
Efficient and Transparent Dynamic Content Updates for
Mobile Clients

Trevor Armstrong
Department of Electrical and Computer

Engineering
University of Toronto, Canada

trevor@eecg.toronto.edu

Olivier Trescases
Department of Electrical and Computer

Engineering
University of Toronto, Canada

trescas@vrg.toronto.edu

Cristiana Amza
Department of Electrical and Computer

Engineering
University of Toronto, Canada

amza@eecg.toronto.edu

Eyal de Lara
Department of Computer Science

University of Toronto, Canada

delara@cs.toronto.edu

ABSTRACT
We introduce a novel infrastructure supporting automatic
updates for dynamic content browsing on resource constrained
mobile devices. Currently, the client is forced to continu-
ously poll for updates from potentially different data sources,
such as, e-commerce, on-line auctions, stock and weather
sites, to stay up to date with potential changes in content.
We employ a pair of proxies, located on the mobile client and
on a fully-connected edge server, respectively, to minimize
the battery consumption caused by wireless data transfers to
and from the mobile device. The client specifies her interest
in changes to specific parts of pages by highlighting por-
tions of already loaded web pages in her browser. The edge
proxy polls the web servers involved, and if relevant changes
have occurred, it aggregates the updates as one batch to
be sent to the client. The proxy running on the mobile
device can pull these updates from the edge proxy, either
on-demand or periodically, or can listen for pushed updates
initiated by the edge proxy. We also use SMS messages to
indicate available updates and to inform the user of which
pages have changed. Our approach is fully implemented us-
ing two alternative wireless networking technologies, 802.11
and GPRS. Furthermore, we leverage our SMS feature to
implement and evaluate a hybrid approach which chooses
either 802.11 or GPRS depending on the size of the update
batch. Our evaluation explores the data transfer savings en-
abled by our proxy-based infrastructure and the energy con-
sumption when using each of the two networking capabilities
and the hybrid approach. Our results show that our proxy
system saves data transfers to and from the mobile device
by an order of magnitude and battery consumption by up to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’06, June 19–22, 2006, Uppsala, Sweden.
Copyright 2006 ACM 1-59593-195-3/06/0006 ...$5.00.

a factor of 4.5, compared to the client-initiated continuous
polling approach. Our results also show that the batching
effect of our proxy reduces energy consumption even in the
case where the user never visits the same page twice.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcom-
puters—portable devices; D.4.4 [Operating Systems]: Com-
munications Management—network communication; D.4.8
[Operating Systems]: Performance—measurements

General Terms
management, measurement, experimentation

Keywords
power management, mobile wireless communication, proxy,
caching, prefetching, batching, energy measurement

1. INTRODUCTION
In this paper, we introduce an automated and efficient ap-

proach for browsing HTML pages with dynamically chang-
ing content on mobile devices. Following the fluctuations of
the favorite currency, stock value, or auction currently re-
quires the user to reload all the pages in order to capture
any changes to the data. The costs of these data transfers
to the user come in many forms, including slow data access,
excessive battery consumption on the device and inconve-
nience due to the user’s active involvement in constant data
reload.

We observe that, while web pages may change frequently
due to systemic reasons, such as updating the time of day
or an add banner, the user relevant content does not change
much. Based on this key observation, we introduce a general
purpose infrastructure that allows the browsed HTML pages
to be seamlessly updated only when content of interest to
the user changes. Our approach greatly reduces the costs of
updates by: i) allowing the users to mark the parts of each
page that are of interest to them, ii) offloading the task of

determining when those parts have changed to a resource-
rich proxy and iii) leveraging the proxy for batching those
updates and sending them to the user’s device periodically.

We expect that our system will be useful in two kinds of
browsing situations: Our first target is providing seamless
low-cost content updates during active client web browsing.
Imagine a user browsing dynamic content on her PDA dur-
ing her daily commute or at an airport terminal waiting for
her flight. We leverage our resource-rich proxy to save data
transfers for both the case where the user wants to keep up
to date with rapidly changing content for her favorite pages
as well as for the case of browsing to random pages.

Our second target scenario is automatic periodic content
refresh for the user’s favorite content, for subsequent brows-
ing while disconnected. This scenario corresponds to a user
carrying a handheld device in her pocket, and having her
preferred content (news, weather, stocks, etc) automatically
updated whenever her device has the opportunity to net-
work and significant changes to the content have occurred.

In our system, dynamic content is cached both within a lo-
cal mobile client proxy and on an edge proxy with an always-
on high-bandwidth low-latency connection to the Internet.
The client registers her interest with the edge proxy. The
edge proxy keeps track of the web pages cached at each client
and polls the web servers involved for changes. We allow
the mobile client to specify their interest in regions within
each web page, using a very simple interface, by highlighting
portions of already loaded web pages. We also refine our in-
terface by allowing the user to specify sensitivity thresholds
for changes to numerical values. Finally, this specified inter-
est allows the edge proxy to selectively accumulate content
updates for all pages in the client’s profile, and propagate
updates as a single batch only when changes of interest to
the client occur.

We deployed an actual proxy in our lab from which our
mobile device can connect using two alternative wireless
networking capabilities: 802.11 and cellular communication
over GPRS. Each of these networking capabilities offer dif-
ferent trade-offs in terms of data download costs. Specifi-
cally, access to content over cellular networks is ubiquitous
and low power, but is relatively slow. On the other hand,
transfers over WiFi (802.11) are fast, but have high energy
costs. Indeed, an 802.11 card can reduce the battery life-
time of a PDA by up to a factor of six when in continuously
active mode and by a factor of nearly two when in power
saving mode [1].

In our experiments we measure the data transfer and en-
ergy savings for several dynamic content refresh schemes.
Specifically, we implement and compare a poll-based scheme,
where the mobile proxy periodically polls the edge proxy for
updates, and a push-based approach, where the edge proxy
pushes updates to the device based on a schedule. We im-
plement and measure the poll-based and push-based prox-
ies and compare against a baseline without proxies on both
WiFi and GPRS. Finally, we leverage lightweight SMS text
messaging to signal when new updates have been created.
The edge proxy creates a text message for the client, on
which it piggybacks information such as the number of up-
dates, size of updates, and pages that have changed. Thus,
the mobile proxy can use this information to make an intel-
ligent decision on whether to use its WiFi or cellular con-
nection to download the updates. Specifically, the energy
expenditure of transferring a short message on GPRS is ex-

pected to be dwarfed by the energy overhead of turning on
the WiFi card. Conversely, for large messages, the supe-
rior download speed of WiFi translates into overall energy
savings even if transfers occur at a higher power level.

We present results from experiments conducted by replay-
ing four 3-hour URL traces collected from the following live
sites: EBay.ca [2], the CNN Toronto weather page [3], the
currency web site XE.com [4], and the financial site Yahoo!
Finance [5]. We select parts of these web pages that the
user would normally be interested in, such as, a particular
auction’s current bid, the current temperature, the value of
a particular currency, and the value of a particular bond,
respectively.

Our results show that, in all cases, combining the update
filtering with the batching edge proxy results in significant
cost reductions. The client can learn in a single message
exchange that there are no updates for any of the pages of
interest. Conversely, when significant changes occur, trans-
ferring all relevant updates in a single batch bypasses much
of the latency involved in WWAN web browsing, hence con-
serving battery power. We show that our proxy-based in-
frastructure reduces data transfers and energy consumption
when using either of the two communication capabilities, i.e.
GPRS and WiFi, alone. Furthermore, we have determined
the threshold message size, for which using WiFi is more en-
ergy efficient than GPRS. This information is leveraged in
our hybrid approach which uses both wireless connections in
conjunction with SMS messages and allows for even further
energy savings. Overall, we save data transfers to and from
the mobile device by an order of magnitude and battery con-
sumption by up to a factor of 4.5, compared to the client-
initiated proxyless approach. Our results also show that
even when the client is browsing new, previously unvisited,
web pages, our proxy system has a beneficial prefetching ef-
fect by batching downloads for the page and all its embedded
objects into one data transfer. As a result, in this case our
proxy reduces energy expenditure by 69% when browsing
over GPRS, and 15% when browsing over WiFi.

The outline of the rest of the paper is as follows. Section 2
introduces our proxy based approach. Section 3 presents our
experimental platform and methodology. Section 4 presents
our results. We provide a summary of our results, and a dis-
cussion of our contributions in Section 5. Section 6 discusses
related work. Section 7 concludes the paper.

2. OUR PROXY FRAMEWORK
We assume a scenario where a mobile user is interested

in browsing dynamic content from various web servers. The
client interaction with many of today’s web servers is repet-
itive in nature, such as, constantly polling an EBay auction
to check the status of a bid, or refreshing a page that con-
tains stock quotes to track the changing values of a stock.
While browser caches support ”get if modified since” mech-
anisms, this typically fails to save any data transfers due to
frequent updates to parts of the page that are largely irrel-
evant to the user. These changes include ad banners or the
time of day, and although the user may not be interested in
them, they usually result in the page being reloaded almost
every time.

To address this problem, we provide a simple mechanism
that allows users to specify the information they want to
keep track of in general HTML pages. Based on the user
interest, we offload the polling work from the mobile device

Figure 1: Screen Shot for Illustrating Client Inter-
face

to an edge proxy connected to the Internet over a high ca-
pacity link. The proxy is a regular computer with no power
limitations and sufficient memory. The edge proxy performs
high-frequency polling actions for detecting updates to the
content of interest to the mobile clients.

We describe the interface that we offer the mobile client
and the way we keep track of the client’s interest in sec-
tion 2.1. We then describe the components of our proxy
architecture and its basic operation in section 2.2 and sec-
tion 2.3, respectively. Building on this basic framework,
section 2.4 introduces our proxy enhancements for commu-
nication and energy savings.

2.1 Client Interface
The user specifies her interest in changes to specific parts

of each page by highlighting portions of the web page on her
device screen, as illustrated in Figure 1. The end points of
a highlighted region serve as the start and end points of an
annotation that the system captures.

To keep track of the mobile client’s interest in specific
page regions even while the content changes, we use a well-
documented tree technique for maintaining robust HTML
document locations [6]. This technique has been shown to
robustly keep track of a location within a web document,
in the face of typical value changes to dynamic content and
even in the case of structural changes to the document, such
as paragraph reordering or deletion.

Tree walks are the central component of robust HTML
locations. A tree walk describes the path from the root of the
document, through internal structural nodes, to a point with
plain content at a leaf. Since tree walks incrementally refine
the structural position in the document as the walk proceeds
from root to leaf, they are robust for dynamic content page
changes, such as with stock quotes, where the content itself
changes while the structural position remains constant. In
many cases, even when structural changes have occurred, it
is possible to find the content of interest by visiting sibling
nodes in the tree and using additional context information.

Finally, our interface also allows the client to specify thresh-
olds of meaningful change for numerical values.

2.2 System Architecture Components
Figure 2 shows the two main components of our system:

the mobile device proxy and the edge server proxy. The
mobile proxy resides on the mobile device. It consists of a
proxy that intercepts client web requests, a cache for storing
the responses to previous requests, and a hardware manager
which controls the state of the wireless connections available
on the device. The mobile proxy’s main job is to commu-
nicate with the edge server proxy and process any cache
updates. The hardware manager on the mobile device is re-
sponsible for determining which wireless interface the inter-
proxy communication should use. The hardware manager
makes its decision based on user defined preferences. The
user can choose to prefer GPRS-only, WiFi-only or an adap-
tive GPRS/WiFi hybrid with the goal of optimizing energy
consumption automatically. For example, in an interactive
scenario of actual user browsing, where download speed is
important or if avoiding monetary costs is paramount to the
user, the user would set a preference for the 802.11 connec-
tion. In this case, the hardware manager first checks for
the availability of an 802.11 access point before falling back
to the GPRS connection if one is not available. In the hy-
brid case, the hardware manager bases its decision on which
interface to use on the size of the data to be transferred.
A long download of a large update on GPRS may consume
more energy overall than the equivalent transfer over 802.11,
even if the GPRS connection uses relatively less power.

Mobile Device Edge Server

Cache

Proxy

Update
Manager

Cache
Manager

CacheProxy

Web Browser

Hardware Manager

Figure 2: System Architecture

The edge server proxy is placed on any well connected
computer. The edge server proxy consists of four compo-
nents: proxy process, cache manager, cache, and update
manager. The proxy process is an event driven server which
interacts with multiple clients and serves their requests ei-
ther from the cache or by directly connecting to the web
server(s) in question. The cache manager consists of an
interface to the cache and a thread pool. The cache man-
ager’s responsibility is to keep the cache up to date. Each
thread periodically polls the web servers that a particular
cache entry references, checking for any changes. The cache
stores the interest profiles for all the mobile devices that reg-
istered their interest with the edge proxy. When a cached

page is changed, the update manager adds a reference to the
changed content to the update batch of each mobile device
that has registered interest in that particular page.

2.3 Operation
When a mobile device first joins the system, it registers

with the edge server proxy. The edge server proxy assigns
each device a unique id so that it can subsequently differen-
tiate between devices in the system. Differentiating based
on IP address is not a sufficient means, since a mobile device
may change IP addresses several times each day.

When a request is issued by the web browser on the de-
vice, the mobile proxy checks its cache. If the cache contains
the corresponding response (local cache hit), the response is
returned immediately to the web browser and no wireless
communication occurs. If the response is not found in the
cache (local cache miss), the mobile proxy forwards the re-
quest to the edge server proxy. The edge server proxy, in
turn, checks its cache for the response and returns it from its
cache if it is there. Otherwise the request is forwarded to the
actual web server. If the response is a HTML page, the edge
server proxy prefetches all the embedded objects within that
page and batches them with the response to be delivered to
the mobile client in one transmission. Any pending cache
updates are also included in the batch transfer.

Upon receiving the response from the edge server, the mo-
bile proxy caches the response and updates its cache with
any other additional files included in the transfer. The re-
sponse is then returned to the web browser. The client
proxy acknowledges the receipt of any updates, such that
the edge server proxy can remove those updates from the
update manager’s list for that device.

In our system, the mobile proxy learns that cache updates
are available through three alternative means:

• Polling the edge server.

• Receiving pushed updates.

• Receiving a SMS message from the edge server.

In the polling based scheme, the mobile proxy periodically
polls the edge server proxy asking whether any updates are
available. This periodic content refresh occurs automati-
cally during active browsing sessions in order to keep the
local client cache up to date, and in turn to minimize client
perceived staleness and waiting time.

Alternatively, for the push based approach, the mobile
proxy listens on a particular port for incoming updates ini-
tiated by the edge server proxy. In this situation, the edge
server proxy requires a valid IP address for the client. Hence,
when the device’s IP address changes, the mobile proxy is
required to contact the edge server proxy to give it its new
address.

The previous two methods require the user to have an ac-
tive data connection in order to learn of updates. However,
there may be times when the user is in a disconnected state1

and would still like to receive notifications about changes to
pages of interest. By harnessing the existing Short Message
Service (SMS) infrastructure that most wireless carriers pro-
vide, our proxy system is able to provide this functionality.

In this scenario, when there are updates for the mobile
proxy, the edge server proxy constructs and sends a single
1We assume that there is no valid data connection, but the
device’s cell phone is still on

SMS message that is divided into two parts. The first part
consists of control information for the mobile proxy, includ-
ing the number of updates and the size of the download.
The second part is an update summary, which is intended
for the user. This summary includes a list of the pages that
have changed, and if particular values were being monitored,
the changes that occurred2.

The mobile proxy intercepts any incoming SMS messages
from the edge proxy. It strips off the control portion of the
message and passes the remaining user portion back to the
SMS handler for delivery to the user. As a result, both the
user and the mobile proxy have information describing the
updates. The mobile proxy uses this information towards
making an intelligent decision on the appropriate connection
to use for acquiring the updates. As a positive side effect,
the SMS notification may enable the user to avoid using the
browser altogether. For example, if the user is interested in
a stock quote, then the SMS message containing the new
value may convey all the information required. A similar
SMS notification feature is provided by some vendors for
certain proprietary data. However our system allows the
user to use this functionality on virtually any data on the
Internet.

2.4 Infrastructure Enhancements for Commu-
nication and Energy Savings

The edge proxy keeps track of each client’s interest in
portions of HTML pages, expressed through the interface
described in Section 2.1, as a client profile. The edge proxy
polls the respective web servers for changes to the web pages
in each client’s profile. In order to account for the effects
of java script in the HTML file, the edge proxy renders
each page locally and uses the rendered source for com-
parison. If the pages have been modified, the proxy deter-
mines whether these changes are meaningful for the respec-
tive client. Specifically, the edge proxy determines whether
the differences between the old and new versions of a page
are indeed located within portions of the page of interest to
the client. Furthermore, the edge proxy determines whether
changes to numerical values that have a client-specified change
threshold, exceed the recorded threshold. If a meaningful
change occurs, the edge proxy accumulates the new version
of the page as an update to be sent to the respective mobile
client. As before, the edge proxy aggregates all updates to
be sent to each client as a single update batch. Since each
update overwrites the whole page, the number of updates
in the update batch never exceeds the number of pages that
the user has registered interest in.

3. EXPERIMENTAL METHODOLOGY
For our evaluation, we use a desktop PC running Redhat 9

as our edge proxy. This system contains dual Athlon 2600+
processors, 512 MB RAM, and a 100 Mbit/s Ethernet net-
work connection. In addition, we equip this system with a
second network interface card that interfaces the edge server
proxy to a wireless access point.

The mobile device we use in the experiments is a HP iPAQ
6325. It runs the Windows Mobile 2003 operating system
and comes equipped with a 168 MHz processor, 64 MB of
ROM, and 64 MB of RAM. This device has built in 802.11b
and GSM/GPRS interfaces as well.

2The size of the user section is restricted by the maximum
total size of the message (160 characters for Rogers Wireless)

In order to facilitate repeatable experiments, we took 3
hour traces from 4 real web sites and we compare all our
configurations by replaying these traces in real time (i.e.,
each experiment is a 3 hour experiment). These traces are
served by an Apache web server running on the same desktop
machine as the edge proxy.

3.1 Real World Traces
For the traces, we used four popular sites; EBay.ca [2](we

choose an auction that would be ending near the end of the
trace period), the CNN Weather page for Toronto [3], the
currency site XE.com [4], and the Yahoo! Finance page [5].

To gather the traces, we created a Firefox browser exten-
sion that repeatedly visited each of the sites in the trace
and saved each downloaded web page to disk. Each itera-
tion was roughly 20 seconds after the previous one, resulting
in approximately 733 copies of each site in the trace.

The content of the traced pages proved to be very dy-
namic. Changes in content were either due to the volatile
nature of the information being presented (stock quotes or
currency values), or due to the inclusion of random adver-
tisements. The EBay auction is a good example of frequent
minor changes to the page, while the main bid-related in-
formation itself changes relatively infrequently. The auction
that was chosen had 18 bids at the start of the trace. By
the end of the trace, 24 bids had been placed. However, by
analyzing the trace files, we were able to determine that the
auction page had changed 377 times. This is due to the fact
that the page contains a value showing how much time is left
in the auction. This value was reported at the granularity
of seconds during the last hour of the auction, and minutes
prior to that.

The other sites in the trace were even more volatile, chang-
ing upon every access. The Yahoo financial site contains a
large amount of rapidly changing information, including the
Dow, Nasdaq and NYSE, as well as several currency values.
In addition, the site has several random advertisements. All
these factors combine to cause the constant change. We
monitored the value of the 10 year bond. This value changed
211 times over the 3 hour trace.

Similarly, the volatile nature of the currency values re-
ported on XE.com resulted in a change to this page every
time as well. We monitored the value of the Euro, which
over the course of the 3 hour trace changed 365 times. This
high rate of change is mainly due to the fact that XE.com
reports the value to the nearest $0.00001.

The large number of random ads, along with a time of
day value, on the CNN weather page were the main culprits
for the numerous changes recorded for this page. This site
changed on every access as well, while the actual tempera-
ture value reported changed only 3 times over the course of
the trace.

3.2 Proxy-based and Standalone Configura-
tions Used for Comparison

In the following section, we describe in detail the various
proxy-based and standalone configurations we use for com-
parison with our main approach. By gradually introducing
some of the features of our main proxy approach, we are
able to demonstrate what aspects contribute to the overall
wireless communication savings.

3.2.1 Baseline Configuration without Proxy
In our baseline configuration, the browser running on the

mobile device polls all web sites periodically for the pages
opened by the client for any change in the content. No prox-
ies are used in this configuration. However, the browser’s
cache is fully functional.

3.2.2 Simple Proxy
In this configuration, we run the two proxies, the mobile

device proxy and the edge proxy, and we use the edge proxy
to poll for any changes to the data occurring at each separate
data source. The proxy schedules an update to be sent to
the client when there is any change to a web page. The
edge proxy aggregates all updates to be sent to the user as
described in our main algorithm. The mobile proxy pulls
updates both upon a cache miss and periodically with the
same interval as that of polling in the baseline configuration.

3.2.3 Intelligent Proxy
The intelligent proxy configuration is our proxy-based ap-

proach which filters out any updates to the mobile device if
the parts of the page that the client is interested in have not
changed. The client specifies interest by highlighting page
regions through the interface described in section 2.1.

3.2.4 Thresholds Proxy
The thresholds proxy is an enhanced intelligent proxy

where the client specifies her regions of interest within a web
page, but can also specify a threshold of significant change
for each numerical value. All updates for numerical value
changes that are below the significant change threshold are
filtered out by the edge proxy.

We use both a polling based and push-based thresholds
proxy in our experiments. One drawback of our experimen-
tal setup is that our edge server is operating outside the
Rogers GPRS network. As a result, our edge server is un-
able to create a connection to the device over GPRS as all
incoming communication from an external source is blocked
by the Rogers firewall. In order to facilitate push-based ex-
periments over GPRS, our mobile proxy creates a persistent
TCP connection with the edge server. Updates are then
pushed to the mobile device over this connection.

3.3 Parameters used in Each Configuration
We use Internet Explorer (IE) as our web browser on the

mobile device. However, we use a simple wrapper around it
to mimic the user and drive the experiments. All communi-
cation uses HTTP/1.1. In our baseline configuration, IE is
running alone on the mobile device. The web browser con-
tains a cache of its own, and as a result, after the first round
of communication, the majority of the requests consist of if-
modified-since requests from the browser for validating the
cached items.

The browser is set up to visit the four sites in the trace,
once every 4 minutes. This means that over the 3 hour
experiment, each of the 4 websites in the trace is loaded
45 times. The period with which the pages are loaded is
irrelevant, except for allowing the experiment to complete
in a reasonable amount of time and to allow for full download
of the respective pages over WiFi or GPRS.

In our experiments, we select the data of interest as fol-
lows: the current bid for the E-Bay auction, the current
temperature for the weather site, the value of the 10 year

bond for the financial site, and the current value of the Euro
in US dollars for the currency site.

As reported in section 3.1, the values of the Euro and
the 10 year bond are very volatile. This is mainly due to
the resolution with which these sites present the values, the
nearest $0.00001 and 0.001%, respectively. For our thresh-
old proxy configuration, we set conservative thresholds for
each of these values in an attempt to observe the impact of
threshold filtering on the results. We set the thresholds to a
$0.001 change for the Euro and a 0.005% change for the 10
year bond. We believe these settings give us a conservative
estimate in our evaluation for the potential communication
savings in most real scenarios.

3.4 Experimental Setup for Power Measure-
ments

The simplest and most commonly used method for auto-
mated measurement of power dissipation in a mobile device
uses a precision ammeter. In this traditional method, the
device is powered by a low-noise constant voltage source.
The precision ammeter, equipped with a serial communi-
cation interface, is placed in series with the device’s power
delivery path. Energy is computed as a function of the mea-
sured current and supply voltage. This approach can result
in very high accuracy, low bandwidth current measurements,
but it is not practical for today’s low-voltage devices which
typically operate from a single Lithium-Ion cell. During
startup, the high in-rush current, Iin causes the device’s
voltage supply, Vin to drop due to the relatively large inter-
nal ammeter sensing resistance (5 Ω) and its parasitic induc-
tance. In many cases, this drop causes the internal power
management protection circuit included in newer devices to
suspend startup. Hence, the traditional power measurement
technique becomes infeasible, as we experienced first-hand
with our transition from an older device to a more modern
version.

Instead, we use an improved, non-intrusive power mea-
surement technique, suitable for modern low-voltage devices,
which uses a high-bandwidth current-sensor probe clamped
around the power supply wire. The current probe is used to
measure the battery current based on the magnetic hall-
effect. The PDA battery is used instead of the voltage
source, since the power management circuitry disables the
PDA if the additional battery wires are left unconnected.
These wires may be used either for digital communication
in advanced “Smart Battery Packs”, or simple local ana-
log sensing functions. We connect the current probe to a
two-channel oscilloscope through a calibrated amplifier. The
battery voltage, Vin is also sampled by the oscilloscope us-
ing a voltage probe. The sampled current and voltage data
is transferred to a PC using a serial interface. The total
energy consumed during N samples of the oscilloscope data
is calculated using formula (1), where fs is the oscilloscope
sampling frequency.

Etot =
1

fs

N
X

i=1

Vin[i] · Iin[i] (1)

We are currently using a Tektronics TCP312 current probe,
a Tektronics TCPA300 amplifier and a Tektronics TDS3032
oscilloscope to record the measurements.

4. EXPERIMENTAL RESULTS
We begin this section by showing preliminary energy mea-

surements for our device in a variety of communication sce-
narios using GPRS and WiFi. Then, we present wireless
communication and energy measurements performed while
running our 3 hour traces in a scenario illustrating peri-
odic content refresh. We compare several proxy-based ap-
proaches including push and poll-based approaches and the
baseline proxyless approach in the two communication sce-
narios: using WiFi or GPRS alone for all wireless commu-
nication. We also investigate the use of SMS messages to
signal the device that updates have occured during periods
of disconnection. By including important information in the
message, such as the number and size of pending updates, we
allow the mobile proxy to adaptively use WiFi and GPRS.

4.1 Preliminary Energy Measurements
In this section, we characterize the energy consumption

of our mobile device hardware. Specifically, we measure the
current being drawn by the device as it utilizes each hard-
ware component. In each case, all other non-essential hard-
ware on the device is disabled. For example, when testing
the 802.11 connection, we disable the GSM radio and the
backlight of the device. We also characterize the cost of
downloading data of various sizes over each of the wireless
connections.

Figure 3(a) shows the current drawn by the device’s pro-
cessor. The processor transitions from an idle state to an
active state, where it continuously processes data for 40 sec-
onds before returning to the idle state. We can see from this
screen shot that even while idle, the processor frequently be-
comes active for short periods of time, probably to handle
interrupts and timers. During its active phase, the processor
draws an additional 65 mA of current on top of its baseline
65 mA.

Figure 3(b) shows the current being drawn by the device
as it receives an incoming SMS message. The current spikes
a couple of times over a 4 second period, with an average
increase of 45 mA. We can see from this plot that receiving
a SMS messsage is relatively low cost in terms of energy
consumption.

Figure 3(c) shows the current drawn by the device as the
cellular radio transitions through a number of states. In the
beginning, the radio is off, hence the phone connection is
disabled. At about the 25 second mark of the experiment,
the radio is turned on, resulting in a visible fluctuation in
the current drawn by the device as the hardware is powered
up and the drivers are loaded. This corresponds to a steady
state with an additional current of 20 mA being drawn. At
the 50 second mark, we dial the GPRS connection and a data
connection is established. There are more fluctuations as
hand shaking occurs to establish the connection, before the
device settles back to the same level of power consumption
as when there was no connection. This experiment shows
that little or no energy can be saved by having the cellular
radio turned off. Likewise, disabling the GPRS connection
results in no energy savings, while there are penalties for
connection establishment.

Figure 3(d) illustrates the current being drawn by the
device while a 160 KB file is downloaded over the GPRS
connection. The current varies considerably over the course
of the download, as packets are being sent and received,
and as the processor becomes active to process the packets.

(a) Processor state (b) Receiving a SMS message

(c) GSM radio state (d) Downloading a 160 KB file over GPRS

(e) 802.11 radio state (f) Downloading a 10 MB file over 802.11

Figure 3: Impact of the device state on the current drawn by the device Scale: 50 mA/div, 10s/div

On average, over the course of the download, the current
increases by 100 mA (an 125% increase over the idle state
consumption).

Figure 3(e) plots the current being drawn by the device
when the 802.11 radio is switched on and becomes associ-
ated with an access point. This causes the current to spike
to over 400 mA. After associating with the access point,
the network card periodically communicates with the access
point to check for incoming data. These periodic checks only
require an additional 10 mA on average. The current spikes
again just after the 70 second mark as the network card is
disabled. This plot illustrates that even though the 802.11
radio is power hungry, aggressively switching it on and off
may consume more power in the long run.

Figure 3(f) represents the current being drawn by the de-
vice as a 10 MB file is downloaded over the 802.11 wireless
connection. During the download, the average current being
drawn by the device reaches 375 mA, an increase of over 300
mA (nearly a 450% increase) compared to the idle state.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 10 20 30 40 50 60

Download Size (KB)

E
ne

rg
y

(J
)

GPRS WiFi

Figure 4: Energy cost of downloading data of various
sizes over WiFi and GPRS.

In order to determine the message size for which the en-
ergy cost of downloading over GPRS is greater than that
of WiFi, we downloaded several file sizes over both connec-
tions. In this experiment the device already has an active
GPRS connection, since, as shown in Figure 3(c), toggling
this connection has little to no energy savings. However we
leave the WiFi connection disabled until it is needed. So
the cost of downloading over the GPRS connection is just
the cost of receiving the file, whereas the cost of download-
ing it over the WiFi connection also includes the penalty of
activating that interface. Figure 4 shows the energy expen-
diture as a function of file size for WiFi and GPRS. We can
see that the cross over point is roughly 30 KB. This experi-
ment tells us that any communication under 30 KB should
use the GPRS connection, while for communication over this
threshold, the WiFi connection is more energy-efficient.

4.2 Wireless Communication
In order to compare the proxy-based and proxyless con-

figurations in terms of data communication, we ran all con-
figurations introduced in section 3.2, i.e., without a proxy,
simple proxy (polling), intelligent proxy (polling), and both
a polling and push-based thresholds proxy, on the 3 hour

traces described in section 3.1. In each configuration, the
mobile client browser requests the URLs encountered in the
trace over the 802.11 connection, while the Apache web
server returns each saved page from the trace corresponding
to the URL. We do not show the results of the experiment
for both GPRS and 802.11 because the results are virtually
identical. We are measuring the amount of data transferred
at the application level, so any minor differences between the
control messages transmitted by these two wireless technolo-
gies are negligable.

Each of the proxy configurations was set to either poll for
updates, or receive pushed updates, periodically with a 4
minute interval. The frequency with which the edge server
polls each of the data sources was set to 2 minutes.

37.5 36.5

242.4

40.239.1

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Without Proxy Simple Proxy Intelligent
Proxy

Threshold
Proxy (Poll)

Threshold
Proxy (Push)

D
at

a
(K

B
)

Figure 5: Transmitted Data for the 45 accesses of 4
real web sites

9238.0 8999.4

3211.8

886.9 886.0

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

Without Proxy Simple Proxy Intelligent
Proxy

Threshold
Proxy (Poll)

Threshold
Proxy (Push)

D
at

a
(K

B
)

Figure 6: Received Data for the 45 accesses of 4 real
web sites

During each three hour experiment, the data is viewed a
total of 45 times. The resulting total amount of wireless
communication for each configuration is presented in Fig-
ures 5 and 6. Table 1 shows the total data transmitted and

Transmitted Received Updates Cache Hits Misses
(KB) (KB)

Without Proxy 242.4 9238.0 0 0 657
Simple Proxy 39.1 8999.4 220 521 109
Intelligent Proxy 40.2 3211.8 72 512 120
Thresholds Proxy (Poll) 37.5 886.9 11 536 105
Thresholds Proxy (Push) 36.5 886.0 11 536 105

Table 1: Experimental results for each configuration. Cache hits/misses are only for mobile proxy and not
the web browser’s cache. Updates are the number of page changes that occurred, several updates may be
sent in one batched transfer.

received in conjunction with the total number of updates
and cache hit statistics of the mobile proxy cache.

Figure 5 illustrates the amount of wireless data that was
transmitted from the PDA over the 45 accesses. We can
clearly see that the amount of data that the PDA is re-
quired to send is greatly reduced in all proxy configurations
compared to the proxyless configuration. The reason is that,
for the proxyless configuration, each time the client wants
to view the data, each of the HTTP requests must be sent
in their entirety over the wireless link. In contrast, in any
poll-based proxy configuration, the mobile proxy needs to
send, at most, two 28 byte packets to the edge server proxy:
an update inquiry packet and an update acknowledgement
packet (only if an update has occurred). This is because, af-
ter the first round of communication, the edge server proxy
knows exactly what the client is interested in, and as a re-
sult the client no longer needs to send the entire request.
In the push-based proxy configuration, the mobile device
saves an additional 28 byte packet per request, since no up-
date inquiry message needs to be sent by the mobile de-
vice. This contributes to the small reduction of 2.7% for the
data transmitted in the push-based approach compared to
its poll-based counterpart.

In contrast to the data transmission graph, Figure 6 illus-
trates the significant differences between the various proxy
configurations in terms of data received over the wireless
link during the 45 accesses of our trace. We can see that the
simple proxy saves only 2.6% of the data over the proxyless
configuration. This is because, as discussed in section 3.1,
each of the sites in the trace changes rather frequently. In
particular, the content on all sites changes at least once dur-
ing each 4 minute polling interval of the experiment. As a
result, the simple proxy method downloads nearly the entire
batch of data each period.

The intelligent proxy reduces much of the wireless data
received by reducing the number of updates the edge server
proxy sends to the mobile client. As we can see from Table 1,
by only sending updates when parts of the page of interest
to the user change, we reduce the total number of updates
by a factor of 3. This translates into a 65.2% reduction in
the amount of data received when compared to the baseline
proxyless approach.

Finally, the thresholds proxy reduces the amount of data
received over the wireless link even further. By setting
reasonable thresholds for numerical changes that warrant
sending an update to the client, we reduce the number of
updates by a factor of 20 when compared to that of the
simple proxy. For example, by setting a threshold for the
change, we prevent the edge server proxy from sending sev-
eral dozen updates while the value of the Euro fluctuates

between $1.22736 and $1.22740. This drastic reduction in
the number of updates sent results in an order of magni-
tude savings in the amount of data received over the wireless
link. Again the push based approach offers marginal savings
in comparison to its poll-based counterpart. In particular,
the push-based proxy registers a negligible 0.1% savings as
a result of not having to receive the 28 byte ”No Updates
Available” packet that the polling approach incurs in the
situations where no content change has occurred.

4.3 Energy Consumption
Figure 7 presents the average energy consumed by the de-

vice per download period (i.e., loading each of the 4 web sites
in the browser) for the 3 hour experiments presented in the
previous section, in six configurations: the baseline proxy-
less configuration using the 802.11 connection and using the
GPRS connection, our poll-based thresholds proxy configu-
ration using the 802.11 connection and using the GPRS con-
nection, and our push-based thresholds proxy configuration
using the 802.11 connection and using the GPRS connection.

58.3

31.4
27.929.2 29.0

132.8

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

GPRS WiFi

E
ne

rg
y

(J
)

Proxyless
Poll Proxy
Push Proxy

Figure 7: Average energy expenditure per download
period

We can see that all configurations of the thresholds proxy
are superior in energy conservation compared to their prox-
yless counterparts. Our proxy system reduces energy costs
by factors of 2.1 and 4.5 when used over the 802.11 and
GPRS connection, respectively.

4.3.1 Energy Consumption in Push versus Poll Proxy
As illustrated in Figure 7, the differences in energy con-

sumption between the push-based and poll-based proxies are
small for both WiFi and GPRS. The push-based proxy us-
ing the GPRS connection conserves 7% energy per down-
load period compared to the poll-based proxy. Maintaining
a persistent connection with the edge server in the push-
based configuration is more energy-efficient than requiring
the device to create a connection, request an update, and
tear down the connection during each period in this case.
The push based proxy using the WiFi connection on the
other hand, uses 4% more energy per download period than
it’s polling based counterpart. Constantly listening for in-
coming communication over the WiFi connection requires
more energy than periodically sending update request pack-
ets. This push based proxy could potentially save more than
the polling approach, if the device used a small listening
window for receiving updates. However, the need to syn-
chronize the clocks of both proxies over the WWAN makes
this approach unattractive.

4.3.2 Energy Consumption for Off-line Updates Us-
ing the Hybrid Approach

In this section, we analyze the energy consumption of the
SMS based proxy system described in Section 2.3. The
mobile proxy requests an update only when it receives an
SMS message specifically informing it that there are updates
available. The proxy uses the control information contained
in this SMS message to determine the best interface to use
for downloading the update. The proxy uses GPRS to down-
load any updates under 30 KB and WiFi for updates over
this threshold. This value was based on the results shown
in Figure 4.

The average energy consumption of this proxy is illus-
trated in Figure 8 along with the best results for the GPRS
and WiFi only proxies. The hybrid SMS proxy saves an ad-
ditional 14% energy over the push based GPRS proxy and
10% over the polling WiFi proxy. The savings are a result of
not having to send periodic update requests, or conversely,
listening over the wireless channel for incoming updates, and
from using the most efficient download method for acquiring
the updates when they are available.

4.3.3 Energy Consumption for New Page Accesses
To determine the energy consumption for the case of vis-

iting new pages i.e., cold cache miss, we ran an experiment
where we viewed one of the pages in our trace with an empty
browser cache and an empty proxy cache. The page used in
this experiment contained 51 embedded files, consisting of
dozens of small images, a couple of style sheets, and several
javascript files. The HTML page and all of its embedded
files were 185 KB. We used a proxyless setup as baseline for
comparison.

The total energy required to view the selected page in
each configuration is illustrated in Figure 9. Compared to
the proxyless approach, the energy expenditure is reduced
by 69% when using the GPRS connection in conjunction
with our proxy system, and by 15% when using the WiFi
connection. These savings are a result of the prefetching
and batching that the edge proxy performs for all embedded
objects in the HTML page.

Figures 10 and 11 illustrate the energy savings for each
communication method during the download period. Since

29.2

27.9

25.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

GPRS Push WiFi Poll Hybrid SMS

E
ne

rg
y

(J
)

Figure 8: Average energy expenditure per per
download period

118.5

15.0

36.9

12.8

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

GPRS WiFi

E
n

er
g

y
(J

)

Proxyless
Proxy

Figure 9: Total energy costs of downloading a cold
page

the WiFi connection is high bandwidth and low latency, the
potential savings from prefetching and batching are min-
imal. However, we save 15% of the consumed energy by
limiting the number of times the power hungry WiFi card
needs to be used, as illustrated in Figure 10. Even though
it takes our proxy system several seconds longer to load the
page, after one round of communication, our mobile proxy is
able to serve the remainder of the browser’s requests locally.
This results in energy savings overall. In contrast, the prox-
yless approach makes 52 individual requests over the WiFi
connection.

The prefetching and batching behavior of the proxy sys-
tem is much more beneficial when browsing over GPRS. As
illustrated in Figure 11, the energy savings come from being
able to load the page in nearly a third of the time when
using the proxy. By downloading the web page and all its
embedded files in one transfer, we are bypassing the large
round trip time of the GPRS connection.

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30

Time (S)

C
u

rr
en

t
(A

)

Proxyless Proxy

Figure 10: Downloading a new page over WiFi

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160 180

Time (S)

C
u

rr
en

t
(A

)

Proxyless Proxy

Figure 11: Downloading a new page over GPRS

5. DISCUSSION
Our results have shown that our proxy-based approach

achieves considerable savings in terms of both data commu-
nicated over the wireless link and battery consumption on
the mobile device for both 802.11 and GPRS connections.
In the GPRS scenario, the proxy is able to bypass much of
the latency associated with the slow cellular link. On the
other hand, the same proxy mechanism, when used over an
802.11 connection reduces the amount of time that the high
energy network interface must be in use.

The push-based approaches have negligible data trans-
fer savings, as well as negligible energy savings, compared
to their poll-based counterparts. Moreover, we argue that
push-based approaches using WiFi are challenging to im-
plement in practice. First, a push-based approach assumes
always-on semantics for clients, which is currently supported
on cellular phones and Blackberries [7], but not over WiFi.
In practice, due to power considerations, push-based com-
munication is implemented by following a very tightly syn-
chronized schedule for client and server. Otherwise, the
client wastes power while waiting in idle mode for the server

to contact it. For a push-based notification system to sup-
port WiFi devices, having an agreed upon communication
schedule is not enough. The system has to also include a
facility to buffer messages, as a mobile WiFi device may
go offline at any time, as the user moves between hotspots.
Second and more importantly, a push-based approach re-
quires mobile IP [8] support; the server has to have a way
of contacting the client, while the mobile client’s IP address
is potentially changing as it connects from different access
points.

The SMS based proxy is the most promising configuration.
Most carriers offer free incoming SMS messages. Further-
more, receiving an SMS message has minimal energy con-
sumption (as shown in Figure 3(b)). As we have shown, this
method conserves the most energy overall. Furthermore, it
has the added benefit of being able to deliver content change
notifications to the user, even if the user is in a disconnected
state.

Finally, there is an obvious trade-off between the data
freshness and the cost of maintaining it. Frequently pulling
updates from the edge proxy implies high battery consump-
tion on the mobile device. In our approach, the appropri-
ate compromise is left up to the user. Our approach maxi-
mizes the battery savings for a particular data freshness time
threshold set by the user. While we do not currently offer
anything beyond the basic browser-based interface described
in section 2.1, we can envision an adaptive approach where
the update pull interval may be decreased or increased by
the user at the press of a button. For instance, if the user
anticipates an imminent period of disconnection, they may
temporarily increase the update interval for their content.

6. RELATED WORK
Several other works, most notably WebExpress [9] and

PAWP [10], have investigated using proxies to reduce energy
consumption and/or perceived latency when browsing the
web on a mobile device.

WebExpress uses two intercepts (proxies), one located on
the mobile client and one on the server side. These two
proxies use many of the same, or similar, techniques we use
to reduce the costs of browsing the web; caching, protocol
reduction (using one wireless connection for requests as op-
posed to creating multiple), and HTTP header reduction.
WebExpress does not prefetch and batch embedded objects
when new requests are received, and cache updates must be
made on an individual item by item basis. Most importantly
WebExpress is not as user centric as our system, it does not
keep client profiles, and does not update the cache based
on the client’s interests. As we have shown in Section 4.2,
our user centric approach has a dramatic reduction on the
amount of wireless communication that occurs.

The authors of PAWP [10] use a single proxy near the
wireless access point to buffer WWAN web traffic to/from
the device so that they can schedule the data to be delivered
to the mobile client in alternating bursts of high and no
activity. This allows the WiFi card on the device to have
a more aggressive sleep pattern, which in turn conserves
energy. Unlike our solution, the client is still required to
make each individual request and download each individual
file. The PAWP proxy does not cache any data, it only
gathers it on request. Also, by not filtering out redundant
data, the PAWP proxy results in a much larger amount of
wireless communication than our proxy solution.

The authors of [11] provide a comparative performance
study of various techniques, at the application, session, trans-
port and link layers, to improve web browsing latencies over
GPRS. They examine both proxy based and proxy free so-
lutions and conclude that proxy based approaches offer the
greatest improvements. This is mainly due to the proxy’s
ability to use techniques such as extended caching, delta
encoding, prefetching and batching.

Sinclair et al. [1] provide a method for conserving power
by separating the data and control signals and using a wake
event on the control line to wake up the device upon an
incoming connection. This mechanism requires specialized
hardware. In contrast, in our situation we use commod-
ity devices with no modifications and exploit client profile
information in order to help conserve power.

Our work builds on the concepts of user profiles and data
recharging [12, 13] that have been recently proposed to en-
able disconnected operation of mobile clients. However,
existing research in this area focuses on user profile lan-
guage specifications [12, 13] and on algorithms to be run
by the service provider to optimize the creation and mainte-
nance of super-profiles that combine the preferences of many
users [13]. Similarly, most underlying algorithms in pub-
lish/subscribe distributed systems [14] investigate efficient
filtering when scaling a system of publishers and distributed
brokers to supporting millions of subscriptions and of filter-
ing hundreds of new events per second. Such systems are
typically using evaluations based on simulation to investi-
gate scaling with the number of clients.

While our work shares similarities with these systems, we
adopt a user-centric approach and evaluation methodology.
We avoid introducing new languages or complex interfaces
that may prevent wide acceptance. Instead, we concentrate
on providing the maximum benefits to the user in terms of
cost, battery life and convenience through a profile-driven
infrastructure with seamless integration into already famil-
iar applications and environments.

Push-based solutions for specialized types of information
such as Bell’s e-mail notifications [15], Research in Motion’s
Blackberry [7], location-based services for taxi availability [16]
or food/entertainment advertisements [17] already exist or
are being proposed. However, most types of information
that are being currently pushed are simple text messages
such as e-mail notifications, instead of the content the user
is actively browsing.

A scheme for cutting down on network traffic by pushing
content to the users is also presented by Baker et al. [18].
The main difference in their approach, however, is that the
content itself is not pushed transparently to the user, only
a message containing the URL of the new content is. It is
up to the user to determine whether or not to fetch that
content.

A variant of a push-based scheme for data refresh similar
to our own appears in related work on broadcast disks [19,
20]. Broadcast disks are indexing algorithms for data that
is being broadcasted over a wireless channel. Mobile nodes
tune in to listen to the index being broadcasted. The index,
which is assumed to be much smaller than the full data
broadcast, identifies the time when a given data item will
be transmitted. A node then knows when to wake up to
catch the transmission of an item of interest. While these
systems have similar goals to our own, they do not target
data refresh for dynamic content browsing. Furthermore, in

their case, the server maintains no knowledge of the content
the user already has.

RSS [21, 22] is a system with which web servers can ”push”
content directly to the users over the internet. This system
involves the user subscribing to that particular web server’s
content and then each change appears on the user’s desktop.
However, the underlying principle of this system is that the
client regularly polls the site automatically. This gives the
illusion of a push based system, but underneath the system
is an automated web polling service.

Our centralization of update processing on the proxy is
similar in spirit to the cyber-foraging approach [23] of of-
floading computation and storage from mobile devices to
available resource-rich nodes on the Internet in order to save
power and money.

Many schemes have investigated communication savings
for web content serving such as through server directed transcod-
ing [24], and optimistic deltas [25]. Our scheme is orthog-
onal to these techniques and could be used in conjunction
with them for further data savings. Our approach deter-
mines when to push modifications, while the optimistic delta
approach and the transcoding approaches focus on sending
smaller updates (e.g., optimistic deltas sends just the mod-
ified portions of the page instead of the whole page).

7. CONCLUSIONS
We introduce a novel approach to transparent, automatic

data refresh for mobile devices. Our approach is centered
around a general purpose mechanism for letting the user
specify her interest in changes to specific parts of pages. We
avoid introducing new languages or complex interfaces that
may prevent wide acceptance. Instead, the user loads her
favorite pages on her mobile device browser and highlights
areas of interest in those pages using the regular browser’s
cursor. We offload the detection of updates to content that
matches the user’s interest, onto a fully-connected edge proxy.
Subsequently, either while the client is actively browsing or
while attending to everyday activities of travel, shopping,
work and play, the mobile device performs automatic data
refresh transparently to the user.

Our approach is fully implemented using both WiFi and
GPRS communication on an actual mobile device and eval-
uated on real world data traces. Our results show that our
general purpose proxy system saves data transfers to and
from the mobile device by an order of magnitude and bat-
tery consumption by up to a factor of 4.5. These savings are
due to the fact that, typically, there are frequent changes to
parts of dynamic content web pages that the user is not in-
terested in, such as the time of day or an ad banner. In
addition, many changes in the n-th decimal of numerical
values can be typically ignored. We have shown that, a
push-based approach provides minimal gains over a poll-
based approach. Additionally, we have shown that by using
the existing SMS infrastructure to deliver notifications on
dynamic content changes, we can offer an energy efficient
and user friendly way to keep the clients up to date with
their content of interest.

8. REFERENCES
[1] E. Shih, P. Bahl, , and M. Sinclair, “Wake on wireless:

An event driven energy saving strategy for battery
operated devices,” in ACM/IEEE International

Conference on Mobile Computing and Networking
(Mobicom), 2002.

[2] “Ebay.ca,” http://www.ebay.ca/.

[3] “Cnn.com weather, toronto, on,”
http://weather.cnn.com/weather/forecast.jsp?locCode=YYZ.

[4] “Xe.com,” http://www.xe.com/.

[5] “Yahoo! finance,” http://finance.yahoo.com/.

[6] Thomas A. Phelps and Robert Wilensky, “Robust
intra-document locations,” in Proceedings of the 9th
international World Wide Web conference on
Computer networks, Amsterdam, The Netherlands,
The Netherlands, 2000, pp. 105–118, North-Holland
Publishing Co.

[7] Research in Motion, “Blackberry,”
http://www.blackberry.com.

[8] C Perkins, “IP Mobility Support,” RFC 2002, Oct.
1996, ftp://ftp.isi.edu/in-notes/rfc2002.txt.

[9] Barron C. Housel and David B. Lindquist,
“Webexpress: a system for optimizing web browsing in
a wireless environment,” in MobiCom ’96: Proceedings
of the 2nd annual international conference on Mobile
computing and networking, 1996, pp. 108–116.

[10] Marcel C. Rosu, C. Michael Olsen, Chandrasekhar
Narayanaswami, and Lu Luo, “Pawp: A power aware
web proxy for wireless lan clients.,” in 6th IEEE
Workshop on Mobile Computing Systems and
Applications (WMCSA), 2004.

[11] Rajiv Chakravorty, Suman Banerjee, Pablo Rodriguez,
Julian Chesterfield, and Ian Pratt, “Performance
optimizations for wireless wide-area networks:
comparative study and experimental evaluation,” in
MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and
networking, New York, NY, USA, 2004, pp. 159–173,
ACM Press.

[12] R. Agrawal and E. L. Wimmers, “A framework for
expressing and combining preferences,” in Proceedings
of the 2000 ACM SIGMOD International Conference
on Management of Data, August 2000.

[13] Mitch Cherniack, Eduardo F. Galvez, Michael J.
Franklin, and Stan Zdonik, “Profile-driven cache
management,” in International Conference on Data

Engineering (ICDE), 2003.

[14] Francoise Fabret, H.Arno Jacobsen, Francois Llirbat,
Joao Pereira, Kenneth Ross, and Dennis Shasha,
“Filtering algorithms and implementation for very fast
publish/subscribe systems,” in Proceedings of the 2001
ACM SIGMOD International Conference on
Management of Data, 2001, pp. 115–126.

[15] Bell Canada, “Blackberry 7750 wireless handheld,”
http://www.bell.ca/shop/en CA BC/
Sme.Sol.Wireless.Solutions.BlackBerry.page.

[16] Zingo Taxi, “Location based services,”
http://www.springwise.com/newbusinessideas/
2003/09/zingo taxi.html.

[17] I. Burcea and H.A. Jacobsen, “L-topss - push-oriented
location-based services,” in 4th VLDB Workshop on
Technologies for E-Services (TES’03), 2003.

[18] Shaun Baker, “Active internet services: Pushing
content to the people,” in whitepaper for SIP
development group of Siemens Switzerland, 2000.

[19] Swarup Acharya, Rafael Alonso, Michael Franklin,
and Stanley Zdonik, “Broadcast disks: data
management for asymmetric communication
environments,” 1995, pp. 199–210.

[20] A.J. Xu, W. Lee, and X. Tang, “Exponential index: A
parameterized distributed indexing scheme for data on
air,” 2004.

[21] “Xml.com: Rss description,”
http://www.xml.com/pub/a/2002/12/18/dive-into-
xml.html.

[22] Mel Blackman, “Pushing web content with really
simple syndication,” e-Pro Magazine, 2001.

[23] R. Balan, J. Flinn, M. Satyanarayanan, S. Sin, and
H. Yang, “The case for cyber foraging,” 2002.

[24] Bjorn Knutsson, Honghui Lu, Jeffrey Mogul, and
Bryan Hopkins, “Architecture and performance of
server-directed transcoding,” ACM Transactions on
Internet Technology, vol. 3, no. 4, pp. 392 – 424,
November 2003.

[25] Gaurav Banga, Fred Douglis, and Michael Rabinovich,
“Optimistic Deltas for WWW Latency Reduction,” in
Proceedings of the 1997 USENIX Technical
Conference, 1997.

