
Non-intrusive Performance Profiling for Entire Software Stacks based on the

Flow Reconstruction Principle

Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, Michael Stumm

University of Toronto

Abstract

Understanding the performance behavior of distributed

server stacks at scale is non-trivial. The servicing of just

a single request can trigger numerous sub-requests across

heterogeneous software components; and many similar

requests are serviced concurrently and in parallel. When

a user experiences poor performance, it is extremely dif-

ficult to identify the root cause, as well as the software

components and machines that are the culprits.

This paper describes Stitch, a non-intrusive tool capa-

ble of profiling the performance of an entire distributed

software stack solely using the unstructured logs output

by heterogeneous software components. Stitch is sub-

stantially different from all prior related tools in that it is

capable of constructing a system model of an entire soft-

ware stack without building any domain knowledge into

Stitch. Instead, it automatically reconstructs the exten-

sive domain knowledge of the programmers who wrote

the code; it does this by relying on the Flow Reconstruc-

tion Principle which states that programmers log events

such that one can reliably reconstruct the execution flow

a posteriori.

1 Introduction

Understanding the performance behavior of distributed

server stacks at scale is non-trivial. Many incoming re-

quests are serviced in parallel, and each such request may

trigger multiple sub-requests on various software compo-

nents spread out over many hosts. For example, a simple

Hive query may involve a YARN Resource Manager, nu-

merous YARN Application and Node Managers, several

MapReduce tasks, and multiple HDFS servers.

Numerous tools have been developed to help identify

performance anomalies and their root causes in these

types of distributed systems. The tools have employed

a variety of methods, all of which have significant lim-

itations. Many methods require the target systems to

be instrumented with dedicated code to collect informa-

tion [1, 2, 9, 11, 24, 26, 27, 34]; as such, they are intrusive

and often cannot be applied to legacy or third-party com-

ponents. Other methods are non-intrusive and instead

analyze already existing system logs; they either use ma-

chine learning approaches to identify anomalies [25, 38]

or they rely on static code analysis [42]. Approaches that

use machine learning techniques cannot understand the

underlying system behavior and thus may not help iden-

tify the root cause of each anomaly. Approaches that

require static code analysis are limited to components

where such static analysis is even possible, and they are

unable to understand the interactions between different

software components.

We present a new approach for obtaining and present-

ing information useful for identifying performance is-

sues and their causes in large distributed server stacks.

Our method focuses on objects, their interactions, and

their hierarchical relationships. Using pattern matching

techniques on existing logs alone, we are able to iden-

tify which objects are participants in each logged event,

which objects are of the same type, and how objects of

different types relate to one another, allowing one to in-

fer execution structure. Our method is non-intrusive and

does not require static code analysis, yet enables com-

plex cross-component performance analysis regardless

of the programming languages used.

We have created a tool that extracts information from

standard logs and is capable of visually displaying in-

dividual objects over their lifetimes showing how and

when objects interact with each other. The gathered in-

formation on object relationships allows our tool to ini-

tially display high-level object instances (e.g., a Hive

query) that can then be drilled down to view lower-level

instances (e.g., HDFS blocks, MapReduce tasks, or con-

tainers). This hierarchical approach to displaying in-

formation is critical given the overwhelming number of

events captured in logs and the number of objects in-

volved. With a set of realistic sample scenarios, we show

in Section 5 that such a tool can be useful for identifying

performance anomalies and their root causes. Section 2

provides a motivating example.

This paper makes the following specific contributions:

• Our approach is the first to be able to construct a sys-

tem model of an entire software stack without any

built-in domain knowledge.

• We propose the first non-intrusive method that enables

diagnosis of complex cross-component failures.

• Our method focuses on objects, their relationships and

interactions as a way to deal with complexity (as op-

posed to focusing on events). Complexity is managed,

for example, by initially displaying only high-level ob-

jects until a user decides to drill down on target objects.

Our approach has two limitations. Firstly, it is not

able to directly identify causal relationships between

events. However, we show that having this information is

not necessary to debug complicated performance issues.

Secondly, the efficacy of our approach relies on the qual-

ity of logging in the analyzed system. Specifically, our

approach relies on the Flow Reconstruction Principle:

programmers will output sufficient information to

logs so as to be able to reconstruct runtime execu-

tion flows after the fact;

and more specifically:

programmers will insert, for each important event, a

log printing statement that outputs the identifiers1 of

all relevant objects involved with the event in order

to be able to reconstruct execution flows a posteriori.

Inserting such log statements is a widely followed prac-

tice. As we show in Section 5, Hive/Hadoop, Spark,

OpenStack, and even syslog [37] logs exhibit these prop-

erties. Many object identifiers, like process ID and thread

ID, are automatically output by the underlying logging

libraries for each event [21, 30, 35, 37].

The Flow Reconstruction Principle applies because a

post mortem analysis is typically performed after each

failure and the programmer will be asked to reconstruct

what exactly transpired up to the point of failure in order

to identify the root cause. This is non-trivial given the

amount of concurrency and parallelism prevalent in scal-

able distributed server stacks. Hence, programmers will

insert log statements to allow them to reconstruct how

the failure occurred. Specifically they will:

• log a sufficient number of events — even at default

logging verbosity — at critical points in the control

1In this paper, ‘identifier’ refers to the variable value that can be

used to differentiate objects. Examples of identifiers include thread ID,

process ID, file names, and host names. Examples of non-identifiers

include the value of a counter or CPU usage statistics. Note that the

counter itself is an object, but its value is not an identifier because it is

not intended to be used to differentiate different counter instances.

path so as to enable a post mortem understanding of

the control flow leading up to the failure.

• identify the objects involved in the event to help differ-

entiate between log statements of concurrent/parallel

homogeneous control flows. Note that this would not

be possible when solely using constant strings. For

example, if two concurrent processes, when opening

a file, both output “opening file”, without additional

identifiers (e.g., process identifier) then one would not

be able to attribute this type of event to either process.

• include a sufficient number of object identifiers in the

same log statement to unambiguously identify the ob-

jects involved. Note that many identifiers are naturally

ambiguous and need to be put into context in order to

uniquely identify an object. For example a thread iden-

tifier (tid) needs to be interpreted in the context of a

specific process, and a process identifier (pid) needs to

be interpreted in the context of a specific host; hence

the programmer will not typically output a tid alone,

but always together with a pid and a hostname. If the

identifiers are printed separately in multiple log state-

ments (e.g., hostname and pid in one log statement and

tid in a subsequent one) then a programmer can no

longer reliably determine the context of each tid be-

cause a multi-threaded system can interleave multiple

instances of these log entries.2

Programmers have a key advantage when using log

messages to reconstruct the paths taken by the system

when servicing requests: they can interpret the meaning

of constant strings, and many identifiers contain string

sequences that have meaning to the programmer. An

automated tool does not have this advantage. As such,

we disregard constant strings and do not attempt to ex-

tract semantics from object identifiers. Instead we ex-

tract information about objects by analyzing various pat-

terns that exist in the logs. Our approach consists of the

following five steps: (1) extract from the log messages

the object identifiers; (2) associate each extracted object

identifier with an object type; (3) identify how each ob-

ject type is related to the other object types with respect

to participating in the same event; (4) identify the specific

object instances that are involved in each event; and (5)

identify execution structure and hierarchy between ob-

jects. Using the extracted information, we are able to

display the hierarchy of objects in play when servicing

requests. We are also able to visually display objects

along a timeline, as shown in the next section.

With the extracted hierarchy information, the visual

display initially shows only the highest-level objects,

2 Note that the validity of this principle hinges on each log state-

ment being thread safe. All of the widely used logging libraries we

examined, including syslog [37], log4j [21], java.util.logging [16],

SLF4J [35], log4cpp [20], Boost.log [5], and Python’s logging mod-

ule [30] are thread-safe.

but the user can selectively drill down incrementally by

clicking on any of the objects of interest to expose more

details at the lower-level. This enables identification of

performance bottlenecks and analysis of potential root

causes. A controlled user study showed that with Stitch,

developers were able to speed up the analysis and debug-

ging process by a factor of 4.6 compared to when they

were restricted to using raw logs only. Our evaluation

of how well Stitch is able to reconstruct a system model

from logs showed that Stitch could do so with 96% accu-

racy when applied to Hive stack, Spark stack, and Open-

Stack logs produced by 200 nodes as well as logs from

our production server stacks.

2 Motivating Example

We demonstrate the usefulness of Stitch using a real-

world, user reported performance anomaly [31] that

manifests itself across multiple software layers. Some

Hive users reported that they occasionally experienced

much longer than normal job completion times. We re-

produced the anomaly on a three node cluster. We evalu-

ated Stitch’s effectiveness in a controlled user study com-

prising 14 experienced programmers, where half of the

users were asked to debug with Stitch while the other

half only had access to the raw logs. They were given 45

minutes. (Section 5.1 provides more details of the user

study and other cases we used.)

On average, the users who did not use Stitch spent 38

minutes debugging this case whereas Stitch users only

spent 12 minutes – a speedup factor of 3. In fact, six

of the seven users not using Stitch failed to diagnose the

anomaly whereas all seven Stitch users were successful.

We first describe the users’ experiences debugging with-

out Stitch before discussing how Stitch helps.

Debugging without Stitch. Users in this control group

immediately started grep’ping, awk’ing, and perl’ing the

log files. Primarily, they took one of two approaches:

• “Bottom-up,” where they searched for keywords such

as “Error”, “Warn”, or “slow”, or

• “Top-down,” where they tried to understand the high-

level hierarchy of the system before focusing on a par-

ticular lead.

The users who took a bottom-up approach almost en-

tirely ended up in a wild-goose chase. For example,

searching for “Error” and “Warn” returned log messages

about non-zero container exit codes and failed container

deallocations, neither of which pertained to the root

cause. Three users stayed on this path with tunnel-vision,

eventually reaching the time limit (45 minutes) without

having gotten anywhere close to the root cause.

The three users who took a top-down approach got

closer to finding the root cause, but none of them were

Figure 1: Stitch’s timeline graph. Each line represents an ob-

ject with its IDs listed in the left panel. Users can drill down to

objects at the next level by clicking on the object. Each circle

in the right panel represents an individual event, and its color

indicates the node where the corresponding log message was

output. Only two out of many queries are shown.

Figure 2: Stitch’s timeline graph expanded to show more lev-

els of the hierarchy. Clearly visible is that user1’s jobs start

processing as soon as user3 releases its containers. The ver-

tical lines show the interactions among objects, which are in-

ferred from the events that included multiple objects.

able to identify it within the time limit. These users

started by examining the latency of each Hive query in

order to identify the slowest one. However, drilling down

further proved to be daunting: users needed to follow

the control path from Hive to the MapReduce layer to

identify the map and reduce tasks created to process the

query, then they had to carefully compare the timestamps

of each task’s first and last log message to identify the

task-level bottleneck.

Even if the user could identify the slowest map/reduce

task, the task’s numerous interactions with other compo-

nents makes it even more difficult to determine why it is

slow. For example, a grep on particular (slow) map task

may return over 500 log messages concerning its deal-

ings with YARN containers, HDFS blocks, etc. Stitch

serves to automate this process, freeing the user to focus

on debugging rather than reconstructing the request.

Debugging with Stitch. Figure 1 shows Stitch’s web-

based GUI for this case. Objects are organized hierarchi-

cally allowing users to understand the system’s structure

as they drill down on each object. The event timeline

shows the events where the object ID appeared such that

the first and last event can be used to infer the object’s

lifetime. Thus, a user can immediately determine that

Query “0437” has the longest execution time and drill

down to investigate.

Figure 2 shows the interface following the expansion

of both queries down to the level of map/reduce tasks.

Under each query is the YARN application3 created to

process it, and under each application are the map/reduce

task attempts and containers spawned to process the re-

quest. It shows that user1’s Query 0437 has attempts that

were created early on but only received containers much

later. This allocation seems to correspond with the re-

lease of a container in user3’s Query 0301, suggesting

allocation was being serialized across users.

This serialization was caused by a bug in YARN’s Ca-

pacity Scheduler which incorrectly limited all users’ re-

source usage whenever a single user reached his or her

limit. The study participants were not required to find

this bug in the source since the study was limited to in-

formation that could be garnered from the logs alone. In-

stead they were only asked to point out that the serialized

container allocation being the cause, which is conceiv-

ably the key step for the developers to diagnose the bug.

3 System Stack Structure Graph

In this section, we describe the algorithm Stitch uses to

extract information from the logs necessary to identify

objects, their interactions and their hierarchical relation-

ships. The algorithm outputs a System Stack Structure

(S3) Graph – a directed acyclic graph (DAG), where each

node represents an object type and each directed edge

captures a hierarchical relationship between a high-level

object type (parent) and a low-level object type (child).

We treat each logged event e as a set of identifiers,

ide1..iden. We extract object identifiers by disregard-

ing static substrings and applying a number of heuris-

tics; e.g., we disregard variables preceded by common

non-identifier types (e.g., “size”) or succeeded by units

(e.g., “ms”). How we extract IDs may seem somewhat

ad hoc, but it works; ID parsing is considered a solved

problem in the industry using tools such as Splunk [36],

VMWare LogInsight [22] or Logstash [23]. Examples of

IDs we extract this way include machine IP addresses,

process IDs, thread IDs, and filenames. Note that the ex-

tracted IDs are often ambiguous until they obtain a con-

text within which they can be interpreted; e.g., a process

ID is unambiguous only if interpreted within the context

of a specific host.

Each identifier is of a type, which is the type of the

object it represents (e.g., a process, a thread, an IP ad-

dress, a host name). In this section we represent identi-

fiers in lowercase and their types in uppercase; e.g., both

host1 and host2 are of type HOST. Stitch identifies the

type by applying a number of heuristics that identify, for

3Stitch identifies the YARN application ID as interchangeable with

the MapReduce job ID.

example, common static strings surrounding identifiers,

common static substrings within identifiers, or the struc-

ture of the identifiers. Note that Stitch does not attempt

to understand or identify what the actual type is (i.e., IP

address, pid, filename, etc.), but simply differentiates be-

tween types abstractly (i.e., TY PEA, TYPEB, TYPEC,

etc.).

We say that two objects, obji and obj j, are correlated,

represented as obji ∼ obj j, if both objects were partic-

ipants in the same logged event, meaning both of their

IDs appeared in the same log message. We further de-

fine that obji subsumes obj j, or obji ⊢ obj j, if and only

if: (1) obji ∼ obj j, and (2) obj j is not correlated with any

other object of the same type as obji. For example, in

Hive, user ui subsumes query qk because ui will submit

many different queries (including qk), yet two queries

with the same name will not typically be submitted by

different users since each query is assigned a globally

unique ID based on its timestamp and global order.

For all of the object types we identified, T1..t , we

categorize the relationship between each possible pair

(TI ,TJ 6=I) as one of (i) empty, (ii) 1:1, (iii) 1:n, or

(iv) m:n. We use this categorization to, in subsequent

steps, help identify objects unambiguously and to iden-

tify the system stack object structure. The relationship

is empty if object IDs of the two types never appear

in the same log message. The relationship is 1:1, i.e.,

TI ≡ TJ , if it is not empty, and ∀ obji ∈ TI ,∀obj j ∈
TJ,obji ∼ obj j ⇒ (obji ⊢ obj j) ∧ (obj j ⊢ obji); for ex-

ample, IP_ADDR ≡ HOST if there is no IP remapping.

It is 1:n, i.e., TI → TJ , if it is not empty or 1:1, and

∀obji ∈ TI ,∀obj j ∈ TJ,obji ∼ obj j ⇒ obji ⊢ obj j. Fi-

nally, the relationship is m:n, i.e., TI ⊲⊳ TJ , if and only

if ∃obji ∈ TI,∃obj j ∈ TJ , s.t. obji ∼ obj j while obji 6⊢ obj j

and obj j 6⊢ obji.

The size of the logs being used for the analysis needs

to be sufficiently large for us to be able categorize rela-

tionships correctly. If the size is too small, then some

of the type relationships might be miscategorized; e.g.,

(USER, QUERY) will be categorized as 1:1 instead of

1:n if the log spans the processing of only one query.

In contrast, logs spanning too large a time frame may

also cause miscategorizations, at least theoretically; e.g.,

(USER, QUERY) might be categorized as m:n if the

query ID wraps around. However, mature distributed

systems like Hadoop, Spark, and OpenStack use univer-

sally unique identifier (UUID) [18] libraries to assign key

identifiers. Therefore, the likelihood of identifier reuse is

extremely low [18].

We can intuitively draw certain conclusions about a

pair of identifiers based on the relationship between their

types. For example, two identifiers with types in a 1:1

relationship indicate that one might be able to use the

two identifiers to identify an object interchangeably. Two

identifiers with types in an m:n relationship suggests that

their combination is required to unambiguously identify

an object (as discussed below). Finally, two correlated

objects with IDs of types in a 1:n relationship indicate a

hierarchical relationship between the objects they repre-

sent; i.e., one likely created or forked the other.

To illustrate how the relationship between object types

can be useful, consider the example log snippet in Fig-

ure 3, which is the slightly simplified log output when

processing two Hive queries. Messages 2-25 are output

when processing query_14 submitted by Hive. YARN

assigns it to an application (app_14), which in turn

spawns two map and two reduce task attempts. Each at-

tempt is dispatched and executed in a container. After

the map phase, each reduce attempt creates two fetch-

ers. Each fetcher is a thread that shuffles output from

map attempts. Messages 27-33 show events related to

query_15 where map and reduce attempts fail and get re-

assigned to different containers. It also shows that the

same container can be reused by multiple attempts.

Figure 4 shows the relationships between each pair of

object types. We call this the Type Relation graph. We

explain a few of the relationships. First, while a user

can submit multiple queries, a query is always uniquely

associated with a single user; hence USER → QUERY,

a 1:n relationship. Further, the application ID (e.g., 14

in “app_14”) is included as part of both the identifiers

of the MapReduce attempts and the containers spawned

by this application; hence APP → ATTEMPT_M, APP

→ ATTEMPT_R, and APP→ CONTAINER. Note that

Stitch is able to parse map attempts as being of a

different type than reduce attempts because they have

different “schemas” (“attempt(.*)_m_(.*)” versus “at-

tempt(.*)_r_(.*)”). The details of our log parser will be

discussed in Section 4. ATTEMPT_R has an m:n rela-

tionship with CONTAINER because a container can be

reused by multiple attempts while an attempt can also be

assigned to multiple containers, given container failures.

Algorithm 1 shows how we further identify objects

unambiguously given that some of the identifiers used

to refer to objects are ambiguous. The algorithm takes

two inputs: the Type Relation graph and the entire set of

EVENTS. Each event, E, is represented as a set of object

types based on the IDs found in the event log message.

For example, E might be {USER, QUERY, APP}, as ex-

tracted from line 2 in Figure 3. The algorithm converts

the Type Relation graph into a System Stack Structure

graph, or S3 graph, in a sequence of steps. Each node in

the graph represents an object type along with its signa-

ture. This signature is the set of object identifier types

defined by the requirement that an ID of each type must

be present in order to unambiguously identify the object.

We start by setting the signature of every node in the

Type Relation graph to the type of the object. The algo-

1 Hive user1 login successfully

2 Hive user1 submits query_14 : app=app_14

3 RM Application app_14 is submitted

4 AM app_14 created task attempt14_m_0

5 AM app_14 created task attempt14_m_5

6 AM app_14 created task attempt14_r_0

7 AM app_14 created task attempt14_r_1

8 RM app_14 allocated container14_2

9 RM app_14 allocated container14_3

10 RM app_14 allocated container14_8

11 RM app_14 allocated container14_9

12 AM Dispatch attempt14_m_0 on container14_2

13 AM Dispatch attempt14_m_5 on container14_3

14 AM Dispatch attempt14_r_0 on container14_8

15 AM Dispatch attempt14_r_1 on container14_9

16 MR container14_8 creates thread fetcher1

17 MR container14_8 creates thread fetcher2

18 MR container14_9 creates thread fetcher1

19 MR container14_9 creates thread fetcher2

20 MR container14_8 fetcher1 shuffle attempt14_m_0

21 MR container14_8 fetcher2 shuffle attempt14_m_5

22 MR container14_9 fetcher1 shuffle attempt14_m_5

23 MR container14_9 fetcher2 shuffle attempt14_m_0

24 RM app_14 finished

25 Hive Ended query_14

26

27 Hive user1 submits query_15 : app=app_15 app_16

28 AM attempt15_m_0 failed on container15_0

29 AM Reassign attempt15_m_0 on container15_7

30 AM Dispatch attempt15_r_1 on container15_8

31 AM Dispatch attempt15_r_2 on container15_8

32 AM attempt15_r_2 failed on container15_8

33 AM Reassign attempt15_r_2 on container15_9

Figure 3: Log snippet output by two Hive queries. The soft-

ware component that output each log message is shown at the

beginning of the line. RM and AM stand for YARN’s Resource

Manager and Application Manager, respectively. MR stands

for MapReduce. Identifiers of objects of different types are

shown in different colors.

ATTEMPT_M

QUERY FETCHERCONTAINER

ATTEMPT_R

APPUSER

Figure 4: The Type Relation graph for the Hive log shown in

Fig. 3. Each node is an object type. A solid arrow represents a

1:n relationship between the source and the destination object

types; a dotted line represents an m:n relationship. There is no

1:1 relationship between types in the Hive log example.

{ATTEMPT_M}

{QUERY} {CONTAINER, FETCHER}{CONTAINER}

{ATTEMPT_R}

{APP}{USER}

Figure 5: S3 Graph of the Hive log snippet shown in Fig. 3.

rithm then goes through the following steps:

Step 1: Merge 1:1 nodes. We first attempt to merge the

nodes that are connected with≡ edges. If two types have

a 1:1 relationship, then the IDs of those types may of-

ten be used interchangeably to represent the same object.

However, this is not always true. For example, YARN

creates a unique url for each reduce task attempt so that

Algorithm 1: S3 graph construction

Input : G: Type Relation Graph, EVENTS

Output: System Stack Structure (S3) Graph

/* Step 1: merge ≡ nodes in G */

1 foreach connected component C of ≡ relations do

2 foreach subset S: {T1,..Tn} in decreasing size do

3 if ∀i ∈ [1,n],∀ob ji ∈ Ti,

∃ob j1 ∈ T1, ..ob jn ∈ Tn s.t.

ob j1 ≡ ..ob ji ≡ ..ob jn then

4 Node N← merge(T1,T2, ..,Tn);

5 N.sig← hash(T1.sig, T2.sig, .. Tn.sig);

6 replace Ti.sig with N.sig in EVENTS;

7 end

8 end

9 end

10 remove any outstanding≡ edges;

/* Step 2: process ⊲⊳ relations */

11 foreach connected component C of ⊲⊳ relations do

12 S← {all the types in C};

13 foreach E ∈ EVENTS do

14 sig← E ∩S;

15 if ∄ Node n where n.sig = sig then

16 nv← new Node() with nv.sig← sig;

17 if ∃ Node n’ where n’.sig ⊂ nv.sig then

18 add edge n’→ nv;

19 end

20 else

21 mark n;

22 end

23 end

24 remove all unmarked nodes from C;

25 end

/* Step 3: filter non-object-types */

26 foreach Node n do

27 if ∃Node n1,n2 s.t. n1.sig ∩ n2.sig = /0 and

n1.sig ∪ n2.sig ⊆ n.sig then

28 remove n;

29 end

30 end

a user can monitor the progress of this attempt in a web

browser. Consequently, we infer ATTEMPT_R ≡ URL.

However, URL is a generic type, and there can be other

urls that are not related to any reduce attempt. For ex-

ample, every job has its configuration information stored

in an XML file that is referenced by a url. This XML

file url does not appear together with any reduce attempt

in any event. Therefore, we cannot say that URL and

ATTEMPT_R may be used interchangeably. (Note that

Stitch still infers ATTEMPT_R ≡ URL because for ev-

ery pair of reduce attempt (atti) and url (url j) such that

atti ∼ url j, we have atti ⊢ url j and url j ⊢ atti.)

Instead, we only merge those nodes T1,T2, ..Tn in a ≡

connected component whose types can indeed be used

interchangeably (line 3); i.e., when for any obji of type

Ti, there exists obj1 of type T1, obj2 of type T2, ...,

objn of type Tn such that obj1 ≡ obj2.. ≡ objn, where

obji ≡ obj j iff obji ∼ obj j∧obji ⊢ obj j∧obj j ⊢ obji. This

prevents ATTEMPT_R and URL from being merged be-

cause there exist urls, such as the XML file url, that are

not correlated with any reduce attempt. The fact that the

types of the merged nodes can be used interchangeably

indicates they are redundant. To merge {T1, ..Tn}, we

hash their signatures into a single value representing a

new “type”, and we replace every Ti in EVENTS with

this hash value. After this, the outstanding≡ edges, such

as ATTEMPT_R ≡ URL, are removed as the types that

are connected by them are not truly interchangeable.

Step 2: Process m:n nodes. In order to be able to

identify objects unambiguously, we consider combining

types with m:n relationships. The challenge is to de-

termine which types should be combined. For exam-

ple, “HOST”, “PID”, and “TID” (i.e., thread ID) have

an m:n relationship between each pair. While {HOST},

{HOST,PID}, and {HOST,PID,TID} are meaningful

combinations as they unambiguously identify hosts, pro-

cesses, and threads respectively, the combination of

{HOST,TID} is meaningless. To eliminate meaningless

combinations, we consider all of the different combina-

tions the programmers output in the log statements and

only include the type combinations that appear in at least

one log message. The reasoning is as follows: if a com-

bination of identifiers is necessary to represent an object

unambiguously, then the programmer will always out-

put them together. A meaningless combination, such as

{HOST,TID}, will likely never be found alone in a log

message without “PID”, so combinations such as these

are discarded.

Therefore, for each ⊲⊳-connected component, C, we

only consider the type subsets where there exists an E

∈ EVENTS represented by a log message that contains

exactly the types in this subset, but not any type in its

complement set (line 11-25). A node whose type always

appears with other types in the same C is removed at the

end (line 24).

For the Type Relation graph shown in Figure 4, Step 2

creates four new nodes: {CONTAINER, FETCHER},

{CONTAINER, FETCHER, ATTEMPT_M}, {CON-

TAINER, ATTEMPT_R}, and {CONTAINER, AT-

TEMPT_M}. After creating the nodes, we further add

1:n edges from less constrained object types to more con-

strained object types (line 17-19). For example, a →
edge will be added from node {CONTAINER} to {CON-

TAINER, FETCHER}.

Step 3: Filter non-objects. One should note that not

every node created in the previous step is an actual ob-

ject type in the system. Among the nodes that are cre-

ated in Step 2 for the Hive example, only the one whose

signature is {CONTAINER, FETCHER} represents a

true object type, namely a fetcher thread in a container

process. To filter out non-object types, Stitch removes

nodes that are a combination of two existing object

types. Hence, in our example, it would remove {CON-

TAINER, FETCHER, ATTEMPT_M}, {CONTAINER,

ATTEMPT_R} and {CONTAINER, ATTEMPT_M} be-

cause they are combinations of other object types.

Figure 5 shows the S3 Graph constructed by Stitch

from the Hive log. This graph provides a simple model

of the system. Each node is a type of object, and each

edge represents a 1:n relationship, which indicates a hi-

erarchical relationship, such as fork or creation.

Note that the S3 Graph should be cycle free, because

objects do not generally have a circular fork or creation

pattern. If a cycle exists, then it must already have ex-

isted in the Type Relation graph since Algorithm 1 does

not introduce any cycles. Therefore, we first run a cy-

cle detection algorithm on the Type Relation graph. If

a cycle is detected, every 1:n edge in the cycle is con-

servatively changed to an m:n edge. In our experimental

evaluation, however, we never once encountered a cycle.

Generating a graph of object instances with their in-

teractions, like the ones shown in Section 2, from an

S3 graph is merely a pattern matching appliction. Sec-

tion 4.2 describes the algorithm in detail.

4 Implementation

Stitch uses a client-server model. A client runs on all

hosts being monitored to: (1) locate active logs, (2) parse

every log event into a set of object identifiers, and then

(3) send the events to the server. A centralized server

analyzes the events from all clients to build the S3 graph

and instantiates it with object instances.

4.1 Client Implementation

The client, implemented on Linux, runs as a daemon pro-

cess. The interval between the times the client wakes

up is called an epoch. Every time it wakes up, it scans

the /proc file system to find all running processes. The

client then examines each process’ file descriptors to lo-

cate log files. We treat a file as a log if its type (deter-

mined by the file’s magic number) is ASCII text and its

name or a parent directory’s name contains the text “log”.

For each process with an open log file, the client tries

to locate executables of the process (including dynam-

ically linked libraries) by searching through its file de-

scriptors and memory mapped files. For JVM processes,

Stitch also searches the process’ classpath for all .jar,

.war, and .class files. This ensures that executables are

found even if they were already closed by the JVM. Sim-

ilarly, for Python processes, the client identifies the start-

ing script from the shell command (e.g., ./script.py) and

then uses Python’s ModuleFinder package to locate the

remaining scripts in the dependency graph, regardless of

whether they are currently open.

Next, the client extracts all constant strings from each

executable. For ELF executables, we extract constants

from the read-only data segments (i.e., .rodata and .ro-

data1) by treating “\0” as a string terminator. For Java

class files we extract the strings from each file’s con-

stant pool. For Python bytecode, we extract strings from

the co_consts field in the Python code object. Currently,

these are the only executable formats we support.

Parsing logs. The goal of log parsing is to extract the

identifier values and infer their types from each log mes-

sage. If an executable’s constant string contains format

specifiers, then this string can be directly used as a reg-

ular expression, where the specifiers are metacharacters

(e.g., “%d” can be converted to “(\d+)” to extract an in-

teger). We treat the pattern matched by a format specifier

as a variable value.

However, most variable values output to log

messages from Java, Scala, C++, and Python pro-

grams use string concatenation operators; e.g.,

“2016-04-02T00:58:48.734 MongoDB starting :

pid=22925 port=27017 dbpath=/var/lib/mongodb” is

printed by the following code snippet:

l << "MongoDB starting : pid=" << pid

<< " port=" << serverGlobalParams.port

<< " dbpath=" << storageGlobalParams.dbpath;

For these output methods, we use an approach general

to all of the aforementioned languages: for each log

message, any segment that matches a constant string is

treated as static text, leaving only the variable values.

In the example, “MongoDB starting : pid=”, “ port=”,

“ dbpath=” are three of the constant strings parsed from

MongoDB’s executable, leaving “22925”, “27017”, and

“/var/lib/mongodb” as variable values.

Stitch solves this string matching problem with a dy-

namic programming algorithm. Given a log string of

length n, L[0..n−1], let M(i) be the maximum number of

characters in L[0..i] that are matched by constant strings.

Our goal is to find the subset of constant strings that

matches M(n− 1) characters of L in a non-overlapping

manner. To compute this, we first define a function

match() as the following:

match(a,b)=

{

b− a+ 1 if L[a..b] matches a constant

0 otherwise

Now we can iteratively compute M(i):

M(i) =max{match(0, i), max
0≤ j<i

{M(j)+match(j+1, i)}}

This string matching is only necessary the first time a

log message type is being parsed. In this example, af-

ter parsing the message, the client builds a regular ex-

pression: “MongoDB starting : pid=(\d+) port=(\d+) db-

path=(.*)”. The next time if another message is printed

by the same statement, Stitch can directly match it

against the regular expression. We also use a heuris-

tic to discard any string literals with fewer than three

characters since the executables we evaluated often con-

tained most permutations of all one and two character

strings; using them would miscategorize identifier values

as static text.

Next, Stitch infers the type of each variable. First, the

client expands the variable to include characters within

the word boundary delimited by whitespace. If the ex-

pansion includes static strings, then this “schema” of

constant strings serves as the variable’s type. For exam-

ple, consider this Hadoop log message: “app_14 created

task attempt14_r_0”. Initially, the occurrences of “14”

and “0” are recognized as variables, while “app_”, “ cre-

ated task ”, “attempt”, and “_r_” are constant strings.

Following expansion, the types of these two variables are

“app_(\d+)” and “attempt(\d+)_r_(\d+)”.

If a variable still does not include constant strings af-

ter the expansion, we trace backwards starting from the

variable and use the first matched static text alphabet-

ical word as the type. For example, in the MongoDB

example, the three variables would have the types “pid”,

“port”, and “dbpath” respectively.

Finally, the client uses a pair of heuristics to avoid cap-

turing non-identifier variables. The first heuristic elimi-

nates variables with types that do not end with a noun

since intuitively, identifiers have noun-based types. For

example, in the log, “Slow BlockReceiver write packet

to mirror took 20ms”, the latency variable is eliminated

since the preceding static text, “took”, is a verb. The next

heuristic eliminates variables whose types are common

non-identifiers (e.g., “size”, “usage”, “progress”, etc.).

In practice, these heuristics did not eliminate all non-

identifiers necessitating user-intervention. For example,

“user” sometimes referred to a program’s user-space ex-

ecution time rather than a username. Rather than imple-

menting heuristics for every such corner case, we allow

the user to modify the generated regexes, which is only a

one-time effort for each system.

Network protocol. At the end of each epoch, Stitch

sends the parsed log messages from the last epoch to

the server. The network protocol includes the following

fields: (1) the timestamp of the epoch; and (2) a list of

tuples, each with the format:

<severity, log file, {ID1:type1, ID2:type2, ..}, count>

All log messages from the same log file with the same set

of identifiers and severity (e.g., INFO, WARN, etc.) are

aggregated into a single tuple with the “count” field in-

dicating the number of such log messages. This protocol

message is then sent using Rsyslog [33] since communi-

cation is unidirectional.

The length of an epoch presents a trade-off between

the timeliness of monitoring and the amount of network

traffic. An epoch length of zero will force the client to

stay awake and send parsed log messages one at a time;

a large epoch will “compress” log messages that have

the same set of identifiers within the epoch into a single

tuple. Since log messages often arrive in a bursty man-

ner, even a small epoch can significantly reduce network

traffic. We set the epoch to be one second in our experi-

mental evaluation.

4.2 Server Implementation

The Stitch server is also implemented as a daemon pro-

cess. It consists of two threads: The first matches the

stream of incoming events against the S3 graph to gen-

erate an instantiated S3 graph, henceforth called an S3
i

graph. Each node in the S3
i graph is an object instance,

whose signature is a set of identifier values instead of

types as in the S3 graph. The node also records the set of

events that include the object instance.

For each event, e, we say e instantiates a node, N,

from the S3 graph if the set of identifier types in e is a

superset of those in N’s signature. For example, both

events {app_14} and {app_14, attempt14_m_0} instanti-

ate node {APP}. Initially, when no object instances have

been created, for each incoming event, Stitch checks

whether the event instantiates any of the root nodes in the

S3 graph. If so, Stitch creates an object instance node in

the S3
i graph. For example, event {user1} will cause the

creation of a node in S3
i graph, with signature {user1}.

Once an object instance node has been created in S3
i

graph, for each incoming event, Stitch first checks if it

matches any of the existing S3
i nodes. We say an event,

e, matches a node, n, in the S3
i graph if e’s identifier set is

a superset of n’s signature. If so, e is added to the event

set of n. For each node, n, that e matches, Stitch further

checks if e can instantiate any of the children of node,

N, in the S3 graph (where n is instantiated from N). If

so, Stitch further instantiates the children of N and adds

them as children of n. If one event matches multiple S3
i

nodes that are not on the same path, a link is created be-

tween each node pair, indicating an interaction between

them (Figure 2 in Section 2 showed an example of links

represented as vertical lines between nodes).

Consider the S3 graph for the Hive example shown

in Figure 5. Figure 6 shows the S3
i graph Stitch gen-

erates after analyzing the first five log messages. The

first message instantiates the node “user1”. The second

message matches the first node, instantiates a child node

“query_14”, and then further instantiates node “app_14”

attempt14_m_0

evt: {4}
user1

evt: {1,2}

query_14

evt: {2}

app_14

evt: {2-5}
attempt14_m_5

evt: {5}

Figure 6: The S3
i graph generated from the first five log mes-

sages in Figure 3. Each node is an object instance. The events

that include the object are also shown on each node.

Name Software components Benchmark

Hive Hive, YARN, MapReduce, HDFS HiBench

Spark Spark, Spark SQL, Hive, HDFS BigBench

OpenStack Horizon, Glance, Nova, Keystone VM cycle

Production CRON, dbus, dhclient, dnsmasq, Common

NetworkManager, ntpd, sshd, su, Linux ops

PostgreSQL

Table 1: The systems we used in evaluation.

as a child of node “query_14”. The third message

matches node “app_14”, but does not instantiate any

new nodes. The fourth and fifth messages match node

“app_14” and then instantiate two nodes with signatures

“attempt14_m_0” and “attempt14_m_5” respectively.

The server’s second thread builds the S3 graph, and

incrementally updates it based on new patterns observed

from incoming events. The thread first updates the Type

Relation graph incrementally based on the observation

that the relationship between two object types can only

be updated in one direction: 1:1→ 1:n→ m:n. Once the

Type Relation graph is up to date, the server rebuilds the

S3 graph using Algorithm 1 and notifies the first thread so

that it always uses the latest S3 graph to build S3
i graph.

Visualization. Stitch’s visualization front-end loads the

S3
i graph as a JSON file and displays each node and

its events as a row in a two-panel layout as shown in

Figure 1. In order to scale to thousands of events per

node, Stitch renders the graph using HTML5 Canvas and

avoids drawing hidden elements where possible. For

each node the user drills-down, Stitch performs a tran-

sitive reduction on the edges between this node and its

children. Performing transitive reduction interactively

like this avoids the overhead of doing it upfront since this

is an O(E) algorithm, where E is the number of edges.

5 Experimental Evaluation

We answer the following questions in evaluating Stitch:

(1) How much time does Stitch save in profiling and de-

bugging real-world systems? (2) Do real-world systems

follow the Flow Reconstruction Principle? (3) How ac-

curate is Stitch in identifying objects and their interac-

tions? (4) What is the performance of Stitch?

We evaluated Stitch using both a controlled user study

and lab experiments. The experiments consisted of us-

Case Description

OpenStack Identify the hierarchy of components in-

volved in creating VM instances.

MapReduce Identify the bottleneck of a job when a re-

duce task was scheduled on a slow CPU.

YARN Debug the anomaly described in Section 2.

Spark Jobs slowed down by 500% because all but

one HDFS datanode went down.

HDFS Jobs slowed down due to a slow network link

which affected HDFS read latency [29].

Table 2: Real-world profiling and debugging tasks we evaluate

with Stitch. The first three are further used in our user study.

ing Stitch to monitor each system and workload listed in

Table 1. In total there are 19 software components, pro-

grammed in C/C++, Java, Scala, and Python. The dis-

tributed system stacks were: (1) Hive stack – consisting

of Hive, YARN, MapReduce, and HDFS – driven by the

HiBench [15] workloads that repeatedly create, query,

and delete tables; (2) Spark stack, with BigBench [12]

used to send queries to Spark SQL, which then submit-

ted them to a Spark cluster that read data from HDFS;

and (3) OpenStack – consisting of four major software

components – driven by our own workload generator.

The generator used 80 concurrent processes to repeatedly

create, boot, suspend/resume, pause/un-pause, and shut-

down each VM at a randomized pace. Each distributed

system workload was run for more than 24 hours on a

cluster of 200 VMs.

The production system was our own 24-node cluster,

used for a variety of daily development workloads. Over

the course of five months, Stitch identified and monitored

nine log-printing components in the system, including

job-scheduling, system-messaging, networking, session-

management, privilege-management, and database utili-

ties. Eight of these components logged using syslog.

5.1 User Study

Ultimately, the value of any debugging tool should be

measured by the amount of time it saves. We evaluated

this in a controlled user study on the first three debugging

and profiling tasks listed in Table 2. They cover some

real-world scenarios where Stitch can be used: (i) under-

standing the object hierarchy of a software stack (“Open-

Stack”); (ii) identifying bottlenecks to debug an anomaly

we experienced in our production cluster that took us a

long time to understand without Stitch (“MapReduce”);

and (iii) debugging the anomaly described in Section 2

(“YARN”). We reproduced each case on a three nodes

cluster. 14 individuals participated in the study including

an experienced system administrator, professional devel-

opers, and both graduate and senior undergraduate stu-

dents. All of them were experienced programmers famil-

iar with Linux utilities such as grep, but their experience

 0

 10

 20

 30

 40

 50

All OpenStack MapReduce YARN

M
in

ut
es

w/ Stitch
w/o Stitch

Figure 7: The result of Stitch’s user study. The error bars show

a 95% confidence interval.

with OpenStack and Hadoop varied, ranging from “no

familiarity” to “expert developers”. No co-author of this

paper was a participant.

Each participant was given all three cases. Half of

the participants were allowed to use Stitch for two cases

but only logs (and Linux utilities) for the other case.

The other half was assigned the opposite configuration.

As a result, the collective expertise and experience was

evenly spread across the different cases. Before the ex-

periments, we gave each participant a five-minute verbal

introduction to both OpenStack and Hadoop as well as a

five-minute demo of Stitch. The demo was on a simple

MapReduce job and served to familiarize users with the

user interface. We then asked the participants to debug

each case. Since the experiment is a single-blind trial

(i.e., we, the co-authors, knew the answers), we gave the

participants written instructions for each case and then

minimized our interactions with them in order to avoid

any potential influence. A 45 minute time limit was im-

posed on each case.

We marked a case as solved when the user identified

the underlying cause to the degree that the raw logs al-

lowed. A case was marked as unsolved if the user ex-

ceeded the 45 minute time limit. In the OpenStack case,

success meant identifying the components involved in

the creation of a VM instance. For the MapReduce case,

it was to identify which job was slower and that the job

was likely bottlenecked by the machine’s slow CPU. For

the YARN case, it was to identify that the longest query

was bottlenecked waiting for a container to be released

by another user’s query.

Note that this is only a best effort experiment. The

following potential threats to validity should be consid-

ered when interpreting the results. First, there is a poten-

tial bias in the selection of participants, as many of them

were not familiar with the target systems. We note, how-

ever, that a comprehensive study [39] has shown many

real-world debugging tasks are also performed by pro-

grammers unfamiliar with the target system. Another

threat is that a study on just three cases may not be rep-

resentative. We actually started to evaluate a fourth case

(“HDFS” in Table 2) but decided to drop it after two tri-

als (despite the initial results showing the largest time

savings) because the participants became too exhausted

given the complexity of debugging real-world systems

without appropriate tools.

Figure 7 shows the results of user study. On average

users spent 27.3 minutes without Stitch and 5.9 minutes

with Stitch for a 4.6x speedup. An unpaired T-test shows

that the hypothesis “Stitch lowers debugging time” is true

with a probability of 99.99% (P value < 0.0001).

This measured speedup is likely an underestimate due

to the 45-minute time limit we imposed. Among the 21

trials where Stitch was not provided, participants reached

the time limit in eight of them without having found

the issue. This suggests that debugging real-world dis-

tributed systems is indeed a complex task. In contrast, all

of the Stitch users successfully diagnosed the case within

the time limit.

Interestingly, participants using Stitch accidentally

found an anomaly we were not targeting: when debug-

ging the YARN case, some participants noticed that the

map containers seemed to have long idle periods in the

middle of their executions. It turned out that we had in-

serted a sleep call in map tasks so to reproduce the bug.

Once we realized this, we removed the sleep call and in-

stead used a larger input size to reproduce the anomaly.

Fundamentally, Stitch offers a “top-down” approach,

whereas other practices, like “grep”, are “bottom-up”.

While we show that Stitch is effective overall, the user

study also showed that there are cases where a “bottom-

up” approach is more effective. For example, when de-

bugging the YARN case, a participant not using Stitch

diagnosed the anomaly in 10 minutes because he spot-

ted a log message clearly stating that a container could

not be allocated. This suggests a desirable capability

that would enable Stitch to detect some anomalies more

quickly. While a comprehensive solution is beyond the

scope of this paper, simple opportunities exist like high-

lighting events with “ERROR” or “FATAL” verbosity.

5.2 Other Real-world Cases

Table 2 shows two other real-world failures used to eval-

uate Stitch. The Spark failure was an anomaly we per-

sonally experienced. Stitch helped diagnose this failure

by correlating objects along the path from a slow query

all the way to the HDFS file read bottlenecking the query.

The HDFS case is a real-world issue [29] where the

output generated at default verbosity does not provide

sufficient information. At default verbosity, Stitch only

allowed users to detect the fact that HDFS file access was

slow and that a particular datanode was slow, but it was

necessary to increase the logging level to allow Stitch to

help identify a slow network link as the root cause; i.e.,

“DEBUG” logging was necessary to have the per packet

latencies output to the log files.

Log events Identifiers Objects Edges

Instances Types Instances Types Instances Types Accuracy Instance Types Accuracy

Hive 3,981,149 206 915,872 69 295,042 32 90% 401,924 73 87%

Spark 8,203,395 151 3,627,885 56 192,969 31 94% 485,133 60 93%

OpenStack 2,336,227 20 766,203 13 214,822 14 100% 2,196,315 19 100%

Production 312,779 36 123,668 22 8,141 24 100% 16,056 41 98%

Total 14,833,550 413 5,433,628 160 711,034 101 96% 3,099,428 193 95%

Table 3: Accuracy of Stitch’s object reconstruction.

queueFullName
| queueName

YARN scheduler queue

(CommitterEventProcessor_.*),
(application_.* | appattempt_.*

| AMContainer)
AM thread processing job
commit and abort events

(ContainerLauncher_.*),
(application_.* | appattempt_.*

 | AMContainer)

rackName_.*
user | nsid_.* | CID-.* | BP-.*
username | HDFS namespace

| HDFS cluster | HDFS block pool

app_cluster_ts_.* | keyId_.*
YARN RM creation timestamp

| YARN authentication key

WebApp
YARN WebApp URL

tableName
Hive table

Thread-\d+

txId
HDFS transaction

datanodeUuid | srvId
| storageId | DS-.*

HDFS Datanode

ipAddress
| Hostname

filePath

Stage \d+
Hive query stage

task_.*_m_.*container_.*_.* URL

(ContainerLauncher),
(attempt_.*_m_.* | jvm_.*_m_.*)

Container launcher for a map attempt

(ContainerLauncher),
(attempt_.*_r_.* | jvm_.*_r_.*

| task_.*_r_.*)
Container launcher for a reduce attempt

blk_.*, seqno
HDFS block packet with

sequence number

blk_.*
HDFS block

attempt_.*_m_.*
| jvm_.*_m_.*

attempt_.*_r_.* | jvm_.*_r_.*
 | task_.*_r_.*

SocketReader
Hadoop IPC server

reader thread

Hive Object YARN Object MapReduce Object HDFS Object

application_.* | appattempt_.*
| AMContainer | job_.*

tableName,
columnName

filePath,
DFSClient_attempt_.*_r_.*

container_.*_.*,
fetcher#.*

columnName,
container_.*_.*

Hive table column

 tag,
container_.*_.*
Hive operator tag

Operator,
container_.*_.*

Hive query operator

spill, container_.*_.*
Map task spill output

Figure 8: The entire, unfiltered System Stack Structure graph for the Hive stack after applying a transitive reduction. We explain

the object type in italics when necessary. A ‘|’ in the signature indicates that the identifier types can be used interchangeably, while

a ’,’ indicates the types must appear together to unambiguously identify an object. The colors of each node indicate the components

that output its object instance.

5.3 Object Reconstruction Accuracy

Table 3 shows Stitch’s accuracy at identifying objects

across four different system stacks. For each work-

load, we used Stitch to analyze the complete set of logs

without performing sampling. The total number of in-

stances is formidable: there are 14.8 million log mes-

sages, from which Stitch extracted 5.4 million identi-

fier values to then infer 700,000 objects and 3.1 million

edges. However, Table 3 also shows Stitch’s power in re-

ducing complexity by extracting the underlying system

model. There are only 413 log event types, 160 identifier

types, 101 object types, and 193 edges.

Figure 8 shows the entire, unfiltered S3 graph inferred

from the 4 million messages produced by the Hive stack.

It clearly shows the hierarchical structure of the system.

For each system, we evaluated the precision of Stitch’s

object and hierarchy identification by carefully verifying

every node and edge in the S3 graph. Overall, 96% of

the objects inferred by Stitch were accurate. Among the

101 object types Stitch identified, only four are incorrect.

Three are from the Hive stack while the fourth is from

Spark. The first one occurred because the “Thread-ID”

in the Hive stack can represent threads from two compo-

nents, namely YARN NodeManager (NM) and MapRe-

duce ApplicationManager (AM). In AM, a thread ID al-

ways appears together with the AM container ID (con-

tainer is a process), and the types of the corresponding

objects have an m:n relationship. However, in NM a

“Thread” ID can be printed by itself without a pid. This

caused Stitch to infer an object type whose signature is

“Thread” by itself. While this seemingly violates the

Flow Reconstruction Principle, it turns out that there is

only one NM process running on each node, therefore

a thread ID by itself can still unambiguously identify a

thread in this process. In fact, the NM’s pid is never out-

put to a log.

The second incorrect object type, “Stage”, seemingly

occurred due to a violation of the Flow Reconstruction

Principle for a similar reason. Each stage of a Hive query

has an identifier that is unique only within the context of

a query. In practice however, a stage and query identifier

are never printed in the same log message. This is be-

cause the Hive shell only runs a single query at a time,

meaning the stages of two queries never interleave. As

a result, Stitch incorrectly infers (based on the Flow Re-

construction Principle) that a stage identifier in multiple

queries represents the same object.

The third incorrect object type occurred because of

the Hive/Hadoop configuration we used. In Hadoop,

“Socket_Reader” is the ID of a thread within the IPC

Server process. The identifier is unique only within the

context of an IPC Server process. Stitch only observes a

1:n relation between thread and IPC process (instead of

the correct m:n relation) because, by default, the thread

pool’s size is set to one thread that has a fixed thread ID,

yet there are multiple IPC Server processes.

The final incorrect object type occurred because of the

limited scale of our Spark workload. Stitch inferred that

IP address and inode can be used interchangeably (they

have 1:1 relationship). However, they should have an

m:n relationship since an HDFS inode is replicated onto

multiple machines and each machine can host multiple

HDFS inodes. This inaccuracy occurred because the two

identifiers are only ever correlated in a rarely printed ER-

ROR log message. The small scale of our workload did

not output a large enough number of such errors to allow

accurate inference of this relation.

Stitch achieves 100% accuracy on OpenStack because

there are only 14 objects types and identifiers are auto-

matically logged by the underlying logging library; each

message is prepended with pid, user ID, project ID, etc.

The high accuracy on the production workload is also

due to the underlying logging library in addition to a

longer time window for analysis. Given that the produc-

tion software was not distributed, we expected to find

many messages with identifiers which were ambiguous

across the cluster. Interestingly, this was not the case

since by default, syslog automatically appends times-

tamp, hostname and pid to every log message. That

said, analyzing just 24 hours of logs did result in poor

accuracy since many relationships were 1:n instead of

m:n. We had to extend the analysis time window un-

til the model stabilized. Even then, one edge remained

incorrect after over five months: only one user was us-

ing databases, thus making the relation 1:n rather than

m:n. This highlights that the required log size for Stitch

depends on how long it takes the system to observe all

possible workload patterns.

Do real-world systems follow Flow Reconstruction

Principle? Figure 9 shows the cumulative distribution

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12

C
um

ul
at

iv
e

lo
g

m
sg

s

Number of objects per msg.

Hive
Spark
OpenStack
Production

Figure 9: The cumulative distribution of the number of objects

per log message.

of the number of objects included in each log message

of the systems we evaluated. It shows that almost all of

the log messages include at least one object (which also

indicates that at least one identifier is included). This

suggests that real-world systems are indeed following the

Flow Reconstruction Principle in terms of logging identi-

fiers. A primary reason for such a high percentage is that

the underlying systems and logging libraries automati-

cally include some identifiers. For example, by default

OpenStack’s logging framework prepends each message

with pid, user ID, project ID, etc. In both Hive and Spark,

the container and executor IDs are included in the file

path of the container and executor logs respectively.

Figure 9 also shows that over 50% of log messages

contain more than one object. This suggests that objects

interact in complex ways in real-world systems that fur-

ther complicates debugging. This is where Stitch is par-

ticularly advantageous since it can (1) separate important

fork or creation relationships from other interactions, and

(2) identify which objects, at which time, interact with

each other, and for how long.

We leave an evaluation of whether events are logged

at critical points in the control flow as future work. How-

ever, we observe that most requests log the start and end

of their execution, a clear indication of control flow.

5.4 Performance

To be viable in real-world systems, Stitch must meet

two performance requirements: (i) it must process logs

faster than they are generated; and (ii) it must not perturb

the analyzed system’s performance. We benchmarked

Stitch’s performance against these goals using the four

previously mentioned software stacks.

Log processing. Stitch’s client takes an average of 1.2

milliseconds in each one-second epoch to parse and send

incoming log messages to the server. On average, the

server takes 3.9 hours to process every 24 hours of log

messages. Thus, both daemons are able to handle the

rate of incoming log messages.

Performance perturbation. The client negligibly af-

fects the workloads it monitors since it is CPU-bound.

Therefore, for I/O-bound jobs like the Hive workload,

the client has no effect on execution time. The Spark

workload can reach 100% CPU utilisation but this tends

to happen in bursts. So again, the client has no effect on

execution time. However, Stitch must manage the over-

head of transmitting log messages over the network.

On average, Stitch achieves a 15% compression ratio

compared to trasferring the complete log files for a work-

load. We automatically achieve 50% of this since we

only need to transmit the identifiers from each log mes-

sage. The other 35% comes from using Rsyslog’s zlib

compression on each of our protocol messages.

6 Limitation and Discussion

The efficacy of Stitch fundamentally depends on the

quality of the logs. If there are no logs, or the log mes-

sages do not contain the right identifiers, then Stitch will

not be able to accurately reconstruct the system model it

needs. However, in that case, the logging would not even

be useful for manual inspection by the developers who

wrote the software. Perhaps our biggest (and happy) sur-

prise from this project is the high quality and usefulness

of the real-world logs generated by the mature distributed

systems we evaluated. Nevertheless, we have also en-

countered real-world logs that did not contain sufficient

information, as for example at one company where we

tried to use Stitch (where log quality needs to be im-

proved by enforcing the Flow Reconstruction Principle).

Another limitation of Stitch is that it cannot accurately

infer causal dependencies. Instead, it can only identify

correlations between objects. According to counterfac-

tual theories of causation [19], event B causally depends

on event A iff an event B would not have occurred if

event A had not occurred. For Stitch, a causal depen-

dence between events can be captured by two mecha-

nisms. First, the 1:n relationships between objects can

capture an object B that is created by an object A, so

that their output events will have a causal dependency.

Secondly, the events that are output along the same exe-

cution path involving the same object (i.e., a thread) are

also captured since Stitch associates these events with

that object. However, it is not true that every 1:n edge in

Stitch’s output captures object creation, or that every two

events belonging to the same object have a control-flow

dependency. We leave the job of distinguishing whether

the correlation is causal or not to Stitch’s user.

This limitation presents a fundamental trade-off in our

identifier-only design since we ignore static text in log

messages. For example, an event involving an operation

on file B is causally dependent on an event involving pro-

cess A if the latter event is “Process A created file B”,

but not if the event is only “Process A read file B”. But

this is something Stitch cannot identify. To capture this

type of causal dependence, Stitch would need to either

understand message semantics using Natural Language

Processing or leverage a static analysis approach such as

lprof [42]. 4

Stitch’s efficacy is also sensitive to the accuracy of ex-

tracting object identifiers and their types. In practice, it

is trivial for developers or administrators to annotate the

type of each identifier and its regular expression. In fact,

projects like LogStash [23] already provide a database

containing hundreds of regular expressions and their cor-

responding object types for commonly used identifiers.

7 Related Work

The fundamental challenge faced by any performance

analysis tool for distributed systems is to capture the se-

mantics of the event sequences output by the system. Ex-

isting solutions fall into one of three categories: (i) in-

strumenting the target system with predefined event se-

mantics, (ii) use of static analysis to infer the system

model, or (iii) the use of machine learning. We discuss

each category in detail below, but note that Stitch does

not rely on any of these techniques. Instead, it relies

on programmers’ intuition in event logging and builds

a simple algorithm entirely based on identifiers from un-

structured logs.

Intrusive approaches. Most of the existing tools capa-

ble of analyzing distributed system performance rely on

instrumenting the target system [1, 2, 7, 8, 9, 10, 11, 13,

14, 24, 26, 27, 28, 32, 34]. The key benefit afforded by

instrumentation is that the semantics of each event is de-

fined by the analysis tool; therefore, the events can be

unambiguously interpreted. For example, ÜberTrace [9]

instruments Facebook’s system with events that include

a unique request ID and a predefined event name. Pivot

Tracing [24] compiles a user’s query into code that gets

dynamically patched into the running system to collect

tracing events; furthermore, critical identifier informa-

tion is propagated to the different software components

to be included in every event by the tracing code.

Stitch faces a different challenge, namely how to un-

derstand unstructured log events without any knowledge

of how they are generated. This challenge presents inter-

esting trade-offs between Stitch and the aforementioned

intrusive approaches. On the one hand, because the se-

mantics of events can be precisely interpreted, intrusive

approaches can conduct more precise analyses. For ex-

ample, Mystery Machine [9] and Pivot Tracing [24] can

infer the causal relationship between events, a limitation

4However, it is debatable whether a log message “Process A created

file B” really implies a causal relationship between process A and file

B as it is possible that file B would have been created by other pro-

cesses, regardless. Therefore, rigorously inferring causal dependencies

between events may not be possible without domain expertise.

of Stitch we discussed in Section 6. On the other hand,

the necessity of instrumentation imposes significant de-

ployment hurdles. First, instrumentations are often spe-

cific to a particular system and cannot be generally ap-

plied to another. For example, Pivot Tracing’s instrumen-

tation requires dynamically patching code into system-

specific data structures. This challenge is perhaps why,

to the best of our knowledge, Stitch is the first system

that has been evaluated on heterogeneous systems imple-

mented in different languages. Second, vendors are often

reluctant to modify their production systems in the fear

that the instrumentations may open up reliability vulner-

abilities and add performance overhead. Finally, it sim-

ply may not be possible to instrument legacy software or

third-party components.

Log analysis guided by static analysis. Tools like

lprof [42] and SherLog [41] are able to analyze a sys-

tem’s source and bytecode to infer how the processing

of a request outputs log messages. For example, via

control-flow analysis, lprof is able to infer that log mes-

sages are causally related if they are on the same execu-

tion path; its data-flow analysis can infer which variables

are unchanged between two log printing statements,

which can be used to group the logs. However, these

approaches cannot be used to correlate events across het-

erogeneous software components because static analysis

is limited to a single software component. In addition,

static analysis needs to be customized for different lan-

guages (lprof only worked on Java bytecode), requires

the source for all third-party libraries, and for languages

like C and C++ where non-standard dialects are preva-

lent, it is challenging to even get the static analysis tool

to compile the code [4].

Log analysis with machine learning. Several tools

use machine learning on log files to detect anoma-

lies [3, 25, 38, 40]. These tools first learn a model from

logs output by correct runs, and then apply the model on

logs from failure runs. For example, CloudSeer learns

an automata model from clean logs that can then be used

to detect anomalies [40]. Xu et al., uses Principal Com-

ponent Analysis (PCA) to detect unusual patterns in the

logs [38]. Stitch is complementary to these tools: these

tools’ goals are to detect anomalies, while Stitch’s goal

is to profile entire systems by analyzing the performance

behavior and relationships between every object in the

system. Furthermore, the machine learning approaches

could be used on Stitch’s graphs to identify anomalies.

Log visualization tools. In recent years, most tools in

this area (e.g., Splunk [36], VMware LogInsight [22],

Kibana [17], etc.) have focused on system statistics and

monitoring rather than breaking down the system model

like Stitch. However, tools similar to Stitch exist in the

area of file systems and web browsers. InProv [6] gives

the user a top-down view of file system provenance data,

allowing them to click through the hierarchy of interac-

tions between processes and files over time. Chrome’s

Developer Tools allow a user to zoom in to and out of the

hierarchy of objects on a web page. InProv, Chrome, and

Stitch highlight the importance and usefulness of brows-

ing hierarchy when debugging.

8 Concluding Remarks

This paper presented Stitch, the first system capable of

reconstructing, in a non-intrusive manner, the end-to-end

execution flow of requests being serviced by distributed

server stacks. Without any system specific knowledge,

Stitch is able to analyze unstructured log output from

heterogeneous software components and construct a sys-

tem model which captures the objects involved, their life-

times and their hierarchical relationships.

At its core, Stitch is enabled by the observation that

programmers follow certain principles so that they can

reliably reconstruct the executions a posteriori. These

principles, which we collectively refer to as the Flow

Reconstruction Principle, state that a sufficient number

of events need to be logged at critical points in the con-

trol path and that each event log output must include a

sufficient number of object identifier values to be able

to disambiguate the concurrent and homogeneous execu-

tions. While these principles may seem straightforward

in hindsight, discovering them was challenging and took

us over two years to identify and refine.

Acknowledgements

We greatly appreciate the insightful feedback from the

anonymous reviewers and our shepherd, Margo Seltzer.

We thank Xiang Ren, Yongle Zhang, David Lion, Ser-

hei Makarov, and Abhishek Rudra for the useful and

thought-stimulating discussions. We also thank all of

the user study participants for their time spent debug-

ging. The idea that identifiers can be parsed by excluding

static text came from a discussion with David Lie. This

research is supported by an NSERC Discovery grant, a

NetApp Faculty Fellowship, and a Huawei grant.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-

tributed systems of black boxes. In Proc. of the 19th ACM

Symposium on Operating Systems Principles, SOSP ’03,

pages 74–89. ACM, 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using

magpie for request extraction and workload modelling.

In Proceedings of the 6th Conference on Symposium on

Opearting Systems Design & Implementation, OSDI ’04,

pages 259–272. USENIX Association, 2004.

[3] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and

M. D. Ernst. Leveraging existing instrumentation to auto-

matically infer invariant-constrained models. In Proceed-

ings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engi-

neering, ESEC/FSE ’11, pages 267–277. ACM, 2011.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,

S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and

D. Engler. A few billion lines of code later: Using static

analysis to find bugs in the real world. Commun. ACM,

53(2):66–75, Feb. 2010.

[5] Chapter 1. Boost.Log v2 - 1.61.0. http://www.

boost.org/doc/libs/1_61_0/libs/log/

doc/html/index.html.

[6] M. A. Borkin, C. S. Yeh, M. Boyd, P. Macko, K. Z. Gajos,

M. Seltzer, and H. Pfister. Evaluation of filesystem prove-

nance visualization tools. IEEE Transactions on Visual-

ization and Computer Graphics, 19(12):2476–2485, Dec.

2013.

[7] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit:

Transactional profiling for multi-tier applications. In Pro-

ceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007, EuroSys ’07,

pages 17–30. ACM, 2007.

[8] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and

E. Brewer. Pinpoint: Problem determination in large, dy-

namic internet services. In Proceedings of the 2002 In-

ternational Conference on Dependable Systems and Net-

works, DSN ’02, pages 595–604. IEEE Computer Soci-

ety, 2002.

[9] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.

Wenisch. The mystery machine: End-to-end performance

analysis of large-scale internet services. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI ’14, pages 217–231.

USENIX Association, 2014.

[10] C. Curtsinger and E. D. Berger. Coz: Finding code that

counts with causal profiling. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15,

pages 184–197. ACM, 2015.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

ica. X-trace: A pervasive network tracing framework.

In Proceedings of the 4th USENIX Conference on Net-

worked Systems Design & Implementation, NSDI ’07,

pages 271–284. USENIX Association, 2007.

[12] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess,

A. Crolotte, and H.-A. Jacobsen. Bigbench: Towards

an industry standard benchmark for big data analyt-

ics. In Proceedings of the 2013 ACM SIGMOD In-

ternational Conference on Management of Data, SIG-

MOD ’13, pages 1197–1208. ACM, 2013.

[13] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof:

A call graph execution profiler. In Proceedings of the
1982 SIGPLAN Symposium on Compiler Construction,

SIGPLAN ’82, pages 120–126. ACM, 1982.

[14] Z. Guo, D. Zhou, H. Lin, M. Yang, F. Long, C. Deng,

C. Liu, and L. Zhou. G2: A graph processing system

for diagnosing distributed systems. In Proceedings of the

2011 USENIX Conference on USENIX Annual Technical

Conference, USENIX ATC ’11, pages 299–312. USENIX

Association, 2011.

[15] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.

The HiBench benchmark suite: Characterization of

the MapReduce-based data analysis. In 26th Inter-

national Conference on Data Engineering Workshops,

ICDEW ’10, pages 41–51. IEEE Computer Society, 2010.

[16] java.util.logging (Java Platform SE 8). https://

docs.oracle.com/javase/8/docs/api/

java/util/logging/package-summary.

html.

[17] Kibana: Explore, visualize, discover data. https://

www.elastic.co/products/kibana.

[18] P. Leach, M. Mealling, and R. Salz. A Universally Unique

IDentifier (UUID) URN Namespace. RFC 4122, July

2005.

[19] D. L. Lewis. Counterfactuals. Blackwell Publishers,

1973.

[20] Log for C++ Project. http://log4cpp.

sourceforge.net/.

[21] Log4j - Log4j 2 Guide - Apache Log4j 2. http://

logging.apache.org/log4j/2.x/.

[22] VMware vCenter Log Insight: Log management

and analytics. http://www.vmware.com/ca/en/

products/vcenter-log-insight.

[23] Logstash – normalizing varying schema. https://

www.elastic.co/products/logstash.

[24] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dy-

namic causal monitoring for distributed systems. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, pages 378–393. ACM, 2015.

[25] K. Nagaraj, C. Killian, and J. Neville. Structured compar-

ative analysis of systems logs to diagnose performance

problems. In Proceedings of the 9th USENIX Confer-

ence on Networked Systems Design and Implementation,

NSDI ’12, pages 353–366. USENIX Association, 2012.

[26] Nagios: the industry standard in IT infrastructure moni-

toring. http://www.nagios.org/.

[27] NewRelic: Application performance management and

monitoring. http://newrelic.com/.

[28] OProf - A system profiler for Linux. http://

oprofile.sourceforge.net/.

[29] Poor HDFS performances: Slow BlockReceiver write

packet to mirror. http://stackoverflow.com/

questions/27984331.

[30] Section 15.7 logging - Logging facility for Python

- Python 2.7.12 documentation. https://docs.

python.org/2/library/logging.html.

http://www.boost.org/doc/libs/1_61_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/log/doc/html/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
http://log4cpp.sourceforge.net/
http://log4cpp.sourceforge.net/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
http://www.vmware.com/ca/en/products/vcenter-log-insight
http://www.vmware.com/ca/en/products/vcenter-log-insight
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
http://www.nagios.org/
http://newrelic.com/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
http://stackoverflow.com/questions/27984331
http://stackoverflow.com/questions/27984331
https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

[31] JIRA: YARN bug 4610. https://issues.apache.

org/jira/browse/YARN-4610.

[32] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.

Shah, and A. Vahdat. Pip: Detecting the unexpected in

distributed systems. In Proceedings of the 3rd Confer-

ence on Networked Systems Design & Implementation,

NSDI ’06, pages 115–128. USENIX Association, 2006.

[33] RSYSLOG: the rocket-fast system for log processing.

www.rsyslog.com.

[34] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephen-

son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.

Dapper, a large-scale distributed systems tracing infras-

tructure. Technical report, Google, Inc., 2010.

[35] SLF4J. http://www.slf4j.org/.

[36] Splunk log management. http://www.splunk.

com/view/log-management/SP-CAAAC6F.

[37] The syslog protocol. http://tools.ietf.org/

html/rfc5424.

[38] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proc. of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles, SOSP ’09, pages 117–132.

ACM, 2009.

[39] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairava-

sundaram. How do fixes become bugs? In Proceedings

of the 19th ACM SIGSOFT Symposium and the 13th Eu-

ropean Conference on Foundations of Software Engineer-

ing, ESEC/FSE ’11, pages 26–36. ACM, 2011.

[40] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang.

Cloudseer: Workflow monitoring of cloud infrastructures

via interleaved logs. In Proceedings of the Twenty-First

International Conference on Architectural Support for

Programming Languages and Operating Systems, ASP-

LOS ’16, pages 489–502. ACM, 2016.

[41] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pa-

supathy. SherLog: error diagnosis by connecting clues

from run-time logs. In Proceedings of the 15th Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’10,

pages 143–154. ACM, 2010.

[42] X. Zhao, Y. Zhang, D. Lion, M. FaizanUllah, Y. Luo,

D. Yuan, and M. Stumm. lprof: A non-intrusive re-

quest flow profiler for distributed systems. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI ’14, pages 629–644.

USENIX Association, 2014.

https://issues.apache.org/jira/browse/YARN-4610
https://issues.apache.org/jira/browse/YARN-4610
www.rsyslog.com
http://www.slf4j.org/
http://www.splunk.com/view/log-management/SP-CAAAC6F
http://www.splunk.com/view/log-management/SP-CAAAC6F
http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424

	Introduction
	Motivating Example
	System Stack Structure Graph
	Implementation
	Client Implementation
	Server Implementation

	Experimental Evaluation
	User Study
	Other Real-world Cases
	Object Reconstruction Accuracy
	Performance

	Limitation and Discussion
	Related Work
	Concluding Remarks

