tool, LogEnhancer, perhaps as the first work to system-
atically enhance every log message in software to collect causally related diagnostic
information. We applied LogEnhancer uniformly on 9,125 different log messages in
8 applications including 5 server applications. Interestingly, we found 95.1% of the
variables included in the log messages by developers over time can be automatically
identified by LogEnhancer. More importantly, LogEnhancer adds on average 14.6 ad-
ditional values per log message, which can reduce the amount of uncertainty (number
of uncertain branches) from 108 to 3 with negligible overhead. These information not
only benefits manual diagnosis but also those automatic log inference engines.

ACKNOWLEDGMENTS

The authors would like to thank our ASPLOS shepherd Todd C. Mowry and the ASPLOS and TOCS review-
ers for their insightful feedback, the UCSD Opera research group and the UCSD system and networking
group for many lively discussions, and Michael Vrable for his careful article proofreading.

REFERENCES
AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND MUTHITACHAROEN, A. 2003. Perfor-

mance debugging for distributed systems of black boxes. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03). ACM, New York, 74–89.

AHO, A. V., LAM, M. S., SETHI, R., AND ULLMAN, J. D. 2006. Compilers: Principles, Techniques, and Tools
2nd Ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

AIKEN, A., BUGRARA, S., DILLIG, I., DILLIG, T., HACKETT, B., AND HAWKINS, P. 2007. An overview of the
saturn project. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’07). ACM, New York, NY, 43–48.

APPLE. 2004. Apple Inc., CrashReport. Tech. rep. TN2123.
AYERS, A., SCHOOLER, R., METCALF, C., AGARWAL, A., RHEE, J., AND WITCHEL, E. 2005. Traceback:

First fault diagnosis by reconstruction of distributed control flow. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’05). ACM, New York, NY,
201–212.

BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. 2004. Using magpie for request extraction and
workload modelling. In Proceedings of the 6th Conference on Symposium on Opearting Systems Design
and Implementation. USENIX Association, Berkeley, CA, 18–18.

BHATIA, S., KUMAR, A., FIUCZYNSKI, M. E., AND PETERSON, L. 2008. Lightweight, high-resolution
monitoring for troubleshooting production systems. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA,
103–116.

CADAR, C., DUNBAR, D., AND ENGLER, D. 2008. Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA,
209–224.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:26 D. Yuan et al.

CASTRO, M., COSTA, M., AND MARTIN, J.-P. 2008. Better bug reporting with better privacy. In Proceed-
ings of the 13th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, New York, NY, 319–328.

CHEN, S., KOZUCH, M., STRIGKOS, T., FALSAFI, B., GIBBONS, P. B., MOWRY, T. C., RAMACHANDRAN,
V., RUWASE, O., RYAN, M., AND VLACHOS, E. 2008. Flexible hardware acceleration for instruction-
grain program monitoring. In Proceedings of the 35th Annual International Symposium on Computer
Architecture (ISCA’08). IEEE Computer Society, Los Alamitos, CA, 377–388.

CHILIMBI, T. M., LIBLIT, B., MEHRA, K., NORI, A. V., AND VASWANI, K. 2009. HOLMES: Effective sta-
tistical debugging via efficient path profiling. In Proceedings of the 31st International Conference on
Software Engineering (ICSE’09). IEEE Computer Society, Los Alamitos, CA, 34–44.

CISCO. Cisco system log management.
COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J., KELLY, T., AND FOX, A. 2005. Capturing, indexing,

clustering, and retrieving system history. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP’05). ACM, New York, NY, 105–118.

COSTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND PEINADO, M. 2007. Bouncer: securing software by
blocking bad input. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’07). ACM, New York, NY, 117–130.

CRAMERI, O., BIANCHINI, R., AND ZWAENEPOEL, W. 2011. Striking a new balance between program instru-
mentation and debugging time. In Proceedings of the 6th Conference on Computer Systems (EuroSys’11).
ACM, New York, NY, 199–214.

DELL. 2008. Streamlined troubleshooting with the Dell system E-Support tool. Dell Power Solutions.
DETLEFS, D. L., LEINO, K. R. M., RUSTAN, K., LEINO, M., NELSON, G., AND SAXE, J. B. 1998. Extended

static checking. Compac SRC Research rep. 159.
DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. 2009. Dmp: deterministic shared memory multipro-

cessing. In Proceeding of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’09). ACM, New York, NY, 85–96.

DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A., AND CHEN, P. M. 2008. Execution replay of multi-
processor virtual machines. In Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE’08). ACM, New York, NY, 121–130.

DWARF. The DWARF Debugging Format. http://dwarfstd.org.
EMC. 2005. EMC seen collecting and managing log as key driver for 94 percent of customers.
ENGLER, D. AND ASHCRAFT, K. 2003. Racerx: Effective, static detection of race conditions and deadlocks.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03). ACM, New
York, NY, 237–252.

FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND STATA, R. 2002.
Extended static checking for java. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02). ACM, New York, NY, 234–245.

GCORE. Man page for gcore (Linux section 1).
GLERUM, K., KINSHUMANN, K., GREENBERG, S., AUL, G., ORGOVAN, V., NICHOLS, G., GRANT, D.,

LOIHLE, G., AND HUNT, G. 2009. Debugging in the (very) large: Ten years of implementation and
experience. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP’09). ACM, New York, NY, 103–116.

GOOGLEBREAKPAD. Google Inc., Breakpad. http://code.google.com/p/google-breakpad/.
GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M., KAASHOEK, M. F., AND ZHANG, Z. 2008. R2: an

application-level kernel for record and replay. In Proceedings of the 8th USENIX Conference on Operat-
ing Systems Design and Implementation (OSDI’08). USENIX Association, Berkeley, CA, 193–208.

HA, J., ROSSBACH, C. J., DAVIS, J. V., ROY, I., RAMADAN, H. E., PORTER, D. E., CHEN, D. L., AND
WITCHEL, E. 2007. Improved error reporting for software that uses black-box components. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’07). ACM, New York, NY, 101–111.

HACKETT, B. AND AIKEN, A. 2006. How is aliasing used in systems software? In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT’06/FSE-
14). ACM, New York, NY, 69–80.

KADAV, A., RENZELMANN, M. J., AND SWIFT, M. M. 2009. Tolerating hardware device failures in software.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP’09). ACM,
New York, NY, 59–72.

KERNIGHAN, B. W. AND PIKE, R. 1999. The Practice of Programming. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

Improving Software Diagnosability via Log Enhancement 4:27

KING, S. T., DUNLAP, G. W., AND CHEN, P. M. 2005. Debugging operating systems with time-traveling
virtual machines. In Proceedings of the USENIX Annual Technical Conference (ATEC’05). USENIX
Association, Berkeley, CA, 1–1.

LEBLANC, T. J. AND MELLOR-CRUMMEY, J. M. 1987. Debugging parallel programs with instant replay.
IEEE Trans. Comput. 36, 471–482.

LEE, D., WESTER, B., VEERARAGHAVAN, K., NARAYANASAMY, S., CHEN, P. M., AND FLINN, J. 2010. Re-
spec: Efficient online multiprocessor replayvia speculation and external determinism. In Proceedings of
the 15th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’10). ACM, New York, NY, 77–90.

LI, Z., TAN, L., WANG, X., LU, S., ZHOU, Y., AND ZHAI, C. 2006. Have things changed now?: An empirical
study of bug characteristics in modern open source software. In Proceedings of the 1st Workshop on
Architectural and System Support for Improving Software Dependability (ASID’06). ACM, New York,
NY, 25–33.

LIBLIT, B., AIKEN, A., ZHENG, A. X., AND JORDAN, M. I. 2003. Bug isolation via remote program sampling.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI’03). ACM, New York, NY, 141–154.

MANEVICH, R., SRIDHARAN, M., ADAMS, S., DAS, M., AND YANG, Z. 2004. PSE: explaining program
failures via postmortem static analysis. In Proceedings of the 12th International Symposium on the
Foundations of Software Engineering. 63–72.

MONTESINOS, P., CEZE, L., AND TORRELLAS, J. 2008. Delorean: Recording and deterministically replaying
shared-memory multiprocessor execution efficiently. In Proceedings of the 35th Annual International
Symposium on Computer Architecture (ISCA’08). IEEE Computer Society, Los Alamitos, CA, 289–300.

MOZILLA QFA. Mozilla Quality Feedback Agent. http://kb.mozillazine.org/Quality_Feedback_Agent.
NAIK, M. AND AIKEN, A. 2007. Conditional must not aliasing for static race detection. In Proceedings of the

34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’07).
ACM, New York, NY, 327–338.

NAIK, M., AIKEN, A., AND WHALEY, J. 2006. Effective static race detection for java. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’06). ACM,
New York, NY, 308–319.

NARAYANASAMY, S., POKAM, G., AND CALDER, B. 2005. Bugnet: Continuously recording program execution
for deterministic replay debugging. In Proceedings of the 32nd Annual International Symposium on
Computer Architecture (ISCA’05). IEEE Computer Society, Los Alamitos, CA, 284–295.

NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER, W. 2002. CIL: Intermediate language and tools
for analysis and transformation of c programs. In Proceedings of the 11th International Conference on
Compiler Construction (CC’02). Springer-Verlag, Berlin, 213–228.

NETAPP. 2007. Proactive health management with auto-support. NetApp white paper.
NETAPPSAVECORE. NetApp Inc., Savecore. ONTAP 7.3 Manual Page Reference, Volume 1, 471–472.
OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. 2009. Kendo: Efficient deterministic multithreading in

software. In Proceeding of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’09). ACM, New York, NY, 97–108.

PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE, K. H., AND LU, S. 2009. Pres: Probabilistic re-
play with execution sketching on multiprocessors. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP’09). ACM, New York, NY, 177–192.

SCHMIDT, S. 2009. 7 more good tips on logging.
http://codemonkeyism.com/7-more-good-tips-on-logging/.

SLOCCOUNT. Sloccount. http://www.dwheeler.com/sloccount/.
SUBHRAVETI, D. AND NIEH, J. 2011. Record and transplay: Partial checkpointing for replay debugging

across heterogeneous systems. In Proceedings of the ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS’11). ACM, New York, NY, 109–120.

TUCEK, J., LU, S., HUANG, C., XANTHOS, S., AND ZHOU, Y. 2007. Triage: Diagnosing production run fail-
ures at the user’s site. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’07). ACM, New York, NY, 131–144.

VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG, J., CHEN, P. M., FLINN, J., AND NARAYANASAMY, S.
2011. Doubleplay: Parallelizing sequential logging and replay. In Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’11).
ACM, New York, NY, 15–26.

VLACHOS, E., GOODSTEIN, M. L., KOZUCH, M. A., CHEN, S., FALSAFI, B., GIBBONS, P. B., AND MOWRY,
T. C. 2010. Paralog: Enabling and accelerating online parallel monitoring of multithreaded applications.

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

4:28 D. Yuan et al.

In Proceedings of the 15th Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’10). ACM, New York, NY, 271–284.

VMWARE. Using the intergrated virtual debugger for visual studio.
http://www.vmware.com/pdf/ws65_manual.pdf.

WEERATUNGE, D., ZHANG, X., AND JAGANNATHAN, S. 2010. Analyzing multicore dumps to facilitate con-
currency bug reproduction. In Proceedings of the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’10). ACM, New York, NY, 155–166.

XU, M., BODIK, R., AND HILL, M. D. 2003. A ”flight data recorder” for enabling full-system multiprocessor
deterministic replay. In Proceedings of the 30th Annual International Symposium on Computer Archi-
tecture (ISCA’03). ACM, New York, NY, 122–135.

XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN, M. I. 2009. Detecting large-scale system
problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP’09). ACM, New York, NY, 117–132.

YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND PASUPATHY, S. 2010. Sherlog: Error diagnosis by
connecting clues from run-time logs. In Proceedings of the 15th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’10). ACM, New York, NY,
143–154.

ZAMFIR, C. AND CANDEA, G. 2010. Execution synthesis: A technique for automated software debugging. In
Proceedings of the 5th European Conference on Computer Systems (EuroSys’10). ACM, New York, NY,
321–334.

ZHANG, X., TALLAM, S., AND GUPTA, R. 2006. Dynamic slicing long running programs through execution
fast forwarding. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT’06/FSE-14). ACM, New York, NY, 81–91.

ZHAO, Q., RABBAH, R., AMARASINGHE, S., RUDOLPH, L., AND WONG, W.-F. 2008. How to do a million
watchpoints: Efficient debugging using dynamic instrumentation. In Proceedings of the International
Conference on Compiler Construction.

Received July 2011; accepted October 2011

ACM Transactions on Computer Systems, Vol. 30, No. 1, Article 4, Publication date: February 2012.

