RCU Usage In the Linux Kernel: One Decade Later

Paul E. McKenney
Linux Technology Center
IBM Beaverton

Abstract

Read-copy update (RCU) has been used in the Linux ker-
nel for more than a decade, raising the question of ex-
actly what it is used for. To answer this question, we
briefly survey use of RCU in the Linux kernel, address-
ing the why, where, and how of its usage. This document
also includes a novel graphical depiction of the relation-
ships among several patterns of RCU usage.

1 Introduction

This section presents the fundamental properties of RCU,
which operates by maintaining multiple versions of ob-
jects. Readers access a given version, and updaters must
leave that version intact until readers have released all
references to it. Updaters must therefore receive some
indication of when readers’ accesses begin and end,
which is accomplished using RCU read-side critical sec-
tions demarked by rcu_read_lock() and rcu.-read.
unlock(). Any time a given thread is not in an RCU
read-side critical section, it is in a quiescent state.

Readers traverse all pointers to and within an RCU-
protected data structure using rcu_dereference(),
with each traversal contained within a single RCU read-
side critical section. Updaters may also traverse the
structure under any desired synchronization mechanism,
including non-blocking synchronization, single updater
thread, and transactional memory [12]. In the Linux ker-
nel, RCU updaters normally use locking.

Any time period during which each thread! has been
observed in at least one quiescent state is a grace pe-
riod. Suppose an updater renders a given RCU-protected
data item inaccessible to readers and then waits for one
grace period. By definition, there can no longer be any
RCU readers referencing that item. That item’s memory
can thus be safely reclaimed, for example, by freeing it.

! Within the Linux kernel, the closest analog to a thread is a ask.
2 Waiting for a grace period to elapse before reclaiming memory

Silas Boyd-Wickizer
MIT CSAIL

Jonathan Walpole
Computer Science Department
Portland State University

The synchronize_rcu() primitive waits for a grace pe-
riod to elapse, and its asynchronous counterpart, call_
rcu(), causes a specified function to be invoked after a
subsequent grace period.

On weakly ordered systems, a reader accessing a data
item that was concurrently initialized and then inserted
into the structure could observe that item’s pre-initialized
value. As a result, new data items must be made acces-
sible to readers using a rcu_assign pointer() prim-
itive. This primitive contains the instructions and di-
rectives required to prevent both the compiler and the
CPU from reordering references. As noted earlier, read-
ers must use rcu_dereference (), which also controls
ordering as needed. Both primitives reduce to simple as-
signment statements on sequentially consistent systems.
The rcu_dereference () primitive is a volatile access’
on all systems other than DEC Alpha, where a memory
barrier instruction is required [5].

Sections 2, 3, and 4 give the why, where, and how
of the Linux kernel’s RCU usage, respectively. Sec-
tion 5 presents algorithmic transformations that increase
RCU’s applicability. Finally, Section 6 presents conclud-
ing remarks.

2 RCU Usage: Why?

This section gives a qualitative view of why RCU is used
in the Linux kernel. Some quantitative data is given
in Sections 3, 4, and elsewhere [7, 11]. This section
augments the fundamental conceptual properties of RCU
called out in Section 1 with practical requirements from
the Linux kernel. These requirements result in some de-
gree of specialization: Other environments might have

implies that RCU-protected data structures are immune from the ABA
problem [27]. In addition, placing non-blocking synchronization algo-
rithms in RCU read-side critical sections permits the same simplifica-
tions permitted by the use of garbage collectors.

3 Compilers implementing the C++11 standard may use a volatile
memory_order_consume load.

different requirements met by a different RCU imple-
mentation, but nevertheless implementing the same fun-
damental abstraction.

RCU’s read-side primitives are typically wait free and
are exceedingly fast, with rcu_read lock() and rcu_
read_unlock () having exactly zero overhead in server-
class kernel builds with CONFIG_PREEMPT=n. The wait-
free nature of RCU’s read-side primitives, combined
with the fact that these primitives are required to suc-
ceed unconditionally, implies that RCU readers and up-
daters make forward progress concurrently. In this case,
there are none of the spinning, blocking, rollbacks, or re-
tries that can otherwise bedevil attempts to attain good
performance, scalability, and real-time response on large
systems.

In addition, real-time builds of the Linux kernel re-
quire that RCU read-side critical sections be preemptible.
Whether real time or not, RCU read-side primitives must
be usable from all non-idle environments within the
kernel, including RCU read-side critical sections (rcu_
read_lock() may be nested freely), as well as interrupt
and non-maskable interrupt (NMI) handlers. The RCU
implementation may not make any assumptions about the
size and extent of RCU-protected data structures. This
restriction permits use of any memory-allocation mecha-
nism, including compile-time allocation. However, RCU
implementations are permitted to assume that all RCU
read-side critical sections are finite.

RCU is intended for read-mostly situations, so imple-
mentations may use expensive grace-period mechanisms
with long latencies (e.g., milliseconds). However, Linux-
kernel RCU implementations must use batching so as
to satisfy multiple updates with one RCU grace period*
and should also offer “expedited” grace-period primi-
tives such as synchronize_rcu_expedited() [16].

The Linux kernel’s RCU implmentation must toler-
ate CPU-hotplug operations and must avoid awakening
CPUs that are in low-power states [21]. RCU implemen-
tations should issue warnings for excessively long RCU
read-side critical sections. RCU must operate efficiency
on systems with several thousand CPUs, and must not
prevent real-time response in the low tens of microsec-
onds on such systems. Finally, in real-time builds of the
Linux kernel, RCU must prevent indefinite preemption
within RCU read-side critical sections.

In short, while the fundamental conceptual properties
of RCU allow a large number of implementations, some
of which are quite simple [22], production-quality RCU
implementations must meet a number of additional con-
straints in order to be useful within the Linux kernel.

The next section considers the extent of RCU usage in
the Linux kernel.

4 In the Linux kernel, it is not unusual for a single grace period to
satisfy more than 1,000 updates [26].

N0 —r—TT T T T T T 11
6000 |- —
» 5000 —
[}
3
— 4000 —
o
<
) n i
3 3000
T
* 2000 —
1000 —
0 P T R N N O
AN MO < IO ©O - 0 O O 4 N M
O O O O O O O O dA d d
O O O O O O O O o o o o
AN AN &N AN &N AN &N N &N &N &N N
Year

Figure 1: Linux-Kernel RCU Usage

3 RCU Usage: How Much and Where?

This section examines the usage of RCU in the Linux
kernel over time, by subsystem within the kernel, and by
type of RCU primitive. Figure 1 shows how the usage
of RCU in the Linux kernel has increased over time. Al-
though this increase has been quite large, it should be
noted that there are more than ten times as many uses of
locking as there are of RCU. This should not be too sur-
prising, as RCU (1) is comparatively new to the Linux
kernel, (2) is a specialized primitive, and (3) typically
uses locking to mediate RCU updates.

Subsystem ‘ Uses ‘ LoC ‘ Uses / KLoC
virt 65 6,400 10.16
ipc 35 8,116 4.31
net 3086 717,501 4.30
security 245 66,990 3.66
kernel 620 187,863 3.30
block 65 28,053 232
mm 186 86,486 2.15
lib 66 51,709 1.28
init 2 3,308 0.60
fs 595 1,014,373 0.59
include 266 512,880 0.52
crypto 12 56,913 0.21
drivers 859 8,059,951 0.11
arch 156 2,394,340 0.07
Total 6258 | 13,194,883 0.47

Table 1: Linux 3.4 RCU Usage by Subsystem

Type of Usage API Usage
Annotation of RCU-protected pointers 250
Initialization and cleanup 256
Markers for RCU read-side critical sections 2920
RCU lockdep assertion 25
RCU pointer traversal 847
RCU pointer update 316
RCU list traversal 541
RCU list update 495
RCU grace period 608
Total 6258

Table 2: Linux 3.4 RCU Usage by Function

That said, Table 1 shows that RCU usage (exclud-
ing definitions) is spread widely across the Linux ker-
nel. These counts also exclude indirect uses of RCU via
wrapper functions or macros. Lines of code are com-
puted by a simple count of text lines in the .c and .h files
in the Linux source tree.

Linux’s networking stack contains almost half of the
most uses of RCU, despite networking comprising only
about 5% of the kernel. Networking is well-suited to
RCU due to its large proportion of read-mostly data de-
scribing network hardware and software configuration.
Interestingly enough, the first uses of DYNIX/ptx’s RCU
equivalent [25] were also in networking.

However, virtualization (KVM) uses RCU most inten-
sively, with fully one percent of its lines of code invoking
RCU, 2.5 times that of the networking stack. Linux’s
drivers contain the second-greatest number of uses of
RCU, but also have the second-lowest intensity. In fact,
it has only been in the past few years that the drivers have
made much use of RCU at all.

In short, RCU pervades the Linux kernel, with about
one of every 2,000 lines of code being an RCU primitive.
Within the individual subsystems, RCU usage ranges
from about one of every 15,000 lines of code (architec-
ture support) to about one out of every 100 lines of code
(virtualization).

Table 2 lists the number of uses of RCU API members
grouped into types of primitives having similar function-
ality.>. The __rcu tag is used to annotate RCU-protected
pointers so that Linux’s “sparse” [6] static-analysis tool
can flag traversals of RCU-protected pointers that are
not properly protected either by an RCU read-side crit-
ical section or an update-side lock. Markers for RCU
read-side critical sections include the rcu_read_lock()
and rcu_read unlock() primitives introduced in Sec-
tion 1. RCU lockdep assertions emit a run-time er-
ror if they are executed outside of an RCU read-side

3 Full explanation of each member of the RCU API is beyond the
scope of this document. More detail may be found elsewhere [18].

critical section. RCU pointer traversal includes rcu-
dereference (), while RCU pointer update includes
rcu_assign_pointer(), both introduced in Section 1.
RCU list-traversal and list-update primitives operate on
RCU-protected linked lists. Finally, RCU grace period
primitives include the synchronize_rcu() and call.-
rcu() primitives called out in Section 1.

There are 1,388 (847+541) occurrences of primitives
that traverse RCU-protected pointers (either indepen-
dently or as part of a list iterator, respectively), which
would correspond to 2776 RCU read-side critical sec-
tions assuming one traversal per critical section. How-
ever, there are instead 2920 markers for RCU read-side
critical sections, which is more than 100 more than ex-
pected. There are two major reasons for this discrep-
ancy: (1) Some RCU read-side critical sections have
multiple rcu_read_unlock() primitives, and (2) RCU
traversal primitives are often encapsulated in functions
and macros not counted in Table 2, and these are invoked
from multiple RCU read-side critical sections.

The higher-level list primitives are used frequently,
in fact, 47% of the traversals and updates use them.
Software-engineering assistance is also quite popular:
Of the 847 pointer traversals, 777 (92%) are verified by
the lockdep-RCU [17] dynamic-validation facility. How-
ever, of the 541 list traversals, only 6 are verified by
lockdep-RCU (1%). This was a design choice: Verify-
ing these traversals would add 42 additional RCU API
members. There is some indication that adding verifica-
tion would be worthwhile, however, given adding verifi-
cation to the pointer traversals resulted in about a year of
annotation pain, movement in this direction will be quite
deliberate. Of the 495 list updates, 240 are adds, 240 are
deletes, 13 are replacements, and 2 are splices (where an
entire list is inserted into another list). The replacements
usually replace a single element in the list with an up-
dated copy: RCU updates typically make small changes
to larger data structures.

This section has looked at the Linux kernel’s use of
RCU from a statistical viewpoint, and the next section
looks at the higher-level semantics of RCU usage.

4 RCU Usage: How?

This section looks at uses of RCU in relation to the exist-
ing synchronization mechanisms that RCU replaces, as
depicted in Figure 2. Each usage in the figure other than
publish-subscribe® is described in one of the following
sections, starting with those at the bottom of the figure.

6 Publish-subscribe, which is required for non-sequentially-
consistent systems (in other words, for all commercially available sys-
tems), was discussed in Section 1.

Reader-Writer Locking

Mark Obsolete

Object Retry Readers

Impose Level
of Indirection

ﬁ

Type-Safe Poorhouse
Memory Garbage Collector

¢ ¢

Bulk Restricted
Reference Count Reference Count

Existence Guarantee

Read-Copy Update

Wait for

—71| Publish-Subscribe Completion

Figure 2: RCU Usage Relationships

4.1 Wait for Completion

Wait for completion uses the grace-period operations that
wait for pre-existing RCU readers. This approach allows
waiting for each of thousands of different things to com-
plete without having to explicitly track each and every
one of them, and without having to worry about the per-
formance degradation, scalability limitations, complex
deadlock scenarios, and memory-leak hazards that are
inherent to explicit tracking.

In non-preemptive builds of the Linux kernel, anything
that disables preemption, along with hardware operations
and primitives that disable interrupts, serves as an RCU
read-side critical section.” Therefore, RCU can interact
with non-maskable interrupt (NMI) handlers, which is
quite difficult with non-blocking synchronization and in
general infeasible with locking. This approach has been
called “Pure RCU” [14], and it is used in a number of
places in the Linux kernel, typically as follows:

1. Make a change, for example, to the way that the OS
reacts to an NMIL.

2. Wait for all pre-existing read-side critical sections to
completely complete by using the synchronize_

7 In preemptive builds, rcu.read lock_sched(), rcu_read.
unlock_sched(), synchronize_sched(), and call_rcu_sched()
retain non-preemptive semantics.

sched() primitive. Subsequent RCU read-side
critical sections are guaranteed to the change.

3. Clean up, for example, return status indicating that
the change was successful.

More details, including code, may be found else-
where [14, Section 6.3].

Although interacting with NMI handlers is perhaps the
most unfamiliar use of wait for completion, it does have a
number of other uses. For example, it has been used out-
side of the Linux kernel to sequence through updates to
complex data structures while avoiding disrupting read-
ers [12, 28]. It also forms the basis for higher-level uses
of RCU, as will be seen in later sections.

4.2 Restricted Reference Count

Because grace periods are not allowed to complete while
there is an RCU read-side critical section in progress, the
RCU read-side primitives may be used as a restricted
reference-counting mechanism for a given data item.
Waiting for completion then waits for all pre-existing
readers, thus in turn for all RCU-based reference counts
for that item. For example, consider the following code
fragment:

1 rcu_read_lock(); /* acquire reference. */

2p-= rcu_dereference(head) ;

3 /* do something with p. */
4 rcu_read_unlock(); /* release reference. */

The rcu_read_lock() primitive can be thought of as
acquiring a reference to p, because a grace period starting
after the rcu_dereference () assigns to p cannot pos-
sibly end until after we reach the matching rcu_read_
unlock(). Therefore, the following code can safely
delete the data item referenced by p:
spin_lock(&mylock) ;

p = head;

rcu_assign_pointer(head, NULL);
spin_unlock(&mylock) ;

/* Wait for all references to be released. */

synchronize_rcu() ;
kfree(p);

~NOoO O WN e

The assignment to head prevents readers from acquir-
ing future references to p, and the synchronize_rcu()
waits for all prior references to be released.

But why bother substituting RCU for reference count-
ing? Part of the answer is performance, as shown in Fig-
ure 3, which shows data taken on a 16-CPU 3GHz Intel
x86 system. The error bars for both traces span a single
standard deviation in either direction.

The performance advantages of RCU are most pro-
nounced for short critical sections, as shown Figure 4.
Note however that each 3GHz CPU on this system can
execute many thousands of instructions in the time re-
quired by a single reference-count acquisition-release

10000

e T 1
on o XK XX X reant
T o0 @ xOHxH ?
3 = o]
[$] 3 :
0] F X -
(,) R
o - | -
3 .:
2 100 - _
e] 3 :
m - -
(O]
-E - -
: o rcu 3
o S e S S S S SO NUOY SR RO S N - §

1]] | | | | |
0 2 4 6 8 10 12 14 16

Number of CPUs

Figure 3: Performance of RCU vs. Reference Counting

pair. Furthermore, many system calls (and thus any RCU
read-side critical sections that they contain) complete in
a few microseconds.

However, the restriction against sleeping in an RCU
read-side critical section can pose a challenge in some
cases: If some of the code paths protected by refer-
ence counting can sleep, then RCU cannot be directly
substited for reference counting. Linux’s networking
stack addresses this challenge by applying both reference
counting and RCU to a given data item, with RCU suf-
ficing for short critical sections that are guaranteed not to
block, and with the heavier-weight reference count used
for longer critical section, for example, those that include
a transmit and/or receive operation. In such use cases,
the protected data item cannot be freed until both: (1) A
grace period has elapsed since the data item has been ren-
dered inaccessible to readers and (2) the reference count
decreases to zero [20].

However, RCU-based reference counters have the
countervailing advantage of being cheaply extendable to
cover multiple data items, as described in the following
section.

4.3 Bulk Reference Count

As noted in the preceding section, traditional reference
counters are usually associated with a specific data struc-
ture. It is of course possible to use a single global ref-
erence counter to protect larger data structures, but fre-
quent references that counter thrashes the cache line con-
taining the reference count. Such thrashing severely de-
grades performance, especially on large systems.

In contrast, RCU’s light-weight read-side primitives
permit RCU to be used as a bulk reference-counting

4500 — T T T T 1
4000

3500

3000 |- VR < -
2500

rcu

2000
1500

Overhead (nanoseconds)

1000

500 |- -

0 I I I I I I I
0O 05 1 15 2 25 3 35 4
Critical-Section Duration (microseconds)

Figure 4: Latency of RCU vs. Reference Counting

mechanism with little or no performance penalty. In this
bulk reference-counting approach, executing rcu_read_
lock() acquires a reference on each and every RCU-
protected data item in the structure.

Taking the concept of bulk reference counting to its
logical extreme results in existence guarantees, which
are the subject of the next section.

4.4 Existence Guarantees

Gamsa et al. [8, Section 5] describe how a mechanism
resembling RCU can be used to provide these existence
guarantees. The effect is that if any RCU-protected data
element is accessed within an RCU read-side critical sec-
tion, that data element is guaranteed to remain in exis-
tence for the duration of that critical section.

Figure 5 demonstrates RCU-based existence guaran-
tees enabling per-element locking via a function that
deletes an element from a hash table. Line 6 computes a
hash function, and line 7 enters an RCU read-side criti-
cal section. If line 9 finds that the corresponding bucket
of the hash table is empty or that the element present is
not the one we wish to delete, then line 10 exits the RCU
read-side critical section and line 11 indicates failure.®

Otherwise, line 13 acquires the update-side spinlock,
and line 14 then checks that the element is still the one
that we want. If so, line 15 leaves the RCU read-side
critical section, line 16 removes it from the table, line 17
releases the lock, line 18 waits for all pre-existing RCU
readers to complete, line 19 frees the newly removed el-

8 Note that this is a very simple hash table with no chaining, so there
is at most one element in a given bucket. Therefore, the element to be
deleted will always be the first one in the list.

1 int delete(int key)

2 {

3 struct element *p;

4 int b;

5

6 b = hashfunction(key);

7 rcu_read_lock();

8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {
10 rcu_read_unlock();
11 return O;

12 }

13 spin_lock(&p->lock) ;
14 if (hashtable[b] == p && p->key == key) {

15 rcu_read_unlock();

16 hashtable[b] = NULL;
17 spin_unlock(&p->lock) ;
18 synchronize_rcu();

19 kfree(p);

20 return 1;

21}

22 spin_unlock(&p->lock);
23 rcu_read_unlock();
24 return 0;

Figure 5: Existence Guarantees for Per-Element Locking

ement, and line 20 indicates success. If the element is no
longer the one we want, line 22 releases the lock, line 23
leaves the RCU read-side critical section, and line 24 in-
dicates failure to delete the specified key.

Alert readers will recognize this as only a slight varia-
tion on the original “RCU is a way of waiting for things
to finish” theme, which is addressed in Section 4.1.

RCU is used heavily within the Linux kernel for its
existence guarantees, most famously by the System-V
IPC implementation [1]. Existence guarantees can also
be exploited to create type-safe memory, as described in
the following section.

4.5 Type-Safe Memory

A number of lockless algorithms do not require that a
given data element keep the same identity through a
given RCU read-side critical section referencing it—but
only if that data element retains the same type. In other
words, these lockless algorithms can tolerate a given data
element being freed and reallocated as the same type of
structure while they are referencing it, but must prohibit
a change in type. This guarantee, called “type-safe mem-
ory” in academic literature [9], Type-safe memory algo-
rithms in the Linux kernel make use of slab caches, mark-
ing type-safe caches with SLAB_DESTROY_BY_RCU so that
RCU is used when returning a freed-up slab to system
memory. This use of RCU guarantees that any in-use
element of such a slab will remain in that slab, thus re-
taining its type, for the duration of any pre-existing RCU
read-side critical sections.

These algorithms typically use a validation step that
checks to make sure that the newly referenced data struc-

ture really is the one that was requested [13, Section 2.5].
These validation checks require that portions of the data
structure remain untouched by the free-reallocate pro-
cess. Such validation checks are usually very hard to get
right, and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algo-
rithms can be extremely helpful in a some difficult sit-
uations, existence guarantees should instead be used
where feasible. That said, there are 12 places in the 3.4
Linux kernel that use SLAB_DESTROY _BY_RCU to guaran-
tee type-safe memory, including the signal handling data
structures, the virtual-memory system’s reverse-mapping
data structures, and networking.

4.6 Poorhouse Garbage Collector

Existence guarantees can be thought of as analogous to
garbage collection (GC), but this line of thought can be
misleading. Perhaps the best way to think of the re-
lationship between RCU and automatic garbage collec-
tors (GCs) is that RCU resembles a GC in that the tim-
ing of collection is automatically determined, but that
RCU differs from a GC in that: (1) the programmer must
manually indicate when a given data structure is eligi-
ble to be collected, and (2) the programmer must manu-
ally mark the RCU read-side critical sections where ref-
erences might legitimately be held.

Despite these differences, the resemblance does go
quite deep, and has appeared in at least one theoretical
analysis of RCU. Furthermore, the first RCU-like mech-
anism I am aware of used a garbage collector to handle
the grace periods. However, the Linux kernel community
seems to find it easier to think of RCU in other terms,
with the most popular approach being as a replacement
for reader-writer locking, as discussed in the next sec-
tion.

4.7 Reader-Writer Lock Replacement

Interestingly enough, wait for completion can also be
used to replace some uses of reader-writer locking, and
this is in fact the most common use of RCU within the
Linux kernel. In fact, we will show that in some cases, it
is possible to mechanically substitute RCU API members
for the corresponding reader-writer lock API members.
But first, why bother?

RCU’s advantages include performance, deadlock im-
munity, and realtime latency. RCU’s limitations include
concurrent readers and updaters, low-priority RCU read-
ers blocking high-priority threads waiting for a grace pe-
riod to elapse, and grace periods that can extend for many
milliseconds. These advantages and limitations are dis-
cussed in the following sections.

10000

L | | T T T T I -

: R et ok |
1000 | s XX " rwlock =
— F :
%) -]
g 100 Fy :
g 10k]
S i -
2 1E]
g [:
= o1k]
m i -
2 o0l F E
g) i -
3 0001 []
1e-04 ;—_,_.._H_,_,_,_'ﬁ-g’:!’:"‘}‘:‘/a’}__;
feos L—L 1 11 1 11

0 2 4 6 8 10 12 14 16

Number of CPUs

Figure 6: QSBR RCU vs. Reader-Writer Locking

4.7.1 Performance

The read-side performance advantages of the quiescent-
state-based-reclamation (QSBR) form of RCU [11] over
reader-writer locking are shown in Figure 6,° again for
a 16-CPU 3GHz x86 system, and again with error bars
for both traces spaning a single standard deviation in ei-
ther direction. Note that reader-writer locking is orders
of magnitude slower than RCU on a single CPU, and is
almost two additional orders of magnitude slower on 16
CPUs. In contrast, RCU scales quite well.

Although the QSBR form of RCU is extremely effec-
tive for throughput-oriented workloads, it can result in
excessive scheduling latencies for aggressive real-time
workloads, for which preemptible RCU was designed.
Although preemptible RCU incurs some read-side over-
head, it beats reader-writer locking by between one and
three orders of magnitude, as shown in Figure 7.

The performance advantages of RCU become less sig-
nificant as the overhead of the critical section increases,
as shown in Figure 8 for a 16-CPU system, in which the
y-axis represents the sum of the overhead of the read-side
primitives and that of the critical section. The variance
decreases as the critical-section duration increases due
to decreasing levels of contention on the data structure
implementing the reader-writer lock. However, note that
many system calls (and thus any critical sections they
contain) complete in well under a microsecond.

In addition to RCU’s performance advantages, as dis-
cussed in the next section, RCU read-side primitives are
almost entirely deadlock-immune.

9 The measured value of 100 femtoseconds is an overestimate due
to timing overhead. The true value is exactly zero.

10000 g
- Sl rwlock]
Tn\ ! ‘ -
T 1000 5 _:
8 e E
w .
o - | -
g 100 _
© 3 :
m - -
[0)
E ! -
g ’ 3 rcu =
° E e+
1 | | | | | | |
0O 2 4 6 8 10 12 14 16

Number of CPUs

Figure 7: Preemptible RCU vs. Reader-Writer Locking

4.7.2 Deadlock Immunity

Because RCU’s read-side primitives are typically wait-
free, they are also typically immune to deadlock.!” In
addition, RCU’s deadlock immunity can greatly sim-
plify design by removing the need for complex deadlock-
avoidance code. In fact, a major early benefit of RCU
in Sequent’s DYNIX/ptx kernel was the removal of
more than 10,000 lines of complex and difficult-to-test
deadlock-avoidance code during a conversion of locking
to RCU.

As aresult of RCU’s deadlock immunity, it is possible
to unconditionally upgrade an RCU reader to an RCU
updater, for example as follows:

1 rcu_read_lock();

2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with(p);

4 if (need_update(p)) {

5 spin_lock(my_lock) ;

6 do_update (p) ;

7 spin_unlock (&my_lock) ;

8 }

9}

0

10 rcu_read_unlock();

In contrast, an analogous reader-writer-locking up-
grade locking would deadlock. The wait-free nature of
RCU’s read-side primitives also benefits real-time work-
loads, as discussed in the following section.

4.7.3 Realtime Latency

RCU read-side primitives also offer excellent realtime la-
tencies. In addition, as noted earlier, they are immune to

10 One remaining deadlock scenario involves (illegally) placing
synchronize_rcu() inside an RCU read-side critical section, while
others involve the Linux scheduler’s locks [19].

8000 — T T T T T T
7000 [~ rwlock)

6000 |- = X ¢ -
5000 |- —
4000 - —
3000 - —

2000 | red -

Overhead (nanoseconds)

1000 [-

0 I I I I I I I
o 1 2 3 4 5 6 7 8

Critical-Section Duration (microseconds)

Figure 8: Comparison of RCU to Reader-Writer Locking
as Function of Critical-Section Duration (16 CPUs)

| rwlock reader | spin rwlock reader

| rwlock reader | spin rwlock reader

’ rwlock readeq | spin rwlock reader
| spin [rwlock writer

|
RCU reader	RCU reader	/RCU reader
RCUreader	RCU reader	RCU reader
RCUreader; [RCU reader	RCU reader	
RCU updater]		

‘ Time

Update Received

Figure 9: Latency of RCU vs. Reader-Writer Locking

priority inversion. For example, low-priority RCU read-
ers cannot prevent a high-priority RCU updater from ac-
quiring the update-side lock. Similarly, a low-priority
RCU updater cannot prevent high-priority RCU readers
from entering an RCU read-side critical section. There-
fore, RCU can often provide reduced latency with respect
to outside events, as shown by Figure 9 [25].

However, RCU is susceptible to more subtle priority-
inversion scenarios, for example, a high-priority process
blocked waiting for an RCU grace period to elapse can be
blocked by low-priority RCU readers in -1t kernels. This
can be solved by using RCU priority boosting [10, 15].

474 Concurrent RCU Readers and Updaters

RCU’s performance advantages stem largely from the
fact that readers and updaters can run concurrently, but
this concurrency can be an obstacle because it means
that RCU readers and updaters cannot in general be
strictly serializable. This lack of strict serializability
means that RCU readers might access stale data, and
might even see inconsistencies, either of which can ren-
der conversion from reader-writer locking to RCU non-
trivial. However, this design choice is inherent: Strictly
serializable synchronization mechanisms cannot have all
of: (1) concurrent readers and updaters, (2) readers that
never impede updaters,!' and (3) wait-free read-only
transactions [2].!?> Because these three properties pro-
vide RCU’s performance, scalability, and real-time re-
sponse, giving up strict serializability is a good tradeoff.

Furthermore, in a surprisingly large number of situa-
tions, lack of strict serializability is a non-problem. The
classic example is the networking routing table. Because
routing updates can take considerable time to reach a
given system (seconds or even minutes), the system will
have been sending packets the wrong way for quite some
time when the update arrives. It is usually not a prob-
lem to continue sending updates the wrong way for a few
additional milliseconds. Furthermore, as noted earlier,
RCU can offer reduce response times to outside events,
such as routing changes.

Nevertheless, there are situations where inconsistency
and stale data within the confines of the system cannot
be tolerated. Section 5 discusses a number of transfor-
mations that allow algorithms to tolerate inconsistency
and stale data.

4.7.5 Reader-Writer Locking vs. RCU: Code

In the best case, the conversion from reader-writer lock-
ing to RCU is quite simple, as shown in Figures 10, 11,
and 12, all taken from Wikipedia [23]. More-complex
transformations are covered in Section 5.

5 Algorithmic Transformations

RCU replacements for reader-writer locking permit read-
ers and updaters to run concurrently, which poses prob-
lems when attempting to convert some reader-writer-
locked algorithms to RCU. The following sections de-
scribe some ways or transforming such algorithms into
forms that can be more readily converted to RCU. More
details may be found elsewhere [14].

11 Note that while RCU readers can impede reclamation, they do not
typically impede the actual update itself.

12 Attiya et al. focus on software transactional memory (STM), but
locked updates with RCU readers maps to STM with invisible readers.

1
2
3
4
5
6
7}
8

9

{

{

struct el {

struct list_head 1p;
long key;

spinlock_t mutex;

int data;

/* Other data fields */

DEFINE_RWLOCK (listmutex) ;
LIST_HEAD (head) ;

int search(long key, int *result)

struct el *p;

read_lock(&listmutex);

list_for_each_entry(p, &head, 1p) {

if (p->key == key) {
*result = p->data;

1 struct el {
2 struct list_head 1p;
3 long key;
4 spinlock_t mutex;
5 int data;
6 /x Other data fields */
7%}

8 DEFINE_SPINLOCK(listmutex) ;
9 LIST_HEAD (head) ;

Figure 10: Converting Reader-Writer Locking to RCU: Data

int search(long key, int *result)
{

struct el *p;

list_for_each_entry_rcu(p, &head, 1lp) {
if (p->key == key) {

1
2
3
4
5 rcu_read_lock();
6
7
8 *result = p->data;

read_unlock(&listmutex) ; 9 rcu_read_unlock();
return 1; 10 return 1;
} 11 }
} 12}

read_unlock(&listmutex)
return 0;

int delete(long key)

struct el *p;

write_lock(&listmutex);

list_for_each_entry(p, &head, 1p) {

if (p->key == key) {
list_del(&p->1p);

; 13 rcu_read_unlock();

14 return O;

Figure 11: Converting Reader-Writer Locking to RCU: Search

int delete(long key)
{

struct el *p;

list_for_each_entry(p, &head, 1lp) {
if (p->key == key) {

1

2

3

4

5 spin_lock(&listmutex);

6

7

8 list_del_rcu(&p->1p);

write_unlock(&listmutex); 9 spin_unlock(&listmutex);
10 synchronize_rcu();
kfree(p); 11 kfree(p);
return 1; 12 return 1;
¥ 13 ¥

} 14}
write_unlock(&listmutex); 15 spin_unlock(&listmutex);
return 0; 16 return 0;

Figure 12: Converting Reader-Writer Locking to RCU: Deletion

5.1 Impose Level of Indirection

Algorthms based on reader-writer locking may rely on
atomic-to-readers coordinated changes to independent
variables. Because RCU readers cannot exclude up-
daters, such algorithms cannot be directly converted to
use RCU. However, in many cases they can be trans-
formed by imposing a level of indirection, so that read-
ers traverse an RCU-protected pointer in order to reach
a structure containing these variables. Updaters can then
publish an update update these variables by updating that
single pointer, ensuring that each RCU reader sees a con-
sistent view of the variables.

In many cases, the needed indirection is inherent in the
linked data structures used in the Linux kernel, includ-
ing linked lists, hash tables, and various search trees. In
many such cases, RCU readers accessing obsolete data
can be considered to be ordered immediately before the
corresponding update. In addition, the common reader-
writer-locking usage pattern where a result is passed out
of a read-side critical section also results in use of obso-
lete data because an update can execute as soon as that
critical section exits. This usage pattern is often the eas-
iest to convert to RCU [14].

5.2 Mark Obsolete Object

Although imposing a level of indirection can ensure
that each reader individually sees a consistent view of
the protected data, in some cases still greater consis-
tency is required. A case in point in the Linux kernel
is the mapping of System V semaphore indentifiers to
the corresponding in-kernel data structure. Consistency
is automatically provided by co-locating all of a given
semaphore’s data into its data structure, but it is not per-
missible to allow one process to manipulate a semaphore
that another process has just deleted.

The Linux kernel handles this situation by maintaining
a ->deleted flag for each semaphore, setting this flag
when the corresponding semaphore is deleted. If a pro-
cess finds that its semaphore identifier maps to a structure
that has the ->deleted flag set, it acts as if the map-
ping failed. Setting and checking the ->deleted flag is
protected by the same per-semaphore lock that is used
to protect the individual semaphore operations [1]. This
approach gives up some degree of concurrency between
readers and writers as well as read-side wait-freedom in
order to gain the strict serializability required in this situ-
ation [2]. However, the strict serializability applies only
to operations on specific semaphores; the mapping oper-
ation itself need not be serializable with semaphore cre-
ation and deletion.

In short, the mark-obsolete-object approach protects
the enclosing search structure in a highly performant and

10

1 do {

2 seq = read_seqbegin(&update_lock);

3 rcu_read_lock();

4 read_something();

5 rcu_read_unlock();

6 } while (read_seqretry(&update_lock, seq));

Figure 13: Retrying Readers

scalable manner with RCU, while avoiding stale data
through use of locking on the individual data elements
reachable via that search structure. In so doing, it intro-
duces just enough serializability for the problem at hand.

5.3 Retry Readers

In cases where the RCU read-side critical section is
idempotent, one approach is to enclose it in a loop that
checks for updates, retrying the critical section until is
executes without concurrent updates. In the Linux ker-
nel, this can be accomplished by combining RCU with
sequence locking [3], as shown in Figure 13 and as used
by the vfs layer in the Linux kernel [24]. In this combi-
nation, RCU ensures that traveral of any RCU-protected
pointer will arrive at a valid data item, while sequence
locking ensures that no updates occurred during the exe-
cution of the final RCU read-side critical section. This
approach again gives up read-update concurrency and
wait-free readers in order to gain only that degree seri-
alizability required by the problem at hand [2].

When updates are rare, this approach provides the ex-
cellent performance and scalability that has come to be
associated with RCU. Of course, this approach is vulner-
able to starvation in the face of high update rates, how-
ever, such starvation can be prevented by acquisition of
the update-side lock after a large number of failed at-
tempts to traverse the RCU read-side critical section.

6 Conclusions

This paper has listed reasons why RCU is used in the
Linux kernel (Section 2), taken a census of RCU usage
in version 3.4 of the Linux kernel (Section 3), and shown
that it is possible to build higher-level constructs on
top of RCU. These constructs include reference count-
ing, existence guarantee, type-safe memory, and reader-
writer-locking (Section 4). Algorithms are often adapted
to RCU using the transformations listed in Section 5.
Figure 2 on page 4 presents a novel depiction of the rela-
tionships among these constructs and transformations.

It is likely that the Linux community will continue to
find new uses for RCU, both separately and in combina-
tion with other synchronization primitives.

Acknowledgements

@@ @ We are indebted to Jim Wasko for his support of
this effort.

Legal Statement

This work represents the views of the authors and does not

necessarily represent the views of their respective employers.
Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks
or service marks of such companies.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

ARCANGELI, A., CAO, M., MCKENNEY, P. E.,
AND SARMA, D. Using read-copy update tech-
niques for System V IPC in the Linux 2.5 kernel.
In Proceedings of the 2003 USENIX Annual Tech-
nical Conference (FREENIX Track) (June 2003),
USENIX Association, pp. 297-310. Available:
http://www.rdrop.com/users/paulmck/
RCU/rcu.FREENIX.2003.06.14.pdf [Viewed
November 21, 2007].

ATTIYA, H., HILLEL, E., AND MILANI, A. In-
herent limitations on disjoint-access parallel imple-
mentations of transactional memory. In Proceed-
ings of the twenty-first annual symposium on Paral-
lelism in algorithms and architectures (New York,
NY, USA, 2009), SPAA *09, ACM, pp. 69-78.

BROWN, N. Meet the lockers. Available: http://
lwn.net/Articles/453685/ [Viewed Septem-
ber 2, 2011], August 2011.

CLEMENTS, A., KAASHOEK, F., AND ZEL-
DOVICH, N. Scalable address spaces using RCU
balanced trees. In Architectural Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS 2012) (London, UK, March 2012), ACM,
pp. Q@R E@-@E@.

CoMPAQ COMPUTER CORPORATION. Shared
memory, threads, interprocess communication.
Available: http://www.openvms.compaq.com/
wizard/wiz_2637.html [Viewed: June 23,
2004], August 2001.

CORBET, J. Finding kernel problems automati-
cally. Linux Weekly News, June 2004.

DESNOYERS, M., MCKENNEY, P. E., STERN, A.,
DAGENAIS, M. R., AND WALPOLE, J. User-
level implementations of read-copy update. IEEE

11

(8]

[9]

(10]

(1]

(12]

[13]

[14]

Transactions on Parallel and Distributed Systems
23 (2012), 375-382.

GAMSA, B., KRIEGER, O., APPAVOO, J., AND
STuMM, M. Tornado: Maximizing locality
and concurrency in a shared memory multi-
processor operating system. In Proceedings
of the 3% Symposium on Operating System
Design and Implementation (New Orleans,
LA, February 1999), pp. 87-100. Available:
http://www.usenix.org/events/osdi99/
full_papers/gamsa/gamsa.pdf [Viewed
August 30, 2006].

GREENWALD, M., AND CHERITON, D. R. The
synergy between non-blocking synchronization and
operating system structure. In Proceedings of the
Second Symposium on Operating Systems Design
and Implementation (Seattle, WA, October 1996),
USENIX Association, pp. 123-136.

GUNIGUNTALA, D., MCcKENNEY, P. E,
TRIPLETT, J., AND WALPOLE, J. The read-
copy-update mechanism for supporting real-time
applications on shared-memory multiproces-
sor systems with Linux. IBM Systems Jour-
nal 47, 2 (May 2008), 221-236. Available:
http://www.research.ibm.com/journal/
sj/472/guniguntala.pdf [Viewed April 24,
2008].

HART, T. E., MCKENNEY, P. E., BROWN, A. D.,
AND WALPOLE, J. Performance of memory recla-
mation for lockless synchronization. J. Parallel
Distrib. Comput. 67, 12 (2007), 1270-1285.

HOWARD, P. W., AND WALPOLE, J. A relativistic
enhancement to software transactional memory. In
Proceedings of the 3rd USENIX conference on Hot
topics in parallelism (Berkeley, CA, USA, 2011),
HotPar’11, USENIX Association, pp. 1-6.

LANIN, V., AND SHASHA, D. A symmetric con-
current b-tree algorithm. In ACM ’86: Proceedings
of 1986 ACM Fall joint computer conference (Los
Alamitos, CA, USA, 1986), IEEE Computer Soci-
ety Press, pp. 380-389.

MCKENNEY, P. E. Exploiting Deferred Destruc-
tion: An Analysis of Read-Copy-Update Tech-
niques in Operating System Kernels. PhD thesis,
OGTI School of Science and Engineering at Oregon
Health and Sciences University, 2004. Available:
http://www.rdrop.com/users/paulmck/
RCU/RCUdissertation.2004.07.14el.pdf
[Viewed October 15, 2004].

http://www.rdrop.com/users/paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www.rdrop.com/users/paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://lwn.net/Articles/453685/
http://lwn.net/Articles/453685/
http://www.openvms.compaq.com/wizard/wiz_2637.html
http://www.openvms.compaq.com/wizard/wiz_2637.html
http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
http://www.research.ibm.com/journal/sj/472/guniguntala.pdf
http://www.research.ibm.com/journal/sj/472/guniguntala.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

MCcCKENNEY, P. E. Priority-boosting
RCU read-side critical sections. Available:
http://lwn.net/Articles/220677/ Revised:
http://www.rdrop.com/users/paulmck/
RCU/RCUbooststate.2007.04.16a.pdf
[Viewed September 7, 2007], February 2007.

MCcCKENNEY, P. E. [PATCH -tip 0/3] expe-
dited ’big hammer’ RCU grace periods. Avail-
able: http://lkml.org/lkml/2009/6/25/306
[Viewed August 16, 2009], June 2009.

MCKENNEY, P. E. Lockdep-RCU. Available:
https://lwn.net/Articles/371986/ [Viewed
June 4, 2010], February 2010.

McKENNEY, P. E. The RCU API, 2010 edi-
tion. Available: http://lwn.net/Articles/
418853/ [Viewed December 8, 2010], December
2010.

MCKENNEY, P. E. 3.0 and RCU: what went
wrong. Available: http://lwn.net/Articles/
453002/ [Viewed July 27, 2011], July 2011.

MCKENNEY, P. E. Is Parallel Programming
Hard, And, If So, What Can You Do About It?
kernel.org, Corvallis, OR, USA, 2012. Available:
http://kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.html
[Viewed March 28, 2010].

McKENNEY, P. E. Making rcu safe
for Dbattery-powered devices. Available:
http://www.rdrop.com/users/paulmck/
RCU/RCUdynticks.2012.02.15b.pdf [Viewed
March 1, 2012], February 2012.

MCKENNEY, P. E., APPAvOO, J., KLEEN,
A., KRIEGER, O., RUSSELL, R., SARMA,
D., AND SoONI, M. Read-copy update.
In Ottawa Linux Symposium (July 2001).
Auvailable: http://www.linuxsymposium.
org/2001/abstracts/readcopy.php
http://www.rdrop.com/users/paulmck/
RCU/rclock_0OLS.2001.05.01c.pdf [Viewed
June 23, 2004].

MCKENNEY, P. E., PURCELL, C., ALGAE,
SCHUMIN, B., CORNELIUS, G., QWERTYUS,
CONWAY, N., SBw, BLAINSTER, RUFUS, C.,
ZOICONS, ANOME, AND EISEN, H. Read-copy
update. Available: http://en.wikipedia.org/
wiki/Read-copy-update [Viewed August 21,
2006], July 2006.

12

[24]

[25]

[26]

(27]

(28]

MCKENNEY, P. E., SARMA, D., AND SONI,
M. Scaling dcache with RCU. Linux Journal
1, 118 (January 2004), 38—46. Available: http:
//www.linuxjournal.com/node/7124 [Viewed
December 26, 2010].

MCKENNEY, P. E., AND SLINGWINE, J. D.
Read-copy update: Using execution history to
solve concurrency problems. In Parallel and
Distributed Computing and Systems (Las Vegas,
NV, October 1998), pp. 509-518. Available:
http://www.rdrop.com/users/paulmck/

RCU/rclockpdcsproof .pdf [Viewed December

3, 2007].

SARMA, D., AND MCKENNEY, P. E. Mak-
ing RCU safe for deep sub-millisecond re-
sponse realtime applications. In Proceed-
ings of the 2004 USENIX Annual Technical
Conference (FREENIX Track) (June 2004),
USENIX Association, pp. 182-191. Avail-
able: https://www.usenix.org/conference/
2004-usenix-annual-technical-conference/

making-rcu-safe-deep-sub-millisecond-response

[Viewed July 26, 2012].

TREIBER, R. K. Systems programming:
Coping with parallelism. RJ 5118, Avail-
able: http://domino.research.ibm.com/
library/cyberdig.nsf/index.html [Viewed
January 23, 2007], April 1986.

TRIPLETT, J., MCKENNEY, P. E., AND
WALPOLE, J. Resizable, scalable, concurrent
hash tables via relativistic programming. In Pro-
ceedings of the 2011 USENIX Annual Technical
Conference (Portland, OR USA, June 2011), The
USENIX Association, pp. 145-158.

http://lwn.net/Articles/220677/
http://www.rdrop.com/users/paulmck/RCU/RCUbooststate.2007.04.16a.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUbooststate.2007.04.16a.pdf
http://lkml.org/lkml/2009/6/25/306
https://lwn.net/Articles/371986/
http://lwn.net/Articles/418853/
http://lwn.net/Articles/418853/
http://lwn.net/Articles/453002/
http://lwn.net/Articles/453002/
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdynticks.2012.02.15b.pdf
http://www.linuxsymposium.org/2001/abstracts/readcopy.php
http://www.linuxsymposium.org/2001/abstracts/readcopy.php
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Read-copy-update
http://www.linuxjournal.com/node/7124
http://www.linuxjournal.com/node/7124
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
http://www.rdrop.com/users/paulmck/RCU/rclockpdcsproof.pdf
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/making-rcu-safe-deep-sub-millisecond-response
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/making-rcu-safe-deep-sub-millisecond-response
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/making-rcu-safe-deep-sub-millisecond-response
http://domino.research.ibm.com/library/cyberdig.nsf/index.html
http://domino.research.ibm.com/library/cyberdig.nsf/index.html

	1 Introduction
	2 RCU Usage: Why?
	3 RCU Usage: How Much and Where?
	4 RCU Usage: How?
	4.1 Wait for Completion
	4.2 Restricted Reference Count
	4.3 Bulk Reference Count
	4.4 Existence Guarantees
	4.5 Type-Safe Memory
	4.6 Poorhouse Garbage Collector
	4.7 Reader-Writer Lock Replacement
	4.7.1 Performance
	4.7.2 Deadlock Immunity
	4.7.3 Realtime Latency
	4.7.4 Concurrent RCU Readers and Updaters
	4.7.5 Reader-Writer Locking vs. RCU: Code

	5 Algorithmic Transformations
	5.1 Impose Level of Indirection
	5.2 Mark Obsolete Object
	5.3 Retry Readers

	6 Conclusions

