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ABSTRACT 
Applications need to become more concurrent to take advantage 
of the increased computational power provided by chip level 
multiprocessing. Programmers have traditionally managed this 
concurrency using locks (mutex based synchronization).  
Unfortunately, lock based synchronization often leads to 
deadlocks, makes fine-grained synchronization difficult, hinders 
composition of atomic primitives, and provides no support for 
error recovery. Transactions avoid many of these problems, and 
therefore, promise to ease concurrent programming. 

We describe a software transactional memory (STM) system that 
is part of McRT, an experimental Multi-Core RunTime. The 
McRT-STM implementation uses a number of novel algorithms, 
and supports advanced features such as nested transactions with 
partial aborts, conditional signaling within a transaction, and 
object based conflict detection for C/C++ applications. The 
McRT-STM exports interfaces that can be used from C/C++ 
programs directly or as a target for compilers translating higher 
level linguistic constructs.  

We present a detailed performance analysis of various STM 
design tradeoffs such as pessimistic versus optimistic 
concurrency, undo logging versus write buffering, and cache line 
based versus object based conflict detection. We also show a 
MCAS implementation that works on arbitrary values, coexists 
with the STM, and can be used as a more efficient form of 
transactional memory. To provide a baseline we compare the 
performance of the STM with that of fine-grained and coarse-
grained locking using a number of concurrent data structures on a 
16-processor SMP system. We also show our STM performance 
on a non-synthetic workload – the Linux sendmail application. 

Categories and Subject Descriptors    D.3.3 [Programming 
Languages]: Language Constructs and Features – Concurrent 
programming structures, Frameworks. 

General Terms   Algorithms, Performance, Languages. 

Keywords   software transactional memory, atomic constructs, 
runtime environment, two-phase locking and read-versioning. 

1. Introduction 
The advent of multi-core processors has brought concurrency into 
mainstream applications. Programmers have traditionally used 

locks to enforce mutual exclusion in concurrent applications. This 
requires the programmer to set up an association between a lock 
and the data (more abstractly a set of shared resources) that it 
protects, and implement a consistent locking protocol throughout 
the application. Lock-based synchronization can lead to deadlock, 
makes fine-grained synchronization error-prone, precludes 
composition of atomic primitives, and provides no support for 
error recovery. Transactional programming addresses these 
problems and provides an alternative synchronization mechanism  
[9][14][16]. With transactions, the programmer marks the regions 
or operations that should execute atomically; the compiler and 
runtime system take care of the implementation. There are several 
proposals related to linguistic constructs for supporting 
transactional memory [1][4][9]. This paper concentrates on the 
underlying runtime primitives and the interface needed to support 
the various semantics for transactional memory. These primitives 
include the ability to start a potentially nested transaction, read 
and write values within a transaction, abort a transaction, and 
commit a transaction.  
Runtime transactional memory primitives can be provided either 
by hardware [16][25][19][9] (HTM) or by software 
[1][9][14][17] (STM) with both approaches having their pros and 
cons. An HTM provides a significant performance advantage, and 
enforces atomicity not only between transactional memory 
accesses, but also between transactional and non-transactional 
memory accesses. However, a HTM either restricts the size of the 
transactional code block, or requires complicated HW support.  
STMs can easily support unbounded transactions, nested 
transactions with partial rollbacks, and conditional signaling [14], 
which makes them more convenient from a programming 
perspective – all published HTM proposals either ignore or 
restrict the semantics of these features. Finally, an STM can be 
more easily integrated with existing tools, offers an easier 
adoption route for programmers, and permits experimentation 
with semantics of language features. 
In this paper, we present the interface and the implementation of a 
high performance STM system built within an experimental multi-
core runtime called McRT. Most prior STM systems have gone to 
great lengths to guarantee non-blocking properties. In contrast, 
the McRT-STM implements transactions using strict two-phase 
locking [8] and contains commit and abort sequences that are 
blocking. This makes the implementation more efficient, and also 
allows McRT-STM to implement a range of design alternatives. 
This paper makes the following novel contributions: 
1. It is the first to perform a detailed quantitative analysis of the 

pros and cons of various STM design tradeoffs and 
overheads, such as optimistic versus pessimistic concurrency, 
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write buffering versus undo logging, and cache line based 
versus object based conflict detection. 

2. It presents the first object-based conflict detection algorithm 
for C/C++ and other applications that use explicit memory 
management. We believe the McRT-STM is the first STM 
that can simultaneously support both object-based and cache-
line based conflict detection. 

3. It describes a novel STM design that leverages other McRT 
components. Prior research has concentrated on stand-alone 
STM systems with a non-blocking design which imposes a 
significant overhead. In contrast, the McRT-STM avoids a 
non-blocking design but instead leverages the McRT co-
operative scheduler to prevent an inactive transaction from 
blocking running transactions.  

4. It describes a novel software MCAS (atomic multi-word 
compare and swap) implementation that coexists with the 
STM, and works on arbitrary values. The software MCAS 
implementation allows a number of optimizations over the 
general STM.  

5. It provides detailed performance results of the STM on a 
number of concurrent data structures, compares the 
performance with that of fine-grained and coarse-grained 
locking, provides a breakdown of the STM overheads, and 
presents the contention behavior. We show how the STM 
performs on a “real” application (the sendmail spam filter). 
We believe this is among the first studies of STM on a large 
non-synthetic benchmark.   

The rest of the paper is organized as follows. Section 2 describes 
our experimental framework. Section 3 evaluates the different 
STM design tradeoffs. Section 4 describes the McRT-STM 
design. Section 5 describes our MCAS implementation. Section 6 
evaluates the STM implementation. The last two sections present 
related work and conclusions. 

2. Experimental framework 
We have built our STM within McRT, an experimental multi-core 
runtime. At its core, McRT contains a thread scheduler, a 
synchronization framework, a scalable memory manager, and the 
STM system, as well as other components. Sitting on top of the 
core services, a set of adapters translate the threading calls in 
different programming models into the McRT core API. McRT 
supports OpenMP, Pthreads, and the ORP [5] Java virtual 
machine.  The whole stack runs on a variety of platforms such as 
IA-32 Linux and IA-32 Windows. 
As concurrent workloads, we use a hashtable, a balanced binary 
search tree, a B-Tree, and a linked list. The hashtable is organized 
as 256 buckets with each bucket being a linked list of elements. 
All operations search the hashtable for a given element, with 
updates and deletes also modifying the hash table. Threads pick 
an element at random and then perform insertion, deletion or 
lookup. The probability of any two threads colliding is high 
C(16,2)/256, but the probability of many threads colliding is low. 
Thus, the hashtable emulates a workload that has good 
throughput, even though transactions may abort. The binary 
search tree has conflicts when updates cause rotations; moreover, 
nodes near the root of the tree become a bottleneck when they are 
updated, thus hindering throughput. The B-Tree is an 11-order 
balanced B-Tree, a complex data structure commonly used in 

databases. The linked list emulates a workload with the worst case 
STM behavior since list operations exhibit very little concurrency. 
These benchmarks represent common data structures used in 
many applications.  
The measurements presented in this paper were gathered on a 16-
processor IBM x445 SMP system with Xeon MP 2.2 GHz Xeon 
processors running RedHat Linux EL3. The SMP system is 
arranged in clusters of 4 processors, with processors within each 
cluster sharing a 64MB L4 cache. Each processor has private L1 
(8KB), L2 (512KB), and L3 (2MB) cache. 

3. STM design tradeoffs 
This section discusses the different STM design tradeoffs and 
explains why we chose particular points in the design space. In 
most cases, we implemented the different STM variants to enable 
a quantitative comparison. This section also presents the 
quantitative data to reinforce the McRT-STM design decisions. 

3.1 Non-blocking guarantees 
The McRT STM uses a strict two-phase locking protocol [8] to 
implement the transaction manager. The STM maps each memory 
location to a unique lock, and acquires all relevant locks before 
committing a transaction. Unlike conventional STMs [11][15],  
the McRT STM has small code sections, related to commit and 
abort sequences, which are blocking. However, if a transaction T1 
is waiting for a lock to be released by another active transaction 
T2, then T1 can abort T2. Other than the obvious performance 
reasons we made the design choice for the following 
complimentary reasons: 

• We believe that non-blocking properties should be enforced 
through appropriate scheduler hooks to control preemption 
in designated code sections. The McRT scheduler uses co-
operative pre-emption that reduces (and in many cases 
eliminates) blocking problems. Moreover, the scheduler 
executes at the user-level, so the STM-scheduler interaction 
is inexpensive since it happens through function calls. 

• As single thread performance hits the power wall, processor 
architects have turned to chip multiprocessors (CMP). 
Emerging CMPs will use Moore’s law to aggressively 
increase the number of processing cores, perhaps to tens of 
cores by the end of the decade [20]. This makes preemption 
much less of an issue. 

The McRT-STM benefits in the following ways by abandoning 
the non-blocking guarantee: 

• Transaction aborts are reduced. We initially used a non-
blocking implementation, but performance was poor due to a 
large number of transaction aborts. The lock-based STM 
implementation was also simpler and more efficient.  

• Optimization opportunities are exposed. In many cases we 
can detect early that a transaction will eventually commit. 
Section 5 shows an example of how we take advantage of 
this; a compiler should also be able to exploit this. 

• Memory management is simplified. Prior STMs had to resort 
to complex memory management schemes such as hazard 
pointers[22] since the STMs were designed to be non-
blocking. On the other hand, the McRT-STM can use a 
standard memory allocator for its internal data structures, for 
example allocating and freeing transaction logs.  
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• Integrates better with a transaction monitor. A transactional 
memory implementation may need to integrate with a 
transaction processing monitor, which entails a blocking 
implementation. The TM implementation may also need to 
support other features that require blocking implementations, 
such as remote procedure calls.  

3.1.1 Deadlock avoidance 
Since transactions wait for locks to be released, the STM needs to 
avoid deadlock. One option is for the STM to detect deadlock by 
creating a graph of waiting transactions. The STM could then 
detect a cycle of waiting transactions, and abort one of the 
transactions. This would require maintaining additional state 
whenever locks are acquired, which would slow down all 
transactional reads and writes. 
Another option is to wait for a finite amount of time for a lock to 
be released and then abort. This does not incur an overhead in the 
absence of conflicts, but could lead to some “false positives”. 
Prior work in the database community [8] has shown that the 
probability of deadlocks is proportional to NW4/L2 and hence 
small: (N=no. of concurrent transactions, W = no. of locks 
acquired on average (~no. of stores), L = total no. of locks that 
can be acquired (~total no. of shared objects)). While database 
access patterns may differ from shared variable access patterns in 
an application, nevertheless we considered this to be a good 
starting point and adopted this approach in our STM. 

3.1.2 Data conflicts and contention 
In our STM, data conflicts manifest as lock contention. If a reader 
or a writer tries to access a location that has been updated by 
another active transaction, then the reader will find that the write 
lock has been acquired. A writer may end up accessing a location 
that has been read by another active transaction, but the conflict 
manifests when the transaction validates its read set. 
Therefore, contention management between transactions boils 
down to reader/writer actions when they find that a lock is taken. 
Our STM tries to maximize throughput by almost always making 
readers/writers wait when a lock is not available. A transaction 
will abort another transaction only when the thread running the 
other transaction has yielded the processor. The McRT-STM 
leverages the scheduler for this: If a transaction T1 finds that a 
lock has been acquired, it queries the McRT scheduler, and only if 
the lock owner T2 is not running does T1 abort T2. 

3.2 Locking mechanism 
A lock-based transaction implementation can use two different 
locking algorithms for enforcing transactional semantics: It can 
use reader-writer locks, or it can use read-versioning combined 
with writer locks.  

3.2.1 Reader-writer locking 
In this scheme, the lock words corresponding to memory locations 
are used as reader-writer locks. A reader takes a read lock before 
loading the memory value, while a writer takes a write lock before 
a speculative update. Multiple readers or a single writer are 
allowed to acquire the lock at any time. Acquiring a read lock 
prevents any writer from updating a location that an active 
transaction has read. Acquiring the write lock prevents any reader 
from loading a speculative value written by an active transaction. 
A transaction maintains a log of the locks (and their flavor) that it 
has acquired. At commit, the transaction releases all its locks. 
Thus the reader-writer lock mechanism enforces atomicity. 

Further, maintaining an undo-log for aborts also allows a 
transaction to make in-place updates. The advantage of using 
reader locks is that it prevents a future writer from creating a data 
conflict; thus, it allows a compiler to reorder code to proactively 
acquire locks and once all the locks are acquired, to optimize the 
code generation knowing the transaction is not going to get 
aborted.  
Unfortunately, conventional reader-writer locks can not be used in 
a STM. This is because a transaction may first read a location, and 
then write into it later. This implies that a reader lock may need to 
be converted into a writer lock, yet the reader-writer lock 
semantics still needs to be preserved. The McRT STM uses a 
novel, yet efficient scheme to implement reader-writer locks with 
support for dynamically upgrading readers into writers. 
We use a 32 bit integer as the reader-writer lock. The lower 3 bits 
have special meaning: the Notify (or N) bit is set when a reader 
has requested notification, and unset when there are no waiting 
readers. The Upgrade (or U) bit is set when a reader wants to 
upgrade, it is unset when no readers are waiting for an upgrade. 
The Reader (or R) bit is always 0 when a writer owns the lock, 
otherwise it is 1. When a transaction acquires a write lock, it 
stores a pointer to its descriptor (a transaction local structure). The 
pointer is allocated on an 8 byte boundary, so the lower 3 bits are 
all zero. Once a writer has acquired the lock, neither upgrades nor 
notifications can be requested since no readers will be able to 
acquire the lock until the current transaction releases the write 
lock (at a commit or abort). This ensures that the lower 3 bits 
remain unset while a writer has acquired the lock. Readers first 
check that no writer has the lock (the lower 3 bits are non-zero) 
and then atomically increment the value of the lockword by 0x8 to 
acquire the lock, and decrement it by the same amount on release. 
This ensures that the bit pattern of the lower bits remains 
unperturbed. When readers have acquired the lock, the upper 29 
bits store the number of readers. The initial value of the lock word 
is 0x4 which implies that no writer has it, and no readers have 
acquired it. The upgrade and notification bits are unset.  
When a reader wants to upgrade, it atomically tries to set the U 
bit. If it succeeds, it waits for the current readers to release the 
read locks, and then acquires the write lock by inserting a pointer 
to its transaction descriptor. Moreover, incoming readers back off 
from acquiring a read lock if they notice that the upgrade bit is 
set. During upgrade, if a reader finds that the U bit is already set, 
then it aborts since another reader has obtained the right to 
upgrade, and the consequent write would create a data conflict. 
A transaction may sometimes wait for values in its read set to 
change. We use the N bit to set this up. Every lock has an 
associated wait list. When a reader wants notification, it sets the N 
bit, adds itself to the list of waiters for this lock, and then releases 
the read lock. There is no race condition between setting the N bit 
and adding oneself to the set of waiters since no writer can 
acquire the lock before the read lock release. Moreover, setting 
the N bit is an idempotent operation, so readers can set it multiple 
times. When a writer releases a lock, it checks the wait list, and 
wakes up any waiting readers. 

3.2.2 Read versioning and write locking 
In this scheme, a writer takes a lock before modifying the memory 
location, but a reader uses versioning to detect data conflicts. This 
scheme is similar to the one presented in [11].  
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We use a 32 bit integer as the lock-word that can be in one of two 
states. It can either be owned by a writer, or it can contain a 
version number. The lower 3 bits have special meaning as before. 
The N bit is used for notifications, the U bit is unused, and the R 
bit is 1 for version numbers and 0 for a writer lock. A writer 
acquires a lock by storing a pointer to its descriptor (all 
descriptors are allocated on 8 byte boundaries.) 
Before reading a memory location, a reader checks the lock-word 
to make sure no writers currently own the lock (the lower 3 bits 
are non-zero). The reader adds the lock-word to its read set and 
remembers the version number. At commit, readers validate that 
the version numbers of the locks in their read set haven’t changed. 
A writer acquires the lock before updating the memory location. 
The writer also remembers the version number in its write set. 
During lock release, it inserts a new version number into the lock-
word; the new version number is obtained by adding 0x8 to the 
old version number. Thus, whenever a location changes, the 
version number of the corresponding lock-word monotonically 
increases. This ensures that the R bit remains set in the new 
version number. The initial value of the lock word is 0x4. While 
our current implementation uses 32 bits, nevertheless we intend to 
switch to 64 bit version numbers to avoid overflow. 
Readers use the notification bit for wakeup signals as before. The 
only difference is that the wait locations are guarded by a mutex. 
Readers and writers acquire the mutex to allow race-free 
signaling. Upgrades are handled during validation. During a write 
lock acquire transactions record the lock’s current version number 
in their write sets; during validation we check that the version 
number in the read set matches the corresponding one in the write 
set.  
Figure 1 compares the read-versioning with the reader-writer 
locks. We implemented reader-writer locks both with reader 
priority and with writer priority (implemented using an additional 
bit to indicate waiting readers and writers). The performance was 
similar in both cases; therefore, we compare the read-versioning 
scheme to the reader lock with reader priority. A value greater 
than 1 implies that the workload takes longer to finish with 
reader-locks. As is evident from the figures, read versioning 
performs an order of magnitude better than reader locking. 
There are 2 primary reasons for this: (1) read versioning 
eliminates readers from atomically writing to the lock word, 
improving the cache effects; and (2) dynamic reader to writer 
upgrades are expensive because an upgrade needs to wait for all 
current readers to relinquish their read lock; moreover, 
relinquishing the read lock requires each reader to perform an 
atomic operation on the lock with destructive cache effects. 
Reader upgrades also trigger a chain of aborts in all but one of the 
concurrent readers. In some cases, a compiler can proactively 
acquire the write lock and avoid the upgrade, but in many cases 
the upgrade is unavoidable. Reader locking performs worse with 
more processors because the caching effects get aggravated. 
Some researchers have also proposed maintaining explicit reader 
lists. Maintaining explicit reader lists would also effectively 
convert reads into writes and suffer from the same cache 
degradation and poor performance compared to read-
versioning. 

Ratio of execution time for reader-lock versus reader versioning
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Figure 1: Comparison of reader-version with reader-lock 

Reader locks perform much worse for hashtable and linked lists 
since the transactional region contains many more reads than for 
trees. In the hashtable and the linked list, the average number of 
reads per transaction is proportional to the number of elements, 
whereas in the trees, it is proportional to the logarithm of the 
number of elements. 

3.3 Write buffering versus undo logging 
A lock-based STM can handle transactional updates in two ways: 
(1) the STM can update memory in-place during the transaction 
and maintain an undo log to rollback state on an abort; or (2) the 
STM can buffer speculative writes till the commit point, and 
update memory only after the transaction has committed. 
One advantage of an undo-based scheme is that it makes the 
commit path faster since values do not need to be installed. 
Another advantage is that read after write (RAW) cases can be 
handled trivially. A STM must make sure that reads from a 
transactional location return the most recent store. In an undo-
based scheme, the most recent value is stored in memory; 
therefore, the STM can easily read the most recent value. The 
advantage of write-buffering is that lock acquires can be 
postponed until the commit point, which reduces the time during 
which locks are held. In addition, the locks can be acquired in a 
canonical order (for example, address order), which eliminates the 
chance of deadlocks.  The disadvantage is that the write buffers 
must be searched on a read to get the most recent update. This 
requires some form of hashing which makes the implementation 
of nested transactions inefficient.  
Undo logging is also more amenable to compiler optimizations 
such as CSE and hoisting of read and write barriers. Such 
optimizations are shown in [1]. 
We implemented both undo-logging and write-buffering in the 
McRT-STM, and Figure 2 shows that undo logging performs 
better than write buffering. The main overhead of the write 
buffering scheme arises from having to search the write logs for 
the most recent speculative value. Again, since the hashtable 
transactions have a larger read set, write buffering performs 
worse. These results do not take any compiler optimizations into 
account, and the workloads did not have any nested transactions; 
undo logging would perform even better in the above scenarios. 
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Ratio of execution time for write buffering versus undo 
logging
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Figure 2: Comparison of undo logging versus write buffering 

3.4 Object versus cache-line conflict detection 
STMs can detect conflicts at different granularities; for example, 
at a cache line level or at an object level. Object based conflict 
detection is more intuitive for the user, and lets a compiler 
aggressively optimize the transactional code sequences. Consider 
the code sequence below that manipulates a node in a linked 
structure.  
transaction{ 
 node->key = value; 
 node->left = …; 
 node->right = … 
} 
With object based locking the compiler can generate code to 
acquire ownership of the node object once for all the updates. 
This is more difficult in a cache line based scheme since the 
object may be split across cache lines. 
For managed environments such as Java, object based conflict 
detection can be implemented easily [1]. For unmanaged 
environments such as C, this is more difficult since we need to 
map an arbitrary interior pointer to the object base. The McRT-
STM leverages the McRT memory manager (McRT-Malloc) in a 
novel way to enable object based conflict detection in C/C++. 
McRT-Malloc divides the heap into several smaller blocks which 
are used to segregate objects based on their size. McRT-Malloc 
uses the size-segregated heap for objects less than 8K bytes; larger 
objects are allocated from a large object space (a different heap) 
and are not size-segregated. Object based locking is only provided 
for objects that are allocated in the size segregated heap. Large 
objects, stack-allocated objects, and global variables fall back on 
cache line locking.  This is desirable since object-based locking 
for large objects would coarsen the granularity of conflict 
detection. 
During startup, McRT-Malloc divides the virtual address space 
into large and small object spaces. Given an object pointer, a 
single range check (pointer – small_object_base_address < 
small_object_area_size) suffices to determine whether the object 
resides in the small object heap. Every size-segregated memory 
block is aligned on a 16K boundary. At the base of each of these 
blocks is a small 64 byte area that holds the meta information for 
this block including the size of all the objects residing in this 
block. To obtain the block header address we mask the low-order 
bits of a pointer (header_addr = pointer & (block_size – 1)). The 
size of the objects in the block is obtained from the header, 
allowing efficient computation of the “index” of the object in the 

block (index = (pointer – header_size – header_addr) / 
object_size). 
We investigated two approaches to object-based conflict 
detection. The first approach allocates locks inline with objects, 
which incurs an overhead even when no transaction accesses an 
object, but has the benefit of good cache locality.  In particular, 
acquiring the lock gets the cache line in exclusive state which 
avoids any subsequent cache miss on a store. The second 
approach associates a table of per-object locks with each memory 
block used by the allocator.  By placing the locks on the side, it is 
possible to allocate the table in a demand-driven fashion, reducing 
memory wasted for non-transactional execution at the cost of 
worse cache locality. 
Cache line (hashing) based conflict detection is easier to 
implement in the STM. Given an address, we mask off the lower 
bits of the address to get the cache line address. The STM 
maintains an array of locks that is indexed with the cache line 
address (of the memory location) to retrieve the corresponding 
lock. (We also mask off the higher bits. This reduces the number 
of locks that the STM maintains, but does not affect performance 
noticeably). This boils down to a single masking operation, a 
shift, and an addition to realize the address of the lock.  
Figure 3 compares all the approaches. Values less than 1 indicate 
that object-based execution time was less than the cache-line 
based execution time. The workloads performed 64K operations 
with 80% being updates. In the hashtable and the binary search 
tree the inlined locks perform the best, while in the linked list the 
cache-line based scheme works best. The hashtable has low 
contention; therefore the inlined locks have a beneficial 
prefetching effect. The linked list sees very high contention; 
therefore, the inlining leads to cache-line ping-ponging and hurts 
the performance. The object-based conflict detection does not 
include the effect of any compiler optimizations; thus we expect 
better performance after integrating with compiler optimizations.  
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Figure 3: Comparison of object based and cache line locking 

 

4. McRT-STM design 
Using the data in Section 3 as a guide, McRT-STM implements 
read-versioning and undo-logging. We also support both object-
based and cache-line based conflict detection.   
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4.1 McRT-STM API 
The McRT-STM provides the following runtime primitives:  
McRTSTMDescriptor* stmStart (void);  
volatile uint32* stmGetLock (McRTSTMDescriptor *descriptor, 
                                                void *addr); 
uint32 stmReadVersion (McrtSTMDescriptor* descriptor,  
                                        volatile uint32* lock); 
uint32 stmWriteLockAcquire (McrtSTMDescriptor* descriptor, 
                                                 volatile uint32* lock); 
void stmUndoLog (McrtSTMDescriptor* descriptor,  
                               volatile uint32* addr);  
Bool stmValidate(McrtSTMDescriptor* descriptor); 
Bool stmCommit (McrtSTMDescriptor* descriptor); 
void stmAbort (McrtSTMDescriptor* descriptor,  
                         uint32 reason); 
void stmAbortCurrent (McrtSTMDescriptor* descriptor, 
                                     uint32 reason); 
void stmMapLogFromBegin(McrtSTMSSB* ssb,  
                                         void (*callback) (McrtSTMSSB* ssb), 
                                         McrtSTMSSB* stop); 
void stmMapLogFromEnd(McrtSTMSSB* ssb,  
                                        void (*callback) (McrtSTMSSB * ssb), 
                                         McrtSTMSSB* stop); 
void stmAddAbortHook(McrtSTMDescriptor* descriptor, 
                 void (*callback)(McrtSTMDescriptor* dsc, void* arg), 
                 void* arg); 
void stmAddCommitHook(McrtSTMDescriptor* descriptor, 
                 void (*callback)(McrtSTMDescriptor* dsc, void* arg), 
                 void* arg); 
McrtSTMDescriptor* stmGetDescriptor(); 
McrtSTMSSB* stmGetReadSet(McrtSTMDescriptor*); 
McrtSTMSSB* stmGetWriteSet(McrtSTMDescriptor*); 
McrtSTMSSB* stmGetUndoLog(McrtSTMDescriptor*); 
 
A call to stmStart initiates a transaction letting the STM initialize 
its internal data structures. The stmStart function also maintains 
the dynamic nesting depth. The stmGetLock function is used to 
map an address to a unique lock; the mapping can be either on a 
cache-line basis or on an object basis and can be set dynamically. 
Clients of the McRT-STM can also override the default 
stmGetLock function and provide their own function to map 
addresses to locks. This allows us to decouple the granularity of 
conflict detection from the unit of logging/updates. The 
stmReadVersion, stmWriteLockAcquire, and stmUndoLog 
functions are used to access shared memory inside a transaction. 
The stmReadVersion takes a lock address (corresponding to a 
memory location) and stores the version number in the read set if 
the lock is currently not owned. The function returns immediately 
if the calling transaction owns the lock. Otherwise it calls the 

contention manager which may cause it to wait and retry, or 
ultimately abort the transaction. Since we use in-place updates, 
reads are done directly from memory. The stmWriteLockAcquire 
takes ownership of a lock if it is currently not owned, or returns 
immediately if the calling transaction owns it. If some other 
transaction owns the lock, it calls the contention manager, which 
may decide to wait and retry, or may ultimately decide to abort the 
transaction. Both the stmReadVersion and stmWriteLockAcquire 
functions return the version number of the lock. The stmUndoLog 
is used to remember the old value of a location before doing an 
in-place update. Updates are always word sized. The stmValidate 
function validates the transaction by checking that the version 
numbers in the read set match the current version numbers of the 
locks. The stmCommit function marks the end of a transaction. It 
validates the transaction and releases all the locks acquired by the 
transaction (and recorded in the write set). The transaction may be 
aborted at any time due to a data conflict. The stmAbort aborts the 
entire transaction, while the stmAbortCurrent aborts only the 
innermost transaction. On an abort the memory values are 
reverted, the write locks are released, and the contention manager 
is invoked which ultimately retries the transaction. The McRT-
STM supports explicit user aborts that are used for implementing 
the retry-orElse [14] construct. The stmMapLogFromBegin and 
stmMapLogFromEnd functions take a call back function and 
iterate over the logs from the beginning and from the end 
respectively. The log entry pointed to by stop tells the iterator 
when to terminate. The McRT-STM also allows a client to add 
abort and commit callbacks (stmAddAbortHook and 
stmAddCommitHook) that are invoked if a transaction gets 
aborted or committed. The transaction descriptor is threaded 
through all calls, therefore the STM exports a function 
(stmGetDescriptor) to get the current transaction descriptor. The 
remaining functions, (stmGetReadSet, stmGetWriteSet, 
stmGetUndoLog) are used for accessing the transaction’s logs 
which can then be passed to the iterators.   
For the applications studied in this paper all the calls to the STM 
library are introduced by a simple manual expansion of all shared-
memory locations accessed inside atomic regions. The library 
calls may also be introduced automatically by a compiler [1].  

4.2 McRT-STM data structures 
Every transaction uses a descriptor for storing transaction meta-
data. The descriptor is created during thread initialization and 
stored in the thread local storage (TLS). The stmStart function 
retrieves the descriptor from the TLS; the descriptor is then 
passed to all the runtime functions to avoid repeated TLS lookups. 
The descriptor contains the following fields 

• transactionState  Active/Committed/Aborted/Wait 
• transactionDepth   Nesting depth 
• writeLocksAcquireLog, currentIndex  write 

set locks,  pointer to the head of the log 
• readLocksAcquireLog, currentIndex  read set, 

pointer to the head of the log 
• updatedLocationsLog, currentIndex  

original value log, pointer to the head of the log 

The logs store the read and write sets (address-value pairs) and are 
organized as a sequential store buffer (SSB)[18][3]. These store 
buffers are allocated in chunks, and when the current chunk runs 
out, a new chunk is allocated and linked to the last chunk of the 
SSB as shown in Figure 4. (For simplicity the figure shows the 
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SSBs allocated as 2 entry chunks, in the implementation we use 128 
entry chunks). The descriptor contains a pointer, currentIndex, to 
the head of each log. We assume that nested transactions follow a 
stack discipline; therefore the logs contain an index stack that is 
used for tracking the read and write sets of transactions at different 
nesting depths. 

transaction {
      A = 10 /* A was = 2 */
      transaction {
           B = 20 /* B was = 5 */
           transaction {
            …
           }}}

currentIndex =

Index stack

A = 2

Sequential store
buffers

B = 5

 
Figure 4: Structure of the transaction logs 

Figure 4 shows the updatedLocations log When a nested 
transaction is started, the current index into the log is pushed onto 
the index stack. When a nested transaction is committed, the index 
stack is popped. This effectively merges the read-write sets of the 
nested transaction with that of the parent transaction, which 
provides closed nesting semantics. The entries from the top of the 
stack to the head of the log (currentIndex) comprise the state of the 
currently executing transaction. This allows easy rollback of a 
nested transaction without affecting the parent transaction. For 
example, in Figure 4, when the innermost transaction is started, the  
currentIndex points to the head of the log, while the stack contains 
the log indices where each parent transaction started. As the 
innermost transaction starts, the write set will be made up of the 
elements from the top of the stack (the third entry). When the 
innermost transaction commits, the stack will be popped, and the top 
of the stack will then point to the second entry and the write set will 
be made up of the elements from the second entry on to the end of 
the SSB. Thus the state of the inner transaction will get subsumed 
into the parent transaction. 

5. MCAS implementation 
Our STM allows a very efficient multiword compare and swap, 
MCAS, [13] implementation that works on arbitrary values and 
coexists with the general STM. Having an efficient MCAS is 
important for two reasons: (1) MCAS can be used by expert 
programmers to write concurrent data structures, and (2) MCAS can 
be a convenient interface to a hardware transactional memory 
(HTM) implementation. Most HTM proposals [16] have an upper 
bound on the number of locations that can be accessed inside a 
transaction. Since a MCAS specifies upfront the number of 
transactional memory accesses, the transactional library can decide 
whether to execute the MCAS as a HTM or as a STM. The MCAS 
API is defined as: 
Bool MCAS(int k, void* addr[], uint32 oldValue[], uint32 newValue[])  
The first parameter provides the number of memory locations that 
will be accessed, the second parameter provides the set of addresses, 
the third parameter provides the set of expected values, and the last 
parameter provides the set of new values that will be swapped in if 
all the memory locations contain the expected values. The operation 
returns True if the new values are swapped in, and False otherwise. 
The STM and MCAS are integrated and both compute the locks for 
the transactional memory locations using the same algorithm; 
therefore, the locations are protected from concurrent access. Only if 
all the locks are successfully acquired does the MCAS update the 
memory locations and returns True, otherwise it returns False, which 

enables some optimizations. The workloads we used for evaluating 
our STM (e.g. hashtable, or binary search tree) are not amenable to 
the use of MCAS, so we compared the STM with the MCAS on a 
bounded FIFO queue with concurrent enqueuers and dequeuers. 
Figure 5 shows the comparison between the MCAS and the STM 
implementation.  
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Figure 5: MCAS versus STM 

6. STM performance 
This section compares the performance of STM with lock-based 
algorithms and then examines the McRT-STM overheads. The 
transactional workloads use cache line based conflict detection in all 
cases. This paper focuses solely on a high performance STM 
without regard to compiler optimizations; therefore, we did not 
consider object based conflict detection in the results.   

6.1 STM versus locking 
Figure 6 provides a baseline comparison between STM and the 
different locking schemes on the hashtable benchmark. The coarse-
grained locking scheme uses a single lock for the entire hashtable. 
The fine-grained locking scheme uses a lock per bucket. The STM 
version replaces the lock acquire and lock release calls of the coarse 
grained version with stmStart and stmCommit calls. Thus, the 
programming effort is the same as that of coarse grained locks. The 
STM version initially starts out with a much higher overhead, but as 
the number of processors increases, it starts approaching the fine-
grained performance. At 16 processors, the STM is about 1.8X the 
performance of fine-grained locking. In the experiment we set the 
number of updates to 80% of the hashtable operations. With a 
higher number of lookups, the STM performs better and approaches 
the fine-grained locking performance. 
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Figure 6: STM versus locking on hashtable 
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We compare the STM and locking on binary search trees in 
Figure 7. The lock implementation uses a single lock for the entire 
tree. The STM performs better than the locking when the 
proportion of updates is lowered. This arises because the 
balancing propagates changes across the tree and increases the 
number of aborts. More importantly, the balancing propagates 
updates to the root of the tree which severely limits concurrency. 
The comparison for BST operations without balancing is shown 
in Figure 8, and the STM outperforms the locking even with 
higher number of updates. The abort ratios are shown in Figure 9.  
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Figure 7: STM versus locking on binary search tree with 

balancing 
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Figure 8: Comparison of STM and locks without balancing 

binary search tree 
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Figure 9: Aborts in the transactional AVL and BST 

 
We compare the STM and lock performance on a sorted linked 
list in Figure 10. For the locking measurements, we used a single 
lock for the entire list. When the proportion of updates is lower, 
the STM performs better, but as the updates increase the 
performance becomes comparable since the number of aborts 
increases. Figure 11 shows the results for an unsorted list. In the 
unsorted list, all insertions happen at the front of the list, which 
provides no concurrency for the update operations, while the 
updates are spread out in a sorted list. The abort ratios are given 
in Figure 12.  
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Figure 10: Comparison of STM and lock on sorted link list 
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Figure 11: Comparison of lock and STM on unsorted link list 
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Figure 12: Aborts in the linked list 

We also implemented fine-grained locking versions (containing 
locks at each node) for both the binary search tree and the linked 
list, but the fine-grained locking performs worse than the STM or 

194



the coarse-grained locking by an order of magnitude. Unlike the 
hashtable, fine-grained locking requires many lock operations on 
the linked list and the binary search tree. Since lock operations are 
expensive on the Xeon, fine-grained locking does not provide any 
benefit.  
We show the STM and lock comparison for the B-Tree in Figure 
13. The B-Tree sees few aborts, and therefore the STM 
outperforms the lock-based code. Even with 80% updates at 16 
processors, B-Tree operations get aborted less than 0.5% of the 
time. The STM performs better as the proportion of lookups 
increases.  
Both the linked list and the binary search tree results show the 
importance of good contention management in a transactional 
system. Our cache-line versus object-based conflict detection 
results also show that contention can play a significant role in 
determining how the STM performs.  
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Figure 13: Comparison of STM and locking on B-Tree 

6.2 STM overhead breakdown 
The breakdown of costs in the transactional workloads is shown 
in Figure 14. The cost is dominated by the read barrier and the 
validation costs in all the benchmarks. The hashtable buckets are 
organized as linked lists, so the number of elements scanned is 
proportional to the number of insertion operations which 
contributes to the high overhead from stmReads. In the tree on the 
other hand, the maximum number of reads is proportional to the 
logarithm of the number of insertion operations. The TLS 
accesses also arise from the STM; the TLS accesses are mainly for 
accessing the descriptor and the logs. 
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Figure 14: STM cost breakdown in the hashtable 

Our STM needs to insert validation checks [11][15] at backward 
edges to guard against infinite loops and other error conditions. 
The linked list is traversed in a loop, with the number of backward 
jumps being equal to the number of list elements. As a result, 80% 
of the validation calls in the linked list arise from   checks on 
backward edges, and the remaining from validation at commit. If 
we consider only the commit validations, then the validation cost 
has the same proportion as the other benchmarks. Techniques like 
early release [15] would help in reducing the overhead; however, 
we didn’t use early release since it seems to impose the same 
programming burden as fine-grained locking. 

6.3 STM preemption 
Since McRT-STM does not guarantee non-blocking properties, 
we need to ensure that performance does not degrade if the 
application uses more threads than processors. In this section, we 
show how the STM performs as the application increases the 
number of threads. We run the workloads using 16 processors, but 
use up to 128 user threads. The McRT scheduler multiplexes the 
user level threads onto 16 kernel threads. Figure 15 shows the 
execution time of the benchmarks as we increase the number of 
threads relative to the execution time for the benchmarks at 16 
threads. A value greater than 1 indicates that the workload takes 
longer to execute than with 16 threads.  

Relative execution time with large numbers of threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140

Number of concurrent threads

Ex
ec

ut
io

n 
tim

e 
re

la
tiv

e 
to

16
 th

re
ad

s

hashtable linked list bstree 

 
Figure 15: STM performance with large number of threads 

As is evident from the charts, there is no performance loss in 
going from 16 to 128 threads, with a gain in some cases. The 
increase in performance is due to better load balancing. McRT-
STM does not adjust transaction priorities dynamically (in other 
words does not impose fairness), some transactions win most of 
the conflicts, while other transactions loose most of the conflicts. 
Thus, a few of the transactions finish early, while some 
transactions finish late; the difference between the fastest and the 
slowest transaction (or the load imbalance) is proportional to the 
work done by each thread, and decreases as we increase the 
number of threads. Hence the execution time falls as we increase 
the number of threads, since less time is wasted in idling. The 
slight increase in the execution time as we get up to 128 threads 
arises from runtime and scheduler inefficiencies at high number of 
threads. The saw-tooth nature of Figure 15 also arises from co-
operative preemption since the load balancing works best when 
the number of application threads is a multiple of 16, and gets 
worse at other thread counts. 

6.4 STM on a non-synthetic workload 
This section shows McRT-STM performance on a non-synthetic 
application. The concurrent workloads serve as a good testbed, 
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but it is difficult to simulate application characteristics closely 
through those workloads; for example, contention behavior, 
proportion of time spent in atomic code, mix of reads and writes, 
granularity of locking, and so on. So we took the well known 
sendmail (v8.13.4) application and converted the mutex calls into 
transaction calls. Sendmail consists of a multithreaded mail filter 
(milter) API called libmilter (v0.3.0). Through this API, sendmail 
can make callbacks to sendmail-milter, which in turn calls Mail-
SpamAssasin (v3.0.4) to filter out spam from incoming mail. The 
workload consists of several threads sending emails (50% spam) 
to the same account. Sendmail goes through the chain of programs 
mentioned above to filter the spam from these emails.  We 
profiled the lock-based sendmail execution, and found that the 
application spends about 10% of its time in critical regions, large 
enough that a significant STM overhead would slow the 
benchmark noticeably. 

As seen in Figure 16, McRT-STM performs comparably to the 
lock performance. We show the execution time till 8 threads since 
the other threads are used for sending mail to drive the workload. 
The key point about STMs is their software engineering benefits, 
and the challenge for an implementer is to provide the benefits at 
a reasonable cost. The sendmail result provides preliminary 
evidence that on commercial applications, the STM and locking 
performance are comparable. 
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Figure 16: STM and lock behavior for sendmail spam filter 

7. Related work 
Transactional memory, as applied to programming languages, was 
first studied by Herlihy and Moss [16], and later by Stone et. al. 
[25]. Both of those relied on a HW implementation, while ours is 
a completely SW implementation. Shavit and Touitou [24] 
proposed the first SW only solution scheme handling transactions 
with statically known read and write sets. More recently, Herlihy 
et. al. [15], Harris and Fraser [11] and Welc, Jagannathan  and 
Hosking [26] have built non-blocking STMs that run on stock 
hardware and handle transactions with dynamically known read 
and write sets. Herlihy uses an object based scheme for Java, 
whereas Harris uses a cache line based scheme. These systems 
were designed with preemption safety as a major concern. Our 
system investigates design options made available by hardware 
with sufficient threads to ameliorate preemption concerns.  
Our work differs in several other respects: We leverage the other 
parts of the runtime system to build a lock-based implementation, 
we do a detailed quantitative analysis of the various design 
tradeoffs, we provide a MCAS interface that can be used for 
interacting with HW transactions, and our STM also provides 
support for nested transactions with partial aborts.  

Ennals [7] discusses a lock-based STM for Java that shares some 
properties similar to our STM; this paper makes several additional 
contributions such as the object-based C/C++ STM, leveraging 
the runtime scheduler and memory manager, and a detailed 
performance analysis of the STM design space. Marathe, Scherer 
and Scott [23] do a quantitative analysis of several non-blocking 
STMs, but their emphasis is on studying different contention 
policies rather than STM tradeoffs. Harris and Fraser [12] present 
a locking mechanism for their write logging STM but assume an 
adversarial scheduler where preemption is a concern. Harris [13] 
describes a MCAS that works on pointer values, but our MCAS 
works on arbitrary values. 

8. Conclusions 
Transactions are a powerful linguistic construct for managing 
concurrency since they eliminate deadlocks, make it easier to 
compose atomic primitives, and automatically provide fine-
grained concurrency. Transactions may be implemented either in 
HW or in SW. A software implementation is more versatile and 
programmer friendly since it imposes no size constraints on the 
transaction, allows advanced features such as nesting, allows 
experimentation with usage models, and is easier to interface with 
tools. In this paper, we present the design and implementation 
results for McRT-STM, a software transactional memory library 
for a multi-core runtime. 
This paper makes a number of novel contributions: (1) It shows 
how a STM can leverage other parts of the runtime (e.g., the 
scheduler and the memory manager) to provide a high-
performance STM implementation. (2) It provides the first 
quantitative analysis of various STM design tradeoffs. (3) It 
shows performance comparisons with a number of lock-based 
concurrent data structures, a breakdown of the different STM 
overheads that can guide further optimizations, and a comparison 
of the lock-based and transactional versions of the sendmail filter. 
(4) It also shows a novel MCAS implementation that can be used 
as a more efficient (but more restricted) form of transactional 
memory. 
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