
REAL-TIME DUAL-MICROPHONE SPEECH ENHANCEMENT USING FIELD
PROGRAMMABLE GATE ARRAYS

David Halupka, Seyed Alireza Rabi, Parham Aarabi, and Ali Sheikholeslami

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto, Canada

{halupka@eecg, rabi@ecf, parham@ecf, ali@eecg}.toronto.edu

ABSTRACT
This paper discusses an implementation of a dual-
microphone phase-based speech enhancement technique.
By using the phases of the incoming sound signals, we mask
frequencies with low signal-to-noise ratio (SNR) between
the two microphones. Phase-based filtering can achieve
high SNR gains with just two microphones, making it ideal
for hand-held devices. However, these devices have a
limited battery life and lack the processing power needed
for a software based implementation. This paper presents
a field programmable gate array (FPGA) implementation
that was designed specifically for low-power operation. The
FPGA based implementation is compared, with respect to
processing capabilities and power utilization, with an off-
the-shelf low-power digital signal processor (DSP) imple-
mentation.

1. INTRODUCTION

The fact that speech recognition systems do not work
effectively in practical environments where noise, back-
ground or irrelevant conversations, are present has fueled
research interest in the areas of speech enhancement and
speech separation [1–3]. Microphone array-based speech
processing techniques, in particular, have received much
research interest because of the potential for significant
noise removal.

Various microphone array-based speech enhancement
techniques have been proposed, including beamforming,
superdirective beamforming, postfiltering, and phase-based
filtering. Of these techniques, dual-microphone phase-
based filtering, also known as time-frequency masking
(TFM), has shown a great deal of promise, achieving recog-
nition gains of 28.9% over the single channel noisy signal,
22.0% over superdirective beamforming, and 8.5% over
post filtering [2] for the case of two speakers in a reverberant
environment (reverberation time = 0.1 s).

TFM, like other non-blind array based speech enhance-
ment techniques, requires the location of the speaker of in-
terest, which can be estimated by calculating the time delay

of arrival (TDOA) between the microphone pair [4]. As
such, TFM is very computationally intensive. For example,
a 1.1 GHz Intel Pentium III� processor is needed to perform
dual-microphone TFM masking and TDOA estimation in
real-time for a 20 kHz audio stream.

Hand-held devices, which would benefit most from
speech recognition, do not have the equivalent processing
power of a Pentium III� processor. Users will also not
accept speech recognition systems that will significantly
reduce the battery life of their device, no matter how con-
venient and robust to noise this system might be. There is a
definite need for power efficient implementations of speech
enhancement and speech recognition algorithms.

This paper presents an FPGA implementation of TFM
specifically designed for low-power consumption. This
implementation is compared to an off-the-shelf DSP
implementation, based on FreescaleTM Semiconductor’s
DSP56858 16-bit DSP.

Section 2 of this paper gives a brief overview of TFM.
Section 3 describes two power-saving optimizations utilized
to reduce the FPGA power consumption. Section 4 outlines
the DSP based implementation. Results comparing these
two implementations are given in section 5.

2. TIME-FREQUENCY MASKING

Assume that two microphones are placed in the vicinity of
a sound source. Two signal segments of a short duration
are obtained by windowing each microphone signal by a
Hanning window. In the frequency domain, these two short
microphone signals can be modeled as,

M1,k(ω) = Sk(ω) + N1,k(ω) (1a)

M2,k(ω) = Sk(ω)e−jωτ + N2,k(ω) (1b)

where for time segment k, Sk(ω) is the signal arriving from
the signal source of interest, having a TDOA of τ between
the microphone pair, and N1,k(ω) and N2,k(ω) model the
environmental and microphone noises. Sk(ω) is the time-
frequency representation of the time-domain signal s(t).

V - 1490-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:29 from IEEE Xplore. Restrictions apply.

Under ideal conditions, i.e. no noise and reverberations,
the time-frequency segments M1,k(ω) and M2,k(ω) will be
related by,

θk(ω) = ∠M1,k(ω) − ∠M2,k(ω) − τω = 0 (2)

where ∠ denotes the phase angle of its argument. However,
in noisy and/or reverberant environments θk(ω), the phase
error, does not equal zero. Work by [2] showed that θk(ω)
is in fact related to the amount of noise and reverberations
corrupting the desired signal Sk(ω).

In a noisy and reverberant environment, θk(ω) can be
directly calculated, provided the position of the speaker
to be isolated (τ) is known. As proposed by [1], a time-
frequency filter can be constructed based on θk(ω),

ψk(ω) =
1

1 + γθ2
k(ω)

(3a)

Yk(ω) = ψk(ω)M1,k(ω) (3b)

where it is assumed that θk(ω) is wrapped to be in the
range [−π, π]. The term γ is an adjustable parameter
which controls the aggressiveness of the filter; in low SNR
conditions a high value of γ is favorable, whereas in high
SNR conditions a low value of γ is favorable as a high value
of γ will actually corrupt the signal of interest. [1, 2]

Conversion of Yk(ω), the filtered signal, to y(t) is per-
formed by taking the inverse Fourier transform of all k
segments, half-overlapping the segments, and adding the
overlapped samples together.

3. FPGA IMPLEMENTATION

To provide TDOA estimates, a phase-transform (PHAT)
[4] sound localization algorithm is incorporated into the
FPGA. An Altera� Stratix� EP1S40 FPGA housed on
a Microtronix� development kit is utilized as the target
device. The FPGA system runs on a 6 MHz clock.

Analog to digital conversion is provided by two 8-bit
National Semiconductor ADC08831 sampling at a rate of
20 kHz. A 1024-sample (51.2 ms) window is processed
at a time, which is offset by 512 samples with respect
to the previously processed window. Each 1024-sample
window is multiplied by a Hanning window. An integer fast
Fourier transform (FFT) [5] algorithm is used to perform
an invertible discrete Fourier transform. The conjugate
symmetry of real signals is used to perform the FFT of two
real signals using only one FFT operation. Cartesian to
Polar conversion is performed by the CORDIC algorithm
[6]. The phases of each frequency component are used
to estimate the TDOA, as well as for calculation of the
TFM mask. The mask is applied to each channel, and the
two channels are then beamformed. After performing the
inverse FFT on the beamformed data, the processed data is

half-overlapped and summed with the previously processed
data.

3.1. TDOA Estimation Optimizations

The PHAT TDOA search, described by Eq. 4, is an ex-
haustive search, and is the most computationally expensive
calculation performed on the chip. For a search window
of -32 to 32 samples at a resolution of 0.125 samples,
approximately 130,000 evaluation of the cosine function
have to be performed. There are three major methods of
evaluating trigonometric functions in hardware: using the
CORDIC algorithm, Taylor expansion, or parametric curve
fitting. However, none of these methods are power efficient.

τ̃ = max arg
β

∫
cos (∠M1,k(ω) − ∠M2,k(ω) − βω) dω

(4)
Work by [7] showed that the PHAT cosine can be ap-

proximated by a rectangular function without a significant
reduction in TDOA estimation accuracy. In this work, var-
ious quantizations (approximations) to the cosine function
were studied, a sample of which are shown in Fig. 1. Table
1 shows the relative required average power to perform
TDOA estimation using different approximations. Power
estimates are given for a custom digital 0.18 µm CMOS
process provided by TSMC using Synopsis� design tools.

3 2 1 0 1 2 3
1

0

1

(a) Rectangular

3 2 1 0 1 2 3
1

0

1

(b) 3 Level Cosine

3 2 1 0 1 2 3
1

0

1

(c) 7 Level Cosine

3 2 1 0 1 2 3
1

0

1

(d) 15 Level Cosine

Fig. 1. Non-linear functions

Table 1. TDOA power consumption
Function Power Utilization

Ideal Cosine 10.6 mW
Rectangular 180 µW

3 Level Cosine 213 µW
7 Level Cosine 247 µW
15 Level Cosine 285 µW

Performance of each function was measured by localizing
a human speaker in a noisy and reverberant environment.

V - 150

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:29 from IEEE Xplore. Restrictions apply.

Approximately 60 s of speech was used for these tests,
the speaker was arranged in 4 different positions about the
microphone pair in a semi-circular arc. Another speaker,
the noise source, was placed approximately directly in front
of the array. Localization performance was measured over
four different SNR conditions. Table 2 summarizes the
performance of the localizations in terms of percentage of
estimates that were off by more than ±2 samples from the
expected value.

Table 2. Percentage of abnormal TDOA estimates
SNR

Function 0 dB 3 dB 6 dB 12 dB
Ideal Cosine 61.9% 53.4% 46.7% 40.3%
Rectangular 71.9% 65.9% 60.9% 55.6%

3 Level Cosine 67.2% 59.0% 52.4% 45.2%
7 Level Cosine 62.1% 53.4% 46.7% 40.3%
15 Level Cosine 61.9% 53.6% 46.7% 40.2%

The 7 level cosine approximation is used in this FPGA
implementation, as this function yields the best localization
accuracy for the amount of power dissipated.

3.2. TFM Optimizations

Time frequency masking along with beamforming is a
straightforward operation. However, division is an expen-
sive operation to implement in hardware, especially when it
comes to fixed-point operations, as a 32-bit by 16-bit divider
is necessary to perform fixed-point division. The FPGA
performs TFM without the use of division.

The estimate for each microphone’s phase will, unavoid-
ably, have some degree of error. This error is a result of
windowing a continuous signal and the limited numerical
precision used to process the signal of interest. Thus a
curve which approximates the TFM function can be used
to perform phase-based speech separation, instead of using
Eq. 3b.

Through experiments, qualitative listening and quantita-
tive experiments that used Microsoft’s speech recognition
engine, it was discovered that a step approximation (0.05
rad steps) to the TFM masking yields good separation
results. Table 3 shows speech recognition results from a
speaker, mixed with speech noise at four different SNRs,
and filtered using Eq. 3b and using a step approximation
to the TFM curve. Approximately three minutes of speech
was used, containing 487 words. The training data set was
used to conduct these recognition experiments.

The step function can be easily stored in a look up table,
due to quantization of θk(ω). However, multiplication is
still required to multiply the magnitudes of each micro-
phone channel. To further minimize power consumption,
multiplication has been replaced by right shifts and addi-

Table 3. Word error rates for a speaker in a noisy and
reverberant environment using Microsoft’s speech recogni-
tion engine (γ=5)

SNR Unprocessed Ideal TFM Step TFM
No noise 1.44%
20 dB 6.37% 3.29% 3.59%
10 dB 25.46% 5.85% 5.13%
0 dB 63.45% 23.48% 22.18%

-10 dB 88.09% 68.00% 66.39%

tion. Each step of the curve consists of 4 parameters. As
depicted by Eq. 5, the first parameter describes the magni-
tude of the initial right shift (0:15), and the remaining three
parameters (0,1) select the number of additional right shift
operations: the results of all shift operations are summed.

Yk(ω) = M1,k(ω)2−p1

(
1 +

p2

2
+

p3

4
+

p4

8

)
(5)

4. DSP IMPLEMENTATION

In order to show the validity of the FPGA implementa-
tion, in terms of performance and power efficiency, TFM
masking was also implemented on a commercially available
low-power DSP evaluation platform. The implementation
was based on Freescale� Semiconductor’s DSP56858 DSP.
Software development was done in Motorola�’s Code War-
rior. Code was developed to have minimal execution time
(instruction count), while secondarily minimizing power
utilized by memory traffic. To minimize execution time,
factory developed functions supplied by Code Warrior for
the DSP56858 were utilized wherever possible. All code
written for this project was developed in ANSI C.

On the DSP, each trigonometric calculation takes approx-
imately 300 instructions, therefore a cosine based PHAT
TDOA estimation technique will not be able to run in real-
time on the 120 MHz DSP. A rectangular function [7] is
the only function that was able to yield real-time TDOA
estimates. However, the 120 MHz DSP was only capable
of performing real-time TDOA estimation and TFM on
two 8 kHz sampled audio streams processed in 256 sample
windows. In fact, for real-time operation, TDOA estimation
was restricted to ±3.375 samples, with a step size of 0.125
samples. Real-time TFM processing of two 12 kHz sampled
audio signals is also possible, by completely disabling
TDOA estimation.

5. RESULTS

The benefits of TFM as compared to other speech en-
hancement techniques has been shown in previous work [2]
for both synthetic and realistic environments. Thus, the
results in this section will compare the performance of a

V - 151

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:29 from IEEE Xplore. Restrictions apply.

floating point MatLab� implementation to the FPGA and
DSP implementation in terms of post-processing SNR.

Two speakers were used for the following test case:
the speaker of interest was placed directly in front of the
microphone pair and the noise source was delayed by 0.5 ms
with respect to the microphone pair. Three minute speech
segments from the speaker of interest and the noise source
were mixed synthetically in MatLab� at 6 different SNRs.

In order to avoid the biasing introduced by microphones,
analog amplifiers, and sampling circuitry, as well as digital
to analog conversion on the real performance of the algo-
rithm implemented, all data was written and read from the
FPGA and DSP digitally.

Table 4. Post-processing SNR (γ=5) [8]
SNR MatLab FPGA DSP
-6 dB 2.7736 dB 3.8982 dB 4.2516 dB
-3 dB 5.4868 dB 6.5940 dB 6.1954 dB
0 dB 8.1176 dB 9.1743 dB 7.9948 dB
3 dB 10.5982 dB 11.5625 dB 9.7055 dB
6 dB 13.0443 dB 13.7103 dB 11.3574 dB
12 dB 17.6291 dB 16.8008 dB 14.3473 dB

Power consumption for the FPGA and DSP implementa-
tion was measured using two metrics, since the FPGA and
DSP are housed on evaluation boards. Power consumptions
for the processing cores and the incremental power used by
each evaluation board are given in Table 1. Incremental
power consumption is measured as the difference between
power utilized when the board is in reset and when per-
forming TFM. The memory used by the DSP is housed off
chip on the evaluation board, and as such, external power
consumption of the memory should be counted towards the
power utilized by the DSP implementation.

Table 5. Power utilization
FPGA DSP

Core 68.55 mW 79.92 mW
Incremental 183.6 mW 650 mW

Although the DSP implementation offers a quick method
to demonstrate the functionality of TFM, it is not a viable
platform for a speech enhancement system. A fully viable
speech enhancement system needs a method of estimating
TDOAs. Then, perhaps with user feedback, these TDOA
estimates can be used to enhance the signal from the speaker
of interest. The 120 MHz DSP56858 used is underpowered,
and cannot provide real-time TDOA estimates.

For real-time low-power performance, a hardware plat-
form is the most viable option. An FPGA or a fully custom
application specific integrated chip implementation is ca-
pable of providing real-time performance with controllable
power consumption. The Verilog code implemented on the

Stratix FPGA only uses 10% of available logic capacity.
Moreover, this code was originally developed for a fully
custom 0.18 µm CMOS silicon solution, which is capable
of real-time speech separation using only an estimated
3.44 mW of power.

6. CONCLUSION

Two hardware-based implementations of TFM were dis-
cussed in this paper. It was shown that, although real-
time TFM operation is possible using both the FPGA and
DSP implementations discussed, the 120 MHz DSP imple-
mentation is severely underpowered in terms of computa-
tional capacity to yield real-time TFM speech separation
and TDOA estimates. Moreover, the DSP implementation
utilizes 3.5 times the power of the FPGA implementation,
but does not provide the same functionality as the FPGA
implementation.

7. REFERENCES

[1] G. Shi and P. Aarabi, “Robust digit recognition using
phase-dependent time-frequency masking,” in Proceed-
ings of ICASSP, Hong Kong, Apr. 2003, pp. 684–687.

[2] P. Aarabi and G. Shi, “Phase-based dual-microphone
robust speech enhancement,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 34, no. 4, pp.
1763–1773, Aug. 2004.

[3] C. Lai and P. Aarabi, “Multiple-microphone time-
varying filters for robust speech recognition,” in
ICASSP, Montreal, Canada, May 2004.

[4] M. Brandstein and H. Silverman, “A robust method
for speech signal time-delay estimation in reverberant
rooms,” in Proceedings of ICASSP, May 1997, pp. 375–
378.

[5] S. Oraintara, Y.-J. Chen, and T. Nguyen, “Interger fast
fourier transform (INTFFT),” IEEE Transactions on
Signal Processing, vol. 50, no. 3, pp. 607–618, Mar.
2002.

[6] J. Volder, “The CORDIC trigonometric computing
technique,” IRE Transactions on Electronic Computers,
vol. EC-8, no. 3, pp. 330–334, Sept. 1959.

[7] P. Aarabi and S. Mavadadi, “Multi-source time delays
of arrival estimation using conditional time-frequency
histograms,” Information Fusion, vol. 4, no. 2, pp. 111–
122, June 2003.

[8] (2004, Aug.) Clips of TFM pre- & post-processed
audio samples. [Online]. Available: http://www.apl.
toronto.edu/projects/fpgatfm.html

V - 152

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:29 from IEEE Xplore. Restrictions apply.

