Big-Oh Notation

Formal Definitions

A function $T(n)$ is in $O(f(n))$ (upper bound) if there exist positive constants k and n_0 such that $|T(n)| \leq k|f(n)|$ for all $n \geq n_0$.

A function $T(n)$ is in $\Omega(f(n))$ (lower bound) if there exist positive constants k and n_0 such that $k|f(n)| \leq |T(n)|$ for all $n \geq n_0$.

A function $T(n)$ is in $\Theta(f(n))$ (tight bound) if it is in $O(f(n))$ and it is in $\Omega(f(n))$.

The definition for big-Oh was given on your lecture slides. the rest are presented here for your interest only. Not every function has a tight bound. For example, consider

$$f(n) = \begin{cases} n^3 & \text{if } n \text{ even} \\ 1 & \text{if } n \text{ odd} \end{cases}$$

In this case, we have $f(n) = O(n^3)$ and $f(n) = \Omega(1)$, but no $\Theta(\cdot)$ bound.

Useful Formulae

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$
$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$
$$\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$$

You should know the first sum above. The rest will be given if you ever need them.

However, you should remember that $\sum_{i=1}^{n} i = O(n^2)$, $\sum_{i=1}^{n} i^2 = O(n^3)$, and $\sum_{i=1}^{n} i^3 = O(n^4)$.

Example 1

What is the big-O of $2n^2 + 1000n + 5$?

Answer: $O(n^2)$

You can do this by inspection. To prove it formally, you must to find constants k and n_0 such that the definition given above holds:

$$T(n) = 2n^2 + 1000n + 5 \leq k f(n)$$

For $k = 3$, $n_0 = 1001$

Check: $2(1001^2) + 1000(1001) + 5 = 3005007$
$3(1001^2) = 3006003$
Example 2
Put these in order by big-O bound:

\[4n^3 \quad \log_5 n \quad 20n \quad 2 \quad \log_2 n \quad n^2 \quad n \log n \quad 1000n^{2/3} \quad 2^n \quad 2^{*n} \quad 10 \log(n!) \]

answer:

\[2, \log_5 n = \log_5 n, \quad 20n, \quad n \log n = \log(n!), \quad 4n^3, \quad 2^n = 2^{*n}, \quad \sqrt[3]{n}, \quad n^2 \]

Some comments:

\[\log_5 n = \log_5 n : \text{From highschool math, you should remember that } \log_a c = \frac{\log_a c}{\log_a b}. \text{ Therefore, } \log_5 n = \frac{\log_5 n}{\log_5 2} \text{ which is a constant times } \log_5 n. \text{ When looking at complexity classes, we ignore multiplicative constants.} \]

\[2^n = 2^{*n} : \text{because } 2^{*n} = 2 \cdot 2^n \text{ which is a constant times } 2^n. \]

\[2^n \cdot 3^n : \text{because they do not differ by a constant factor. Divide one by the other: } \frac{3^n}{2^n} = \left(\frac{3}{2} \right)^n \text{ which is a function of } n - \text{not a constant.} \]

\[n \log n = \log(n!) : \text{This is because of Stirling's approximation for the factorial: } n! = \sqrt{\frac{2\pi n}{e}} \left(\frac{n}{e} \right)^n \Theta \left(\frac{1}{n} \right). \text{ You can just remember the result that } \log(n!) = \Theta(n \log n). \]
Algorithm Analysis

Example 1
sum = 0;
for (i=0; i<3; i++)
 for (j=0; j<n; j++)
 sum++;
O(n) : outer loop is O(1), inner loop is O(n)

Example 2
sum = 0;
for (i=0; i<n*n; i++)
 sum++;
O(n^2) : loop is 1..n^2

Example 3
for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 A[i] = random(n); // assume random() is O(1)
 sort(A, n); // assume sort() is O(n log n)
O(n^2 log n) : outer loop is O(n), inner loop is O(n), but sorting is O(n log n)
so, the complexity of the algorithm is n(n + n log n) = O(n^2 log n)

Example 4
sum = 0;
for (i = 0; i < n; i++)
 if (is_even(i))
 for (j = 0; j < n; j++)
 sum++;
 else
 sum = sum + n;
O(n^2) : outer loop is O(n)
inside the loop: if “true” clause executed for half the values of n - O(n)
 if “false” clause executed for other half - O(1)
the innermost loop is O(n)
so the complexity is n(n + 1) = O(n^2)
Example 5 (recursive)
List *SearchList(List *a, int key) { // The list has n elements
 if (a == NULL)
 return NULL; // not found
 else if (a->data == key)
 return a;
 else
 return SearchList(a->next, key);
}

O(n) : This is tail recursion, and it only calls itself once. Draw a picture of the recursive calls, and you will see that this is O(n).

Example 6 (recursive - from lecture slides)
int somefunc(int n) {
 if (n <= 1)
 return 1;
 else
 return somefunc(n-1) + somefunc(n-1);
}

O(2^n) : If you draw a picture of the recursive calls, you will get a full binary tree. The tree is of height n, with 2^i leaves at each level. The total number of recursive calls is the sum of the leaves at each level, which is \sum_{i=0}^{n} 2^i = 2^{n+1} - O(2^n).

Example 7 (recursive - Fibonacci)
int Fibonacci(int n) {
 if (n <= 2)
 return 1;
 else
 return Fibonacci(n-1) + Fibonacci(n-2);
}

O(2^n), \Omega(2^{n/2} = \Omega((\sqrt{2})^n) : A picture of the recursion tree is given in your textbook. If you draw the calls with the parameter (n-1) on the left, and (n-2) on the right, then the tree will be deepest on the left, with a height of n, and least deep on the right, with a height of n/2. Therefore, the size of the tree is greater than a full binary tree of height n/2, but less than a full binary tree of height n. This gives us both upper and lower bounds on the complexity of the function:

- left side is of height n \rightarrow # leaves < 2^{n+1} \rightarrow O(2^n)
- right side is of height n/2 \rightarrow # leaves > 2^{(n+1)/2} \rightarrow \Omega(2^{n/2})
Example 8 (recursive - Fibonacci)
A better way to write a function to calculate the Fibonacci series is to store the last two values. An O(n) iterative version is given in your text. Here is a recursive O(n) version:

```
int Fibonacci(int[] A, int i, int n) {
    if (i <= 2)
        A[i] = 1;
    else
    if (i == n)
        return A[i-1] + A[i-2];
    else
        return Fibonacci(A, i+1, n);
}
...
```

... = Fibonacci(A, 1, n);

O(n) : This is tail recursion again. Draw a picture of the recursion tree, and you’ll see there are O(n) recursive calls.

(This version stores all the Fibonacci numbers in an array. If you only wanted the n^{th} Fibonacci number, then you only need to store the last two numbers in the series. You could easily re-write this function so that instead of the A array, it had two parameters for the previous and 2^{nd}-previous numbers.)