
Implementing AES on GPU
Final Report

Michael Kipper, Joshua Slavkin, Dmitry Denisenko

University of Toronto
April 20, 2009

Introduction
Encryption and decryption are increasingly important. In order to protect the security of
individuals, corporations and even governments, information needs to be secured against
potential threats. The basis of encryption’s security is its robustness under a brute force
attack as the key space of AES-128 is 3.4x1038 keys in size. Even at a sustained rate of
1 Tkeys/second, it would take 1019 years to exhaust the key space.

Since AES on large blocks is computationally intensive and largely byte-parallel. Certain
modes of AES are more easily parallelizable and these are ideal candidates for
parallelization on GPUs. Also, using GPU resources as co-processors allows better
utilization of the central processing unit. Implementing the AES algorithm on the NVidia
GPU has provided a 14.5x speedup over a similar implementation on the CPU.

Related Work
The first paper to deal with cryptography on a graphics card was [1]. It used experimental
graphics engine called PixelFlow, consisting of a large number of simple 8-bit processors
running at 100 MHz. The authors researched cracking UNIX password cipher and were
able to crack most of UNIX passwords in 2-3 days.

Early commercial graphics card were poorly suited for cryptography work due to lack of
programmability and integer processing support. That changed in recent years with latest
graphics card made by NVidia, and later AMD. A number of recent papers dealt
specifically with implementing AES on NVidia’s GPUs [2, 3, 4]. All of these papers
concentrate on implementing the core algorithm in GPU, leaving key scheduling to the
CPU. Also, all the papers concentrate on the parallelizable modes of AES (ECB and
CTR). The clearest statement of results is contained in [4]. Using 256-bit keys, the
authors achieved 15.7x speed up over the CPU (and 5.4x speed up if memory transfers to
and from GPU are included) for OpenSSL library. These speed ups were achieved for the
largest measured input size, 8 MB. Smaller file sizes and 128-bit keys saw smaller speed
ups. It is not clear if the CPU implementation used SSE instruction set for CPU
parallelism.

 2

Description of AES
The AES cipher is the official encryption standard adopted by the US government. The
core of the algorithm is based upon the Rijndael cipher developed by Joan Daemen and
Vincent Rijmen. The AES algorithm was announced as the new US government standard
in November of 2001 and adopted as the standard for US encryption in May of 2002.

The AES cipher comes in 3 key sizes, each working on a fixed block size of 128 bits. The
3 flavours of the cipher are AES-128, AES-192 and AES-256 where the key sizes are
128, 192 and 256-bits respectively.

The AES algorithm consists of 4 phases with the number of rounds to perform being a
function of the key size. The phases are:

1. Key Expansion
2. Initial Round

a. AddRoundKey
3. Middle Rounds

a. SubBytes
b. ShiftRows
c. MixColumns
d. AddRoundKey

4. Final Round

Figure 1 - AES Algorithm

 3

Key Expansion: Key expansion takes the input key of 128, 192 or 256 bits and produces
an expanded key for use in the subsequent stages. The expanded key’s size is related to
the number of rounds to be performed. For 128-bit keys, there are 10 rounds and the
expanded key size is 352 bits. For 192 and 256 bit keys, the number or rounds increases
to 12 and 14 rounds respectively with an overall expanded key size of 624 and 960 bits. It
is the expanded key that is used in subsequent phases of the algorithm. During each
round, a different portion of the expanded key is used in the AddRoundKey step.

AddRoundKey: During this stage of the algorithm, the message is combined with the state
using the appropriate portion of the expanded key.

SubBytes: During this stage, the block is modified by using an 8-bit substitution, or S-
Box. This is a non-linear transformation used to help avoid attacks based on algebraic
manipulation.

ShiftRows: This stage of the algorithm shifts cyclically shifts the bytes of the block by
certain offsets. Blocks of 128 and 192 bits leave the first 32-bits alone, but shift the
subsequent 32-bit rows of data by 1,2 and 3 bytes respectively.

MixColumns: This stage takes the four bytes of each column and applies a linear
transformation to the data. The column is multiplied by the coefficient polynomial c(x) =
3x3+x2+x+2 (modulo x4+1). This step, in conjunction with the ShiftRows step, provides
diffusion in the original message, spreading out any non-uniform patterns.

At the end of the algorithm, the original message is encrypted. To decrypt the ciphertext,
the algorithm is essentially run in reverse, however, if the key used for KeyExpansion is
not known, a brute-force attack on the cipher could take thousands of years.

Modes of Encryption
AES is a block-based encryption standard and translates the plaintext into ciphertext in
blocks. There are different modes under which the encryption can take where some
modes are inherently more secure and some lend themselves more to parallelism.

Electronic Codebook (ECB): In this mode, each block is encrypted with an identical key
and there is no serial dependence between the blocks. While this leads to extensive
parallelism, the large scale structures in the plaintext are preserved.

Cipher-block Chaining (CBC): In this mode, the plaintext block is XOR’ed with the
ciphertext produced from the previous block prior to entering the block cipher
encryption. This eliminates the large scale structures in the ciphertext but the serial
dependence is unsuitable for parallelization.

Propagating Cipher-block Chaining (PBC): In this mode, the plaintext and the ciphertext
from the previous block are XOR’ed with the plaintext from the current block. As with
CBC, the large scale structures of the plaintext are eliminated from the ciphertext, but
again the serial nature of the algorithm does not lend itself to parallelization.

 4

Cipher Feedback (CFB): In this mode, the input to the block cipher encryption is the
ciphertext from the previous block. The output of the block cipher encryption is XORed
with the plaintext to produce the ciphertext for the block. As with CBC and PCB, this
mode is unsuitable for massive parallelism.

Counter (CTR): This mode is very similar to CFB in that the output of the block cipher
encryption is XORed with the plaintext to produce the ciphertext. It differs in that the
inputs to the block cipher encryption are not dependent on the previous block. Instead of
chaining the result from the previous block, a counter value is used as an input along with
the key. This mode allows for a high level of parallelization as the inputs to a block are
independent of the other blocks. By using a counter, the large scale structure that may
have been present in the original plaintext is diminished. It is this mode that we used in
our parallelization efforts on the GPU.

Only the more popular modes of encryption were described here. For a more complete
list, see the Wikipedia article on this topic [7].

Explanation of GPU Algorithm and implementation
Since the objective was to fairly compare implementations of AES on GPU and CPU, we
ported to GPU the open source CPU implementation from [5]. This implementation is
byte-oriented which is suitable for a byte-level parallelism on GPU. The source has two
main entries: Encrypt() and Decrypt(). These functions take in a plaintext / ciphertext
128-bit source block, a 1408-bit expanded key and output an encrypted/decrypted 128-bit
block. At a higher level, the encrypt() and decrypt() functions take in a 128-bit key and a
variable length message. They split the message into 128-bit blocks, appropriately pad
the block when the message size is a multiple of 128 bits, and pass the blocks to the
Encrypt() and Decrypt() functions.

This naturally leads to a highly parallel GPU implementation. The GPU threads perform
the Encrypt() and Decrypt() functions in parallel. Each thread works on a subset of the
data, so there are no dependencies between threads. This assumes that the cipher is used
in parallel-friendly modes (ECB or CTR).

 5

Figure 2 - Parallel AES Algorithm

We perform the Key Expansion on the CPU and pass the expanded key into the GPU.
This is because the operation is inherently serial and applies to all threads equally. There
is no real reason to duplicate this effort on the GPU.

To optimize global memory access, it is necessary to coalesce data accesses together to
allow the GPU to perform wide memory reads. To achieve this, the thread execution is
broken into three stages:

START

Load data into

shared memory

Synchronize

Process data:

Encrypt/Decrypt

Synchronize

Copy data into

global memory

END

Figure 3 - Thread Execution Stages

 6

Since all the threads access the data from global memory before processing the data, it is
easy to order the accesses such that the most efficient usage or the memory bus is
achieved. This is done in a data driven way so any changes to the grid or block structure
will not require any code updates. Once the data is loaded into shared memory, it can be
accessed hundreds of times faster than global memory. Since each thread loads a set of
data from global memory that it may not operate on, all threads must synchronize before
the shared memory can be used. The same goes for writing the shared memory back to
global memory.

Another optimization that is useful is the use of constant memory. The CPU
implementation we ported uses several 16x16-byte tables to perform lookups. Since these
tables are constant and common between threads, we can load them into the constant
memory of the GPU. This memory is cache-backed and the cache can accommodate all
of the table data. Once the data is in the cache, there is little penalty in accessing it again.

Note that it would be trivial to apply the same parallelization scheme to the CPU
implementation to fairly compare the GPU version with the CPU. However, the CPU
cannot come close to the number of active threads the GPU runs concurrently. The CPU
does not have to transfer the data from main memory so it likely has an advantage at low
message sizes. We did not implement or benchmark the CPU’s parallel behaviour.

Testing and Evaluation Methodology
The first thing to get right is the correctness. To ensure that we did not alter the
functionality of the algorithm, both the GPU and the CPU implementations were tested as
follows:

� Make sure that encrypting known plaintext gives back known cipher text.
Plaintext / cipher text pair was taken from the “Advanced Encryption Standard”
article of the Wikipedia [6].

� Make sure that decrypting encrypted string gives back the original plaintext.

After the correctness was verified, we evaluated the performance. Since the purpose of
any cipher is to quickly encrypt incoming data, the performance metric we picked is the
overall run-time of the algorithm. This includes key generation and moving data between
GPU and CPU memories.

To compare GPU and CPU implementations, we divided the GPU run-time by the CPU
run-time. Even though this ratio is good indicator of what benefits the GPU can bring, it
should be used with caution when comparing results from different publications.
Variations in hardware, relative newness of GPU and CPU chips, CPU implementations,
and CPU technologies (e.g. if SSE instruction set is used and which version) will all lead
to changes in the GPU / CPU run-time ratio.

Results
The results were achieved by running a random data set through the encryption and
decryption modules 200 times. Since the code path is not data dependent, the data itself

 7

does not affect the performance output. The output of the decryption phase was then
compared to the input to ensure correctness. This verification time was not included in
the elapsed time. The message size begins at 16-bytes, the smallest block unit, and
doubles in size until 64MB. This allows us to see a profile of the algorithm as the
problem size increases.

Since the CPU implementation runs serially, we expect to see a linear increase in runtime
as the message size increases. The parallel GPU runtime should increase linearly as well,
however, there may be a step-like behaviour as the message size crosses the boundaries
of the maximum work unit.

Table 1 - Results
Message Size (KB) GPU Time (s) CPU Time (s) Speedup
16 0.05 n/a n/a
32 0.05 n/a n/a
64 0.06 n/a n/a
128 0.08 n/a n/a
256 0.11 n/a n/a
512 0.14 0.01 0.1
1024 0.14 0.01 0.1
2048 0.16 0.03 0.2
4096 0.30 0.05 0.2
8192 0.31 0.08 0.3
16384 0.32 0.17 0.5
32768 0.36 0.38 1.1
65536 0.37 0.74 2.0
131072 0.56 1.50 2.7
262144 0.74 2.95 4.0
524288 1.14 5.86 5.1
1048576 2.02 11.70 5.8
2097152 3.23 23.50 7.3
4194304 4.88 47.09 9.6
8388608 8.29 94.07 11.3
16777216 14.71 188.23 12.8
33554432 27.35 376.54 13.8
67108864 52.86 753.32 14.3

 8

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000
Thousands

Message Size (Bytes)

W
al

lc
lo

ck
 T

im
e

(s
)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

S
p

ee
d

u
p

GPU Time CPU Time Speedup

Figure 4 - Results (Linear Scale)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Message Size (Bytes)

W
al

lc
lo

ck
 T

im
e

(s
)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

S
p

ee
d

u
p

GPU Time CPU Time Speedup

Figure 5 - Results (Log Scale)

 9

From Figure 4 we can see that the parallel GPU implementation achieves massive
speedups over the serial CPU implementation. The most effective use of the GPU
resources are when the message size is sufficiently large to exploit the parallelism of the
architecture and amortize away the memory transfer costs. In Table 1 we see that the
break even point does not occur until the message size is 32kB. This means that 2,048
threads are in flight in 8 blocks (256 threads per block).

We also see that the total time required to encrypt and decrypt increases linearly with the
message size, but the speedup increases as the CPU time increases faster than the GPU
time. Our speedup is capped close to 14.5x as the message size approaches the maximum
size.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000
Thousands

Message Size (Bytes)

W
al

lc
lo

ck
 T

im
e

(s
)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

S
p

ee
d

u
p

GPU Time CPU Time Speedup

Figure 6 - Results excluding memory transfer time (Linear Scale)

We can see from Figure 6 that when memory transfer to the GPU is excluded, the
speedup can approach 33x. This shows that the bottleneck is likely in the GPU itself and
the bandwidth between the CPU and GPU is not throttling the performance.

The AES algorithm is very computationally expensive. As such, the bottleneck is not the
data bandwidth, rather the processors themselves. For the largest message size, 64MB of
data was encrypted and decrypted 200 times in 23.187 seconds. This means that 25.6GB
was transferred to and from the GPU, excluding the constant data tables. Overall, this
translates to a bandwidth of 9.26Gbps which is well short of the theoretical maximum of
141GBps. Since we are efficiently transferring memory to and from the GPU main
memory, we believe this to be a result of the algorithm’s computational density as well as
its access pattern causing many bank conflicts.

 10

Conclusion
In this report we described our implementation of the AES algorithm in NVidia GPU.
Our implementation achieves up to 14.5x speedup over very similar implementation of
AES on a comparable CPU. This is comparable to what other authors achieved in their
work.

We decided not to implement AES brute-force cracker. Since only one order of
magnitude speedup was achieved, brute-force cracking AES on GPU is still infeasible.

References
[1] Gershon Kedem and Yuriko Ishihara. Brute Force Attack on UNIX Passwords with
SIMD Computer. In Proceedings of the 8th USENIX Security Symposium, Aug 1999.

[2] Owen Harrison and John Waldron. AES Encryption Implementation and Analysis on
Commodity Graphics Processing Units.

[3] Camilla Fiorese and Ceren Budak. AES on GPU: a CUDA Implementation. In CHES,
pages 209–226, 2007.

[4] Svetlin A. Manavski. CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In ICSPC 2007.

[5] 768/1280 Byte Table AES C byte-implementation 03 OCT 06 .
http://geocities.com/malbrain/aestable_c.html

[6] Advanced Encryption Standard, Wikipedia,
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

[7] Block cipher modes of operation, Wikipedia,
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

