
McRT-STM: A High Performance Software Transactional
Memory System for a Multi-Core Runtime

Bratin Saha*, Ali-Reza Adl-Tabatabai*, Richard L. Hudson*, Chi Cao Minh**, Benjamin Hertzberg**
*Programming System Lab

Microprocessor Technology Lab
Intel Corporation

{Bratin.Saha, Ali-Reza.Adl-Tabatabai, Rick.Hudson}
@Intel.com

**Computer Architecture Lab
Stanford University
Palo Alto California

{caominh, elektrik}@stanford.edu

ABSTRACT
Applications need to become more concurrent to take advantage
of the increased computational power provided by chip level
multiprocessing. Programmers have traditionally managed this
concurrency using locks (mutex based synchronization).
Unfortunately, lock based synchronization often leads to
deadlocks, makes fine-grained synchronization difficult, hinders
composition of atomic primitives, and provides no support for
error recovery. Transactions avoid many of these problems, and
therefore, promise to ease concurrent programming.

We describe a software transactional memory (STM) system that
is part of McRT, an experimental Multi-Core RunTime. The
McRT-STM implementation uses a number of novel algorithms,
and supports advanced features such as nested transactions with
partial aborts, conditional signaling within a transaction, and
object based conflict detection for C/C++ applications. The
McRT-STM exports interfaces that can be used from C/C++
programs directly or as a target for compilers translating higher
level linguistic constructs.

We present a detailed performance analysis of various STM
design tradeoffs such as pessimistic versus optimistic
concurrency, undo logging versus write buffering, and cache line
based versus object based conflict detection. We also show a
MCAS implementation that works on arbitrary values, coexists
with the STM, and can be used as a more efficient form of
transactional memory. To provide a baseline we compare the
performance of the STM with that of fine-grained and coarse-
grained locking using a number of concurrent data structures on a
16-processor SMP system. We also show our STM performance
on a non-synthetic workload – the Linux sendmail application.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features – Concurrent
programming structures, Frameworks.

General Terms Algorithms, Performance, Languages.

Keywords software transactional memory, atomic constructs,
runtime environment, two-phase locking and read-versioning.

1. Introduction
The advent of multi-core processors has brought concurrency into
mainstream applications. Programmers have traditionally used

locks to enforce mutual exclusion in concurrent applications. This
requires the programmer to set up an association between a lock
and the data (more abstractly a set of shared resources) that it
protects, and implement a consistent locking protocol throughout
the application. Lock-based synchronization can lead to deadlock,
makes fine-grained synchronization error-prone, precludes
composition of atomic primitives, and provides no support for
error recovery. Transactional programming addresses these
problems and provides an alternative synchronization mechanism
[9][14][16]. With transactions, the programmer marks the regions
or operations that should execute atomically; the compiler and
runtime system take care of the implementation. There are several
proposals related to linguistic constructs for supporting
transactional memory [1][4][9]. This paper concentrates on the
underlying runtime primitives and the interface needed to support
the various semantics for transactional memory. These primitives
include the ability to start a potentially nested transaction, read
and write values within a transaction, abort a transaction, and
commit a transaction.
Runtime transactional memory primitives can be provided either
by hardware [16][25][19][9] (HTM) or by software
[1][9][14][17] (STM) with both approaches having their pros and
cons. An HTM provides a significant performance advantage, and
enforces atomicity not only between transactional memory
accesses, but also between transactional and non-transactional
memory accesses. However, a HTM either restricts the size of the
transactional code block, or requires complicated HW support.
STMs can easily support unbounded transactions, nested
transactions with partial rollbacks, and conditional signaling [14],
which makes them more convenient from a programming
perspective – all published HTM proposals either ignore or
restrict the semantics of these features. Finally, an STM can be
more easily integrated with existing tools, offers an easier
adoption route for programmers, and permits experimentation
with semantics of language features.
In this paper, we present the interface and the implementation of a
high performance STM system built within an experimental multi-
core runtime called McRT. Most prior STM systems have gone to
great lengths to guarantee non-blocking properties. In contrast,
the McRT-STM implements transactions using strict two-phase
locking [8] and contains commit and abort sequences that are
blocking. This makes the implementation more efficient, and also
allows McRT-STM to implement a range of design alternatives.
This paper makes the following novel contributions:
1. It is the first to perform a detailed quantitative analysis of the

pros and cons of various STM design tradeoffs and
overheads, such as optimistic versus pessimistic concurrency,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’06 March 29-31, 2006, New York, NY, USA.
Copyright © 2006 ACM 1-59593-189-9/06/0003…$5.00

187

write buffering versus undo logging, and cache line based
versus object based conflict detection.

2. It presents the first object-based conflict detection algorithm
for C/C++ and other applications that use explicit memory
management. We believe the McRT-STM is the first STM
that can simultaneously support both object-based and cache-
line based conflict detection.

3. It describes a novel STM design that leverages other McRT
components. Prior research has concentrated on stand-alone
STM systems with a non-blocking design which imposes a
significant overhead. In contrast, the McRT-STM avoids a
non-blocking design but instead leverages the McRT co-
operative scheduler to prevent an inactive transaction from
blocking running transactions.

4. It describes a novel software MCAS (atomic multi-word
compare and swap) implementation that coexists with the
STM, and works on arbitrary values. The software MCAS
implementation allows a number of optimizations over the
general STM.

5. It provides detailed performance results of the STM on a
number of concurrent data structures, compares the
performance with that of fine-grained and coarse-grained
locking, provides a breakdown of the STM overheads, and
presents the contention behavior. We show how the STM
performs on a “real” application (the sendmail spam filter).
We believe this is among the first studies of STM on a large
non-synthetic benchmark.

The rest of the paper is organized as follows. Section 2 describes
our experimental framework. Section 3 evaluates the different
STM design tradeoffs. Section 4 describes the McRT-STM
design. Section 5 describes our MCAS implementation. Section 6
evaluates the STM implementation. The last two sections present
related work and conclusions.

2. Experimental framework
We have built our STM within McRT, an experimental multi-core
runtime. At its core, McRT contains a thread scheduler, a
synchronization framework, a scalable memory manager, and the
STM system, as well as other components. Sitting on top of the
core services, a set of adapters translate the threading calls in
different programming models into the McRT core API. McRT
supports OpenMP, Pthreads, and the ORP [5] Java virtual
machine. The whole stack runs on a variety of platforms such as
IA-32 Linux and IA-32 Windows.
As concurrent workloads, we use a hashtable, a balanced binary
search tree, a B-Tree, and a linked list. The hashtable is organized
as 256 buckets with each bucket being a linked list of elements.
All operations search the hashtable for a given element, with
updates and deletes also modifying the hash table. Threads pick
an element at random and then perform insertion, deletion or
lookup. The probability of any two threads colliding is high
C(16,2)/256, but the probability of many threads colliding is low.
Thus, the hashtable emulates a workload that has good
throughput, even though transactions may abort. The binary
search tree has conflicts when updates cause rotations; moreover,
nodes near the root of the tree become a bottleneck when they are
updated, thus hindering throughput. The B-Tree is an 11-order
balanced B-Tree, a complex data structure commonly used in

databases. The linked list emulates a workload with the worst case
STM behavior since list operations exhibit very little concurrency.
These benchmarks represent common data structures used in
many applications.
The measurements presented in this paper were gathered on a 16-
processor IBM x445 SMP system with Xeon MP 2.2 GHz Xeon
processors running RedHat Linux EL3. The SMP system is
arranged in clusters of 4 processors, with processors within each
cluster sharing a 64MB L4 cache. Each processor has private L1
(8KB), L2 (512KB), and L3 (2MB) cache.

3. STM design tradeoffs
This section discusses the different STM design tradeoffs and
explains why we chose particular points in the design space. In
most cases, we implemented the different STM variants to enable
a quantitative comparison. This section also presents the
quantitative data to reinforce the McRT-STM design decisions.

3.1 Non-blocking guarantees
The McRT STM uses a strict two-phase locking protocol [8] to
implement the transaction manager. The STM maps each memory
location to a unique lock, and acquires all relevant locks before
committing a transaction. Unlike conventional STMs [11][15],
the McRT STM has small code sections, related to commit and
abort sequences, which are blocking. However, if a transaction T1
is waiting for a lock to be released by another active transaction
T2, then T1 can abort T2. Other than the obvious performance
reasons we made the design choice for the following
complimentary reasons:

• We believe that non-blocking properties should be enforced
through appropriate scheduler hooks to control preemption
in designated code sections. The McRT scheduler uses co-
operative pre-emption that reduces (and in many cases
eliminates) blocking problems. Moreover, the scheduler
executes at the user-level, so the STM-scheduler interaction
is inexpensive since it happens through function calls.

• As single thread performance hits the power wall, processor
architects have turned to chip multiprocessors (CMP).
Emerging CMPs will use Moore’s law to aggressively
increase the number of processing cores, perhaps to tens of
cores by the end of the decade [20]. This makes preemption
much less of an issue.

The McRT-STM benefits in the following ways by abandoning
the non-blocking guarantee:

• Transaction aborts are reduced. We initially used a non-
blocking implementation, but performance was poor due to a
large number of transaction aborts. The lock-based STM
implementation was also simpler and more efficient.

• Optimization opportunities are exposed. In many cases we
can detect early that a transaction will eventually commit.
Section 5 shows an example of how we take advantage of
this; a compiler should also be able to exploit this.

• Memory management is simplified. Prior STMs had to resort
to complex memory management schemes such as hazard
pointers[22] since the STMs were designed to be non-
blocking. On the other hand, the McRT-STM can use a
standard memory allocator for its internal data structures, for
example allocating and freeing transaction logs.

188

• Integrates better with a transaction monitor. A transactional
memory implementation may need to integrate with a
transaction processing monitor, which entails a blocking
implementation. The TM implementation may also need to
support other features that require blocking implementations,
such as remote procedure calls.

3.1.1 Deadlock avoidance
Since transactions wait for locks to be released, the STM needs to
avoid deadlock. One option is for the STM to detect deadlock by
creating a graph of waiting transactions. The STM could then
detect a cycle of waiting transactions, and abort one of the
transactions. This would require maintaining additional state
whenever locks are acquired, which would slow down all
transactional reads and writes.
Another option is to wait for a finite amount of time for a lock to
be released and then abort. This does not incur an overhead in the
absence of conflicts, but could lead to some “false positives”.
Prior work in the database community [8] has shown that the
probability of deadlocks is proportional to NW4/L2 and hence
small: (N=no. of concurrent transactions, W = no. of locks
acquired on average (~no. of stores), L = total no. of locks that
can be acquired (~total no. of shared objects)). While database
access patterns may differ from shared variable access patterns in
an application, nevertheless we considered this to be a good
starting point and adopted this approach in our STM.

3.1.2 Data conflicts and contention
In our STM, data conflicts manifest as lock contention. If a reader
or a writer tries to access a location that has been updated by
another active transaction, then the reader will find that the write
lock has been acquired. A writer may end up accessing a location
that has been read by another active transaction, but the conflict
manifests when the transaction validates its read set.
Therefore, contention management between transactions boils
down to reader/writer actions when they find that a lock is taken.
Our STM tries to maximize throughput by almost always making
readers/writers wait when a lock is not available. A transaction
will abort another transaction only when the thread running the
other transaction has yielded the processor. The McRT-STM
leverages the scheduler for this: If a transaction T1 finds that a
lock has been acquired, it queries the McRT scheduler, and only if
the lock owner T2 is not running does T1 abort T2.

3.2 Locking mechanism
A lock-based transaction implementation can use two different
locking algorithms for enforcing transactional semantics: It can
use reader-writer locks, or it can use read-versioning combined
with writer locks.

3.2.1 Reader-writer locking
In this scheme, the lock words corresponding to memory locations
are used as reader-writer locks. A reader takes a read lock before
loading the memory value, while a writer takes a write lock before
a speculative update. Multiple readers or a single writer are
allowed to acquire the lock at any time. Acquiring a read lock
prevents any writer from updating a location that an active
transaction has read. Acquiring the write lock prevents any reader
from loading a speculative value written by an active transaction.
A transaction maintains a log of the locks (and their flavor) that it
has acquired. At commit, the transaction releases all its locks.
Thus the reader-writer lock mechanism enforces atomicity.

Further, maintaining an undo-log for aborts also allows a
transaction to make in-place updates. The advantage of using
reader locks is that it prevents a future writer from creating a data
conflict; thus, it allows a compiler to reorder code to proactively
acquire locks and once all the locks are acquired, to optimize the
code generation knowing the transaction is not going to get
aborted.
Unfortunately, conventional reader-writer locks can not be used in
a STM. This is because a transaction may first read a location, and
then write into it later. This implies that a reader lock may need to
be converted into a writer lock, yet the reader-writer lock
semantics still needs to be preserved. The McRT STM uses a
novel, yet efficient scheme to implement reader-writer locks with
support for dynamically upgrading readers into writers.
We use a 32 bit integer as the reader-writer lock. The lower 3 bits
have special meaning: the Notify (or N) bit is set when a reader
has requested notification, and unset when there are no waiting
readers. The Upgrade (or U) bit is set when a reader wants to
upgrade, it is unset when no readers are waiting for an upgrade.
The Reader (or R) bit is always 0 when a writer owns the lock,
otherwise it is 1. When a transaction acquires a write lock, it
stores a pointer to its descriptor (a transaction local structure). The
pointer is allocated on an 8 byte boundary, so the lower 3 bits are
all zero. Once a writer has acquired the lock, neither upgrades nor
notifications can be requested since no readers will be able to
acquire the lock until the current transaction releases the write
lock (at a commit or abort). This ensures that the lower 3 bits
remain unset while a writer has acquired the lock. Readers first
check that no writer has the lock (the lower 3 bits are non-zero)
and then atomically increment the value of the lockword by 0x8 to
acquire the lock, and decrement it by the same amount on release.
This ensures that the bit pattern of the lower bits remains
unperturbed. When readers have acquired the lock, the upper 29
bits store the number of readers. The initial value of the lock word
is 0x4 which implies that no writer has it, and no readers have
acquired it. The upgrade and notification bits are unset.
When a reader wants to upgrade, it atomically tries to set the U
bit. If it succeeds, it waits for the current readers to release the
read locks, and then acquires the write lock by inserting a pointer
to its transaction descriptor. Moreover, incoming readers back off
from acquiring a read lock if they notice that the upgrade bit is
set. During upgrade, if a reader finds that the U bit is already set,
then it aborts since another reader has obtained the right to
upgrade, and the consequent write would create a data conflict.
A transaction may sometimes wait for values in its read set to
change. We use the N bit to set this up. Every lock has an
associated wait list. When a reader wants notification, it sets the N
bit, adds itself to the list of waiters for this lock, and then releases
the read lock. There is no race condition between setting the N bit
and adding oneself to the set of waiters since no writer can
acquire the lock before the read lock release. Moreover, setting
the N bit is an idempotent operation, so readers can set it multiple
times. When a writer releases a lock, it checks the wait list, and
wakes up any waiting readers.

3.2.2 Read versioning and write locking
In this scheme, a writer takes a lock before modifying the memory
location, but a reader uses versioning to detect data conflicts. This
scheme is similar to the one presented in [11].

189

We use a 32 bit integer as the lock-word that can be in one of two
states. It can either be owned by a writer, or it can contain a
version number. The lower 3 bits have special meaning as before.
The N bit is used for notifications, the U bit is unused, and the R
bit is 1 for version numbers and 0 for a writer lock. A writer
acquires a lock by storing a pointer to its descriptor (all
descriptors are allocated on 8 byte boundaries.)
Before reading a memory location, a reader checks the lock-word
to make sure no writers currently own the lock (the lower 3 bits
are non-zero). The reader adds the lock-word to its read set and
remembers the version number. At commit, readers validate that
the version numbers of the locks in their read set haven’t changed.
A writer acquires the lock before updating the memory location.
The writer also remembers the version number in its write set.
During lock release, it inserts a new version number into the lock-
word; the new version number is obtained by adding 0x8 to the
old version number. Thus, whenever a location changes, the
version number of the corresponding lock-word monotonically
increases. This ensures that the R bit remains set in the new
version number. The initial value of the lock word is 0x4. While
our current implementation uses 32 bits, nevertheless we intend to
switch to 64 bit version numbers to avoid overflow.
Readers use the notification bit for wakeup signals as before. The
only difference is that the wait locations are guarded by a mutex.
Readers and writers acquire the mutex to allow race-free
signaling. Upgrades are handled during validation. During a write
lock acquire transactions record the lock’s current version number
in their write sets; during validation we check that the version
number in the read set matches the corresponding one in the write
set.
Figure 1 compares the read-versioning with the reader-writer
locks. We implemented reader-writer locks both with reader
priority and with writer priority (implemented using an additional
bit to indicate waiting readers and writers). The performance was
similar in both cases; therefore, we compare the read-versioning
scheme to the reader lock with reader priority. A value greater
than 1 implies that the workload takes longer to finish with
reader-locks. As is evident from the figures, read versioning
performs an order of magnitude better than reader locking.
There are 2 primary reasons for this: (1) read versioning
eliminates readers from atomically writing to the lock word,
improving the cache effects; and (2) dynamic reader to writer
upgrades are expensive because an upgrade needs to wait for all
current readers to relinquish their read lock; moreover,
relinquishing the read lock requires each reader to perform an
atomic operation on the lock with destructive cache effects.
Reader upgrades also trigger a chain of aborts in all but one of the
concurrent readers. In some cases, a compiler can proactively
acquire the write lock and avoid the upgrade, but in many cases
the upgrade is unavoidable. Reader locking performs worse with
more processors because the caching effects get aggravated.
Some researchers have also proposed maintaining explicit reader
lists. Maintaining explicit reader lists would also effectively
convert reads into writes and suffer from the same cache
degradation and poor performance compared to read-
versioning.

Ratio of execution time for reader-lock versus reader versioning

1

10

100

1000

10000

0 5 10 15 20

Number of processors

re
ad

er
-lo

ck
 /

re
ad

 v
er

si
on

in
g

ex
ec

ut
io

n

tim
e

hashtable_RP
bstree_RP
linkedlist_RP
Btree_RP

Figure 1: Comparison of reader-version with reader-lock

Reader locks perform much worse for hashtable and linked lists
since the transactional region contains many more reads than for
trees. In the hashtable and the linked list, the average number of
reads per transaction is proportional to the number of elements,
whereas in the trees, it is proportional to the logarithm of the
number of elements.

3.3 Write buffering versus undo logging
A lock-based STM can handle transactional updates in two ways:
(1) the STM can update memory in-place during the transaction
and maintain an undo log to rollback state on an abort; or (2) the
STM can buffer speculative writes till the commit point, and
update memory only after the transaction has committed.
One advantage of an undo-based scheme is that it makes the
commit path faster since values do not need to be installed.
Another advantage is that read after write (RAW) cases can be
handled trivially. A STM must make sure that reads from a
transactional location return the most recent store. In an undo-
based scheme, the most recent value is stored in memory;
therefore, the STM can easily read the most recent value. The
advantage of write-buffering is that lock acquires can be
postponed until the commit point, which reduces the time during
which locks are held. In addition, the locks can be acquired in a
canonical order (for example, address order), which eliminates the
chance of deadlocks. The disadvantage is that the write buffers
must be searched on a read to get the most recent update. This
requires some form of hashing which makes the implementation
of nested transactions inefficient.
Undo logging is also more amenable to compiler optimizations
such as CSE and hoisting of read and write barriers. Such
optimizations are shown in [1].
We implemented both undo-logging and write-buffering in the
McRT-STM, and Figure 2 shows that undo logging performs
better than write buffering. The main overhead of the write
buffering scheme arises from having to search the write logs for
the most recent speculative value. Again, since the hashtable
transactions have a larger read set, write buffering performs
worse. These results do not take any compiler optimizations into
account, and the workloads did not have any nested transactions;
undo logging would perform even better in the above scenarios.

190

Ratio of execution time for write buffering versus undo
logging

0
1
2
3
4
5
6
7

0 5 10 15 20

Number of processors

w
rit

e
bu

ffe
rin

g
/ u

nd
o

lo
gg

in
g

ex
ec

ut
io

n
tim

e

hashtable bstree linkedlist Btree

Figure 2: Comparison of undo logging versus write buffering

3.4 Object versus cache-line conflict detection
STMs can detect conflicts at different granularities; for example,
at a cache line level or at an object level. Object based conflict
detection is more intuitive for the user, and lets a compiler
aggressively optimize the transactional code sequences. Consider
the code sequence below that manipulates a node in a linked
structure.
transaction{
 node->key = value;
 node->left = …;
 node->right = …
}
With object based locking the compiler can generate code to
acquire ownership of the node object once for all the updates.
This is more difficult in a cache line based scheme since the
object may be split across cache lines.
For managed environments such as Java, object based conflict
detection can be implemented easily [1]. For unmanaged
environments such as C, this is more difficult since we need to
map an arbitrary interior pointer to the object base. The McRT-
STM leverages the McRT memory manager (McRT-Malloc) in a
novel way to enable object based conflict detection in C/C++.
McRT-Malloc divides the heap into several smaller blocks which
are used to segregate objects based on their size. McRT-Malloc
uses the size-segregated heap for objects less than 8K bytes; larger
objects are allocated from a large object space (a different heap)
and are not size-segregated. Object based locking is only provided
for objects that are allocated in the size segregated heap. Large
objects, stack-allocated objects, and global variables fall back on
cache line locking. This is desirable since object-based locking
for large objects would coarsen the granularity of conflict
detection.
During startup, McRT-Malloc divides the virtual address space
into large and small object spaces. Given an object pointer, a
single range check (pointer – small_object_base_address <
small_object_area_size) suffices to determine whether the object
resides in the small object heap. Every size-segregated memory
block is aligned on a 16K boundary. At the base of each of these
blocks is a small 64 byte area that holds the meta information for
this block including the size of all the objects residing in this
block. To obtain the block header address we mask the low-order
bits of a pointer (header_addr = pointer & (block_size – 1)). The
size of the objects in the block is obtained from the header,
allowing efficient computation of the “index” of the object in the

block (index = (pointer – header_size – header_addr) /
object_size).
We investigated two approaches to object-based conflict
detection. The first approach allocates locks inline with objects,
which incurs an overhead even when no transaction accesses an
object, but has the benefit of good cache locality. In particular,
acquiring the lock gets the cache line in exclusive state which
avoids any subsequent cache miss on a store. The second
approach associates a table of per-object locks with each memory
block used by the allocator. By placing the locks on the side, it is
possible to allocate the table in a demand-driven fashion, reducing
memory wasted for non-transactional execution at the cost of
worse cache locality.
Cache line (hashing) based conflict detection is easier to
implement in the STM. Given an address, we mask off the lower
bits of the address to get the cache line address. The STM
maintains an array of locks that is indexed with the cache line
address (of the memory location) to retrieve the corresponding
lock. (We also mask off the higher bits. This reduces the number
of locks that the STM maintains, but does not affect performance
noticeably). This boils down to a single masking operation, a
shift, and an addition to realize the address of the lock.
Figure 3 compares all the approaches. Values less than 1 indicate
that object-based execution time was less than the cache-line
based execution time. The workloads performed 64K operations
with 80% being updates. In the hashtable and the binary search
tree the inlined locks perform the best, while in the linked list the
cache-line based scheme works best. The hashtable has low
contention; therefore the inlined locks have a beneficial
prefetching effect. The linked list sees very high contention;
therefore, the inlining leads to cache-line ping-ponging and hurts
the performance. The object-based conflict detection does not
include the effect of any compiler optimizations; thus we expect
better performance after integrating with compiler optimizations.

Ratio of execution time for object-based versus cache-line locking

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16

Number of Processors

O
bj

ec
t /

 C
ac

he
 L

in
e

ex
ec

ut
io

n
tim

e

hashtable_onside hashtable_inline
bstree_onside bstree_inline
linklist_onside linklist_inline

Figure 3: Comparison of object based and cache line locking

4. McRT-STM design
Using the data in Section 3 as a guide, McRT-STM implements
read-versioning and undo-logging. We also support both object-
based and cache-line based conflict detection.

191

4.1 McRT-STM API
The McRT-STM provides the following runtime primitives:
McRTSTMDescriptor* stmStart (void);
volatile uint32* stmGetLock (McRTSTMDescriptor *descriptor,
 void *addr);
uint32 stmReadVersion (McrtSTMDescriptor* descriptor,
 volatile uint32* lock);
uint32 stmWriteLockAcquire (McrtSTMDescriptor* descriptor,
 volatile uint32* lock);
void stmUndoLog (McrtSTMDescriptor* descriptor,
 volatile uint32* addr);
Bool stmValidate(McrtSTMDescriptor* descriptor);
Bool stmCommit (McrtSTMDescriptor* descriptor);
void stmAbort (McrtSTMDescriptor* descriptor,
 uint32 reason);
void stmAbortCurrent (McrtSTMDescriptor* descriptor,
 uint32 reason);
void stmMapLogFromBegin(McrtSTMSSB* ssb,
 void (*callback) (McrtSTMSSB* ssb),
 McrtSTMSSB* stop);
void stmMapLogFromEnd(McrtSTMSSB* ssb,
 void (*callback) (McrtSTMSSB * ssb),
 McrtSTMSSB* stop);
void stmAddAbortHook(McrtSTMDescriptor* descriptor,
 void (*callback)(McrtSTMDescriptor* dsc, void* arg),
 void* arg);
void stmAddCommitHook(McrtSTMDescriptor* descriptor,
 void (*callback)(McrtSTMDescriptor* dsc, void* arg),
 void* arg);
McrtSTMDescriptor* stmGetDescriptor();
McrtSTMSSB* stmGetReadSet(McrtSTMDescriptor*);
McrtSTMSSB* stmGetWriteSet(McrtSTMDescriptor*);
McrtSTMSSB* stmGetUndoLog(McrtSTMDescriptor*);

A call to stmStart initiates a transaction letting the STM initialize
its internal data structures. The stmStart function also maintains
the dynamic nesting depth. The stmGetLock function is used to
map an address to a unique lock; the mapping can be either on a
cache-line basis or on an object basis and can be set dynamically.
Clients of the McRT-STM can also override the default
stmGetLock function and provide their own function to map
addresses to locks. This allows us to decouple the granularity of
conflict detection from the unit of logging/updates. The
stmReadVersion, stmWriteLockAcquire, and stmUndoLog
functions are used to access shared memory inside a transaction.
The stmReadVersion takes a lock address (corresponding to a
memory location) and stores the version number in the read set if
the lock is currently not owned. The function returns immediately
if the calling transaction owns the lock. Otherwise it calls the

contention manager which may cause it to wait and retry, or
ultimately abort the transaction. Since we use in-place updates,
reads are done directly from memory. The stmWriteLockAcquire
takes ownership of a lock if it is currently not owned, or returns
immediately if the calling transaction owns it. If some other
transaction owns the lock, it calls the contention manager, which
may decide to wait and retry, or may ultimately decide to abort the
transaction. Both the stmReadVersion and stmWriteLockAcquire
functions return the version number of the lock. The stmUndoLog
is used to remember the old value of a location before doing an
in-place update. Updates are always word sized. The stmValidate
function validates the transaction by checking that the version
numbers in the read set match the current version numbers of the
locks. The stmCommit function marks the end of a transaction. It
validates the transaction and releases all the locks acquired by the
transaction (and recorded in the write set). The transaction may be
aborted at any time due to a data conflict. The stmAbort aborts the
entire transaction, while the stmAbortCurrent aborts only the
innermost transaction. On an abort the memory values are
reverted, the write locks are released, and the contention manager
is invoked which ultimately retries the transaction. The McRT-
STM supports explicit user aborts that are used for implementing
the retry-orElse [14] construct. The stmMapLogFromBegin and
stmMapLogFromEnd functions take a call back function and
iterate over the logs from the beginning and from the end
respectively. The log entry pointed to by stop tells the iterator
when to terminate. The McRT-STM also allows a client to add
abort and commit callbacks (stmAddAbortHook and
stmAddCommitHook) that are invoked if a transaction gets
aborted or committed. The transaction descriptor is threaded
through all calls, therefore the STM exports a function
(stmGetDescriptor) to get the current transaction descriptor. The
remaining functions, (stmGetReadSet, stmGetWriteSet,
stmGetUndoLog) are used for accessing the transaction’s logs
which can then be passed to the iterators.
For the applications studied in this paper all the calls to the STM
library are introduced by a simple manual expansion of all shared-
memory locations accessed inside atomic regions. The library
calls may also be introduced automatically by a compiler [1].

4.2 McRT-STM data structures
Every transaction uses a descriptor for storing transaction meta-
data. The descriptor is created during thread initialization and
stored in the thread local storage (TLS). The stmStart function
retrieves the descriptor from the TLS; the descriptor is then
passed to all the runtime functions to avoid repeated TLS lookups.
The descriptor contains the following fields

• transactionState Active/Committed/Aborted/Wait
• transactionDepth Nesting depth
• writeLocksAcquireLog, currentIndex write

set locks, pointer to the head of the log
• readLocksAcquireLog, currentIndex read set,

pointer to the head of the log
• updatedLocationsLog, currentIndex

original value log, pointer to the head of the log

The logs store the read and write sets (address-value pairs) and are
organized as a sequential store buffer (SSB)[18][3]. These store
buffers are allocated in chunks, and when the current chunk runs
out, a new chunk is allocated and linked to the last chunk of the
SSB as shown in Figure 4. (For simplicity the figure shows the

192

SSBs allocated as 2 entry chunks, in the implementation we use 128
entry chunks). The descriptor contains a pointer, currentIndex, to
the head of each log. We assume that nested transactions follow a
stack discipline; therefore the logs contain an index stack that is
used for tracking the read and write sets of transactions at different
nesting depths.

transaction {
 A = 10 /* A was = 2 */
 transaction {
 B = 20 /* B was = 5 */
 transaction {
 …
 }}}

currentIndex =

Index stack

A = 2

Sequential store
buffers

B = 5

Figure 4: Structure of the transaction logs

Figure 4 shows the updatedLocations log When a nested
transaction is started, the current index into the log is pushed onto
the index stack. When a nested transaction is committed, the index
stack is popped. This effectively merges the read-write sets of the
nested transaction with that of the parent transaction, which
provides closed nesting semantics. The entries from the top of the
stack to the head of the log (currentIndex) comprise the state of the
currently executing transaction. This allows easy rollback of a
nested transaction without affecting the parent transaction. For
example, in Figure 4, when the innermost transaction is started, the
currentIndex points to the head of the log, while the stack contains
the log indices where each parent transaction started. As the
innermost transaction starts, the write set will be made up of the
elements from the top of the stack (the third entry). When the
innermost transaction commits, the stack will be popped, and the top
of the stack will then point to the second entry and the write set will
be made up of the elements from the second entry on to the end of
the SSB. Thus the state of the inner transaction will get subsumed
into the parent transaction.

5. MCAS implementation
Our STM allows a very efficient multiword compare and swap,
MCAS, [13] implementation that works on arbitrary values and
coexists with the general STM. Having an efficient MCAS is
important for two reasons: (1) MCAS can be used by expert
programmers to write concurrent data structures, and (2) MCAS can
be a convenient interface to a hardware transactional memory
(HTM) implementation. Most HTM proposals [16] have an upper
bound on the number of locations that can be accessed inside a
transaction. Since a MCAS specifies upfront the number of
transactional memory accesses, the transactional library can decide
whether to execute the MCAS as a HTM or as a STM. The MCAS
API is defined as:
Bool MCAS(int k, void* addr[], uint32 oldValue[], uint32 newValue[])
The first parameter provides the number of memory locations that
will be accessed, the second parameter provides the set of addresses,
the third parameter provides the set of expected values, and the last
parameter provides the set of new values that will be swapped in if
all the memory locations contain the expected values. The operation
returns True if the new values are swapped in, and False otherwise.
The STM and MCAS are integrated and both compute the locks for
the transactional memory locations using the same algorithm;
therefore, the locations are protected from concurrent access. Only if
all the locks are successfully acquired does the MCAS update the
memory locations and returns True, otherwise it returns False, which

enables some optimizations. The workloads we used for evaluating
our STM (e.g. hashtable, or binary search tree) are not amenable to
the use of MCAS, so we compared the STM with the MCAS on a
bounded FIFO queue with concurrent enqueuers and dequeuers.
Figure 5 shows the comparison between the MCAS and the STM
implementation.

Time taken for Queuing Operations

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of concurrent threads

Ti
m

e
(s

ec
s)

MCAS STM

Figure 5: MCAS versus STM

6. STM performance
This section compares the performance of STM with lock-based
algorithms and then examines the McRT-STM overheads. The
transactional workloads use cache line based conflict detection in all
cases. This paper focuses solely on a high performance STM
without regard to compiler optimizations; therefore, we did not
consider object based conflict detection in the results.

6.1 STM versus locking
Figure 6 provides a baseline comparison between STM and the
different locking schemes on the hashtable benchmark. The coarse-
grained locking scheme uses a single lock for the entire hashtable.
The fine-grained locking scheme uses a lock per bucket. The STM
version replaces the lock acquire and lock release calls of the coarse
grained version with stmStart and stmCommit calls. Thus, the
programming effort is the same as that of coarse grained locks. The
STM version initially starts out with a much higher overhead, but as
the number of processors increases, it starts approaching the fine-
grained performance. At 16 processors, the STM is about 1.8X the
performance of fine-grained locking. In the experiment we set the
number of updates to 80% of the hashtable operations. With a
higher number of lookups, the STM performs better and approaches
the fine-grained locking performance.

Total time for 64K hashtable operations (80% update)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

Number of processors

Ti
m

e
(in

 s
ec

s)

coarse
stm
fine

Figure 6: STM versus locking on hashtable

193

We compare the STM and locking on binary search trees in
Figure 7. The lock implementation uses a single lock for the entire
tree. The STM performs better than the locking when the
proportion of updates is lowered. This arises because the
balancing propagates changes across the tree and increases the
number of aborts. More importantly, the balancing propagates
updates to the root of the tree which severely limits concurrency.
The comparison for BST operations without balancing is shown
in Figure 8, and the STM outperforms the locking even with
higher number of updates. The abort ratios are shown in Figure 9.

Total time for 64K BST operations with balancing

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20
Number of processors

Ti
m

e
(in

 s
ec

s)

lock_20%updates stm_20%updates
lock_80%updates stm_80%updates

Figure 7: STM versus locking on binary search tree with

balancing

Total time for 64K BST operations without balancing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20

Number of processors

Ti
m

e
(in

 s
ec

s) lock_20%update stm_20%update
lock_80%updates stm_80%updates

Figure 8: Comparison of STM and locks without balancing

binary search tree

Average aborts per operation in AVL and BST

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%

2 4 8 16

Number of processors

%
 a

bo
rt

s

AVL-80%U
BST-80%U
AVL-20%U
BST-20%U

Figure 9: Aborts in the transactional AVL and BST

We compare the STM and lock performance on a sorted linked
list in Figure 10. For the locking measurements, we used a single
lock for the entire list. When the proportion of updates is lower,
the STM performs better, but as the updates increase the
performance becomes comparable since the number of aborts
increases. Figure 11 shows the results for an unsorted list. In the
unsorted list, all insertions happen at the front of the list, which
provides no concurrency for the update operations, while the
updates are spread out in a sorted list. The abort ratios are given
in Figure 12.

Total time for 64K operations in sorted linked list

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20
Number of processors

Ti
m

e
(in

 s
ec

s)

lock_80%updates stm_80%updates
lock_20%updates stm_20%updates

Figure 10: Comparison of STM and lock on sorted link list

Total time for 64K linked list operations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20
Number of processors

Ti
m

e
(in

 s
ec

s)

lock_80%update stm_80%update
lock_20%update stm_20%update

Figure 11: Comparison of lock and STM on unsorted link list

Average aborts per linked list operation

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

300.0%

2 4 8 16Number of processors

%
 a

bo
rt

s

UnsortList-80%U
SortList-80%U
UnsortList-20%U
SortList-20%U

Figure 12: Aborts in the linked list

We also implemented fine-grained locking versions (containing
locks at each node) for both the binary search tree and the linked
list, but the fine-grained locking performs worse than the STM or

194

the coarse-grained locking by an order of magnitude. Unlike the
hashtable, fine-grained locking requires many lock operations on
the linked list and the binary search tree. Since lock operations are
expensive on the Xeon, fine-grained locking does not provide any
benefit.
We show the STM and lock comparison for the B-Tree in Figure
13. The B-Tree sees few aborts, and therefore the STM
outperforms the lock-based code. Even with 80% updates at 16
processors, B-Tree operations get aborted less than 0.5% of the
time. The STM performs better as the proportion of lookups
increases.
Both the linked list and the binary search tree results show the
importance of good contention management in a transactional
system. Our cache-line versus object-based conflict detection
results also show that contention can play a significant role in
determining how the STM performs.

Total time for 64K Btree operations (80% update)

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 5 10 15 20

Number of processors

Ti
m

e
(in

 s
ec

s)

coarse
fine
stm

Figure 13: Comparison of STM and locking on B-Tree

6.2 STM overhead breakdown
The breakdown of costs in the transactional workloads is shown
in Figure 14. The cost is dominated by the read barrier and the
validation costs in all the benchmarks. The hashtable buckets are
organized as linked lists, so the number of elements scanned is
proportional to the number of insertion operations which
contributes to the high overhead from stmReads. In the tree on the
other hand, the maximum number of reads is proportional to the
logarithm of the number of insertion operations. The TLS
accesses also arise from the STM; the TLS accesses are mainly for
accessing the descriptor and the logs.

STM Overhead Breakdown

0%

20%

40%

60%

80%

100%

Bina
ry

tre
e

Hash
tab

le

Lin
ke

dli
st

Btre
e

Application

TLS access

stmWriteBarrier

stmCommit

stmValidate

stmReadBarrier

Figure 14: STM cost breakdown in the hashtable

Our STM needs to insert validation checks [11][15] at backward
edges to guard against infinite loops and other error conditions.
The linked list is traversed in a loop, with the number of backward
jumps being equal to the number of list elements. As a result, 80%
of the validation calls in the linked list arise from checks on
backward edges, and the remaining from validation at commit. If
we consider only the commit validations, then the validation cost
has the same proportion as the other benchmarks. Techniques like
early release [15] would help in reducing the overhead; however,
we didn’t use early release since it seems to impose the same
programming burden as fine-grained locking.

6.3 STM preemption
Since McRT-STM does not guarantee non-blocking properties,
we need to ensure that performance does not degrade if the
application uses more threads than processors. In this section, we
show how the STM performs as the application increases the
number of threads. We run the workloads using 16 processors, but
use up to 128 user threads. The McRT scheduler multiplexes the
user level threads onto 16 kernel threads. Figure 15 shows the
execution time of the benchmarks as we increase the number of
threads relative to the execution time for the benchmarks at 16
threads. A value greater than 1 indicates that the workload takes
longer to execute than with 16 threads.

Relative execution time with large numbers of threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140

Number of concurrent threads

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

16
 th

re
ad

s

hashtable linked list bstree

Figure 15: STM performance with large number of threads

As is evident from the charts, there is no performance loss in
going from 16 to 128 threads, with a gain in some cases. The
increase in performance is due to better load balancing. McRT-
STM does not adjust transaction priorities dynamically (in other
words does not impose fairness), some transactions win most of
the conflicts, while other transactions loose most of the conflicts.
Thus, a few of the transactions finish early, while some
transactions finish late; the difference between the fastest and the
slowest transaction (or the load imbalance) is proportional to the
work done by each thread, and decreases as we increase the
number of threads. Hence the execution time falls as we increase
the number of threads, since less time is wasted in idling. The
slight increase in the execution time as we get up to 128 threads
arises from runtime and scheduler inefficiencies at high number of
threads. The saw-tooth nature of Figure 15 also arises from co-
operative preemption since the load balancing works best when
the number of application threads is a multiple of 16, and gets
worse at other thread counts.

6.4 STM on a non-synthetic workload
This section shows McRT-STM performance on a non-synthetic
application. The concurrent workloads serve as a good testbed,

195

but it is difficult to simulate application characteristics closely
through those workloads; for example, contention behavior,
proportion of time spent in atomic code, mix of reads and writes,
granularity of locking, and so on. So we took the well known
sendmail (v8.13.4) application and converted the mutex calls into
transaction calls. Sendmail consists of a multithreaded mail filter
(milter) API called libmilter (v0.3.0). Through this API, sendmail
can make callbacks to sendmail-milter, which in turn calls Mail-
SpamAssasin (v3.0.4) to filter out spam from incoming mail. The
workload consists of several threads sending emails (50% spam)
to the same account. Sendmail goes through the chain of programs
mentioned above to filter the spam from these emails. We
profiled the lock-based sendmail execution, and found that the
application spends about 10% of its time in critical regions, large
enough that a significant STM overhead would slow the
benchmark noticeably.

As seen in Figure 16, McRT-STM performs comparably to the
lock performance. We show the execution time till 8 threads since
the other threads are used for sending mail to drive the workload.
The key point about STMs is their software engineering benefits,
and the challenge for an implementer is to provide the benefits at
a reasonable cost. The sendmail result provides preliminary
evidence that on commercial applications, the STM and locking
performance are comparable.

Total time for mail/spam delivery with sendmail

0

100

200

300

400

500

600

0 2 4 6 8 10
Number of concurrent threads

Ti
m

e
(in

 s
ec

s) locks
stm

Figure 16: STM and lock behavior for sendmail spam filter

7. Related work
Transactional memory, as applied to programming languages, was
first studied by Herlihy and Moss [16], and later by Stone et. al.
[25]. Both of those relied on a HW implementation, while ours is
a completely SW implementation. Shavit and Touitou [24]
proposed the first SW only solution scheme handling transactions
with statically known read and write sets. More recently, Herlihy
et. al. [15], Harris and Fraser [11] and Welc, Jagannathan and
Hosking [26] have built non-blocking STMs that run on stock
hardware and handle transactions with dynamically known read
and write sets. Herlihy uses an object based scheme for Java,
whereas Harris uses a cache line based scheme. These systems
were designed with preemption safety as a major concern. Our
system investigates design options made available by hardware
with sufficient threads to ameliorate preemption concerns.
Our work differs in several other respects: We leverage the other
parts of the runtime system to build a lock-based implementation,
we do a detailed quantitative analysis of the various design
tradeoffs, we provide a MCAS interface that can be used for
interacting with HW transactions, and our STM also provides
support for nested transactions with partial aborts.

Ennals [7] discusses a lock-based STM for Java that shares some
properties similar to our STM; this paper makes several additional
contributions such as the object-based C/C++ STM, leveraging
the runtime scheduler and memory manager, and a detailed
performance analysis of the STM design space. Marathe, Scherer
and Scott [23] do a quantitative analysis of several non-blocking
STMs, but their emphasis is on studying different contention
policies rather than STM tradeoffs. Harris and Fraser [12] present
a locking mechanism for their write logging STM but assume an
adversarial scheduler where preemption is a concern. Harris [13]
describes a MCAS that works on pointer values, but our MCAS
works on arbitrary values.

8. Conclusions
Transactions are a powerful linguistic construct for managing
concurrency since they eliminate deadlocks, make it easier to
compose atomic primitives, and automatically provide fine-
grained concurrency. Transactions may be implemented either in
HW or in SW. A software implementation is more versatile and
programmer friendly since it imposes no size constraints on the
transaction, allows advanced features such as nesting, allows
experimentation with usage models, and is easier to interface with
tools. In this paper, we present the design and implementation
results for McRT-STM, a software transactional memory library
for a multi-core runtime.
This paper makes a number of novel contributions: (1) It shows
how a STM can leverage other parts of the runtime (e.g., the
scheduler and the memory manager) to provide a high-
performance STM implementation. (2) It provides the first
quantitative analysis of various STM design tradeoffs. (3) It
shows performance comparisons with a number of lock-based
concurrent data structures, a breakdown of the different STM
overheads that can guide further optimizations, and a comparison
of the lock-based and transactional versions of the sendmail filter.
(4) It also shows a novel MCAS implementation that can be used
as a more efficient (but more restricted) form of transactional
memory.

9. References
[1] Adl-Tabatabai, A., Lewis, B.T., Menon, V.S., Murphy, B.R.,

Saha, B., and Shpeisman, T. Compiler and runtime
optimizations for efficient software transactional memory. To
appear PLDI 2006.

[2] Allan, E., Chase, D., Luchango, V., Maessen, J., Ryu, S.,
Steele Jr., G., and Tobin-Hochstadt, S. The Fortress language
specification, version 0.618. Sun Microsystems Technical
Report, April 2005.

[3] Appel, A. W. 1989. Simple generational garbage collection
and fast allocation. Softw. Pract. Exper. 19, 2 (Feb. 1989).

[4] Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra,
A., von Praun, C., Saraswat, and V., Sarkar, V. X10: An
object oriented approach to non-uniform cluster computing,.
OOPSLA 2005.

[5] Cierniak, M., Eng, M., Glew, N., Lewis, B., and Stichnoth, J.
The Open Runtime Platform: a flexible high-performance
managed runtime environment: Research Articles. Concurr.
Comput. : Pract. Exper. 17, 5-6 (Apr. 2005).

[6] Cray Inc. The Chapel language specification, version 0.4.
Technical Report, Cray Inc. Feb 2005.

196

[7] Ennals, R. Cache sensitive software transactional memory.
Technical Report.

[8] Gray, J. and Reuter A. Transaction processing: concepts and
techniques.

[9] Hammond, L., Carlstrom, B.D., Wong, V., Hertzberg, B.,
Chen, M., Kozyrakis, C., and Olukotun, K. Transactional
coherence and consistency. ASPLOS 2004.

[10] Harris, T.L. Design choices for language based transactions.
University of Cambridge Computer Laboratory, Tech
Report, Aug 2003.

[11] Harris, T.L. and Fraser, K. Language support for lightweight
transactions. OOPSLA 2003

[12] Harris, T. and Fraser, K. 2005. Revocable locks for non-
blocking programming. PPoPP 2005

[13] Harris, T.L., Fraser, K., and Pratt, I.A. A practical multi-
word compare and swap operation. Proceedings of the 16th
International Symposium on Distributed Computing, 2002.

[14] Harris, T.L., Marlow, S., Peyton Jones, and S., Herlihy, M.
Composable memory transactions. PPoPP 2005.

[15] Herlihy, M., Luchango, V., Moir, M., and Scherer III, W.N.
Software transactional memory for dynamic sized data
structures. PODC 2003.

[16] Herlihy, M. and Moss, J.E.B. Transactional memory:
architectural support for lock-free data structures. ISCA
1993.

[17] Hosking, A, and Moss, J.E.B. Nested transactional memory:
Model and preliminary Sketches, SCOOL 2005.

[18] Hosking, A. L., Moss, J. E., and Stefanovic, D. A
comparative performance evaluation of write barrier
implementation. OOPSLA 1992.

[19] Rajwar, R., Herlihy, M., and Lai, K. Virtualizing
transactional memory. ISCA, 2005.

[20] Rattner, J. Multicore to the masses. PACT, Keynote. 2005.
[21] Marathe, V. J., Scherer, W. N., and Scott, M. L. 2004.

Design tradeoffs in modern software transactional memory
systems. In Proceedings of the 7th Workshop on Languages,
Compilers, and Run-Time Support For Scalable Systems
(Houston, Texas, October 22 - 23, 2004). LCR '04, vol. 81.
ACM Press, New York, NY, 1-7.

[22] Michael, M. M. Safe memory reclamation for dynamic lock-
free objects using atomic reads and writes. PODC, 2002.

[23] Scherer III, W. N. and Scott, M. Contention management in
dynamic software transactional memory. PODC Workshop
on Concurrency and Synchronization in Java programs,
2004.

[24] Shavit, N., and Touitou, D. Software transactional memory.
PODC 1995.

[25] Stone, J. M., Stone, H. S., Heidelberger, P., and Turek, J.
1993. Multiple Reservations and the Oklahoma Update.
IEEE Parallel Distrib. Technol. 1, 4 (Nov. 1993), 58-71.

[26] Welc, A, Jagannathan, S and Hosking, A Transactional
Monitors for Concurrent Objects, ECOOP, 2004

[27] Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson,
P. R. 2000. Hoard: a scalable memory allocator for
multithreaded applications. ASPLOS 2000

197

