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Abstract

We propose OX, a runtime system that uses
application-level availability constraints and
application topologies discovered on the fly to
enhance resilience to infrastructure anomalies
for cloud applications. OX allows application
owners to specify groups of highly available vir-
tual machines, following component roles and
replication semantics. To discover application
topologies, OX monitors network traffic among
virtual machines, transparently. Based on this
information, OX builds on-line topology graphs
for applications and incrementally partitions
these graphs across the infrastructure to en-
force availability constraints and optimize com-
munication between virtual machines. We eval-
uate OX in a realistic cloud setting using a mix
of Hadoop and YCSB/Cassandra workloads.
We show how OX increases application robust-
ness, by protecting applications from network
interference effects and rack-level failures.

1 Introduction

Large-scale virtualized data centers host-
ing many concurrent applications form the
foundation for cloud computing.  Current
Infrastructure-as-a-Service (IaaS) clouds, such
as Amazon EC2 [1], rely on data centers
holding tens to hundreds of thousands of
servers [19].  Servers are virtualized using
Xen [2] or VMware [3], and are shared by mul-
tiple virtual machines (VMs); VMs host com-
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ponents of distributed applications deployed by
cloud tenants.

As data centers grow in size and complexity,
hosted applications become increasingly vul-
nerable to dynamically occurring cloud infras-
tructure anomalies. Anomalies within large
data centers can be diverse, ranging from hard-
ware component failures to hardware bottle-
necks; these anomalies are hard to predict and
diagnose and can impact application uptime,
functionality and/or performance severely.

In particular, the network communication
fabric in large-scale data centers is notoriously
hard to scale and manage [19]. Current data
center networks are built hierarchically, in a
multi-tier architecture, with servers organized
into racks, and each server connected to a rack-
level switch. The servers in the same rack can
typically communicate at the full rate of their
interfaces, e.g., 1 Gbps; intra-rack CPU, mem-
ory and disk resources are also normally plenti-
ful. On the other hand, inter-rack links are usu-
ally oversubscribed, creating potential perfor-
mance bottlenecks. Oversubscription factors of
10 on inter-rack links are common, i.e., 4 Gbps
of uplink for 40 servers in a rack. This is espe-
cially problematic with network intensive Map-
Reduce [16] workloads; such workloads require
high network performance from the cloud in-
frastructure. They also possibly compete with
co-hosted applications with stricter QoS guar-
antees, such as, Web applications, creating net-
work interference for these applications. Fi-
nally, inter-rack network paths involve one or
more switches, hence are higher latency, and
more vulnerable to failures than within-rack
network links.

Higher architec-
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tures [19][12], while claiming high bandwidth
connectivity between any two servers, increase
infrastructure and management costs signifi-
cantly. As a result, in current data centers,
applications are especially vulnerable to
inter-rack network interference, and inter-rack
network link failures, and can benefit from VM
placement within a rack. This type of place-
ment not only makes the application robust to
any type of inter-rack network anomalies; it
also reduces application latency due to shorter
network paths between components. This
placement is not always possible, however,
mainly due to high availability constraints
of applications.  Specifically, while robust
to inter-rack anomalies, an application may
now become too vulnerable to intra-rack
failures.  Statistics from Google [15] report
approximately 20 rack unit failures (e.g.,
40-80 servers disconnecting, with 1-6 hours
to recover) during a one year period, for a
data center size in the 1000s of servers. In
general, racks are considered a significant
failure domain to avoid [18] when deploying
highly available distributed applications. The
degree of application disruption depends on
the application’s fault tolerance, reconfigu-
ration capabilities, and redundancy of VM
components affected by, or inaccessible due to,
the respective failures.

For instance, application-level VM replica-
tion techniques would be ineffective in case of
any rack-type failure e.g., server, rack switch,
or rack power unit failures, unless VM replica
placement is on different racks. Moreover,
the desirable placement configuration for VM
replicas may be different for different replica-
tion semantics. For instance, simply placing
the two VMs of a replicated primary-backup
database tier on two different racks shields the
application from server and rack-level failures.
On the other hand, other replication schemes,
such as, chained declustering, quorum based,
or other combinations between data partition-
ing and replication would potentially have dif-
ferent goals, and resulting VM placement re-
quirements. Therefore, i) VM placement con-
straints are usually dependent on application
semantics, and ii) these constraints need to be
known and respected by the VM placement al-

gorithm.

In this context, we introduce OX!, a novel
semantic-aware VM management framework
that optimizes VM mapping to racks, in-
crementally and dynamically. OX lever-
ages application-level semantic knowledge, i.e.,
availability constraints for redundant VMs,
and VM communication patterns, to optimize
placement and enhance resilience to cloud in-
frastructure anomalies for hosted applications.
OX allows tenants to specify high-level groups
of highly available VMs without the need to
expose the underlying physical infrastructure
architecture to applications. To discover each
application’s topology, OX monitors network
traffic among its hosted VMs, transparently.
Based on each application’s availability re-
quirements and its traffic matrix, OX builds
per-application topology graphs. OX then ap-
plies an incremental graph partitioning algo-
rithm to optimize placement decisions for each
individual application, and migrates VMs ac-
cordingly across server racks. OX’s partition-
ing algorithm proceeds from current applica-
tion placement configurations and gradually
moves towards the final placement. This in-
cremental adaptation uses a minimum num-
ber of VM migration operations to optimize
application placement. Assuming sufficient re-
sources exist, OX evolves towards a stable per-
application VM to rack placement that re-
duces application traffic on inter-rack links,
while respecting application high availability
constraints.

Our placement optimization algorithm is
simple, intuitive, and lightweight. OX fo-
cuses on optimization opportunities in a per-
application, incremental fashion. This local-
ized per-application, per-link, fine-tuning focus
avoids the pitfalls of global-reshuffle optimiza-
tions. Aslong as per-application semantics and
patterns are relatively stable, OX optimizes the
number of VM migrations in-flight while con-
verging over time to stable application config-
urations. Per-application robustness to both
inter-rack network bottlenecks and intra-rack
failures is the natural result.

We implemented a prototype of OX as a set
of extensions to an in-house Infrastructure-as-
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a-Service (IaaS) cloud management framework.
To evaluate the benefits, we construct realistic
scenarios with cloud tenants instantiating and
configuring VMs as part of various modern dis-
tributed applications, e.g., Hadoop, Cassandra.
We show how OX optimizes VM placement and
shields applications from inter-rack network in-
terference effects and rack-level failures.

2 OX Overview

OX enhances robustness for distributed ap-
plications hosted on Infrastructure-as-a-Service
cloud offerings, e.g., Amazon EC2, through
availability and network communication opti-
mizations. OX implements an algorithm for
semantic-aware mapping of application com-
ponents (VMs) onto the virtualized infrastruc-
ture.

Tenants of the cloud infrastructure cre-
ate VM instances and configure them into
application-level clusters, e.g., Apache, Cas-
sandra, MySQL, with various availability re-
quirements. After performing an initial VM
mapping, OX incrementally optimizes the map-
ping to conform to tenant-provided availability
constraints and discovered application topolo-
gies. OX adapts the VM mappings to dynamic
changes in availability constraints, failed VMs,
VMs dynamically provisioned to absorb appli-
cation load bursts, and changes in VM network
traffic patterns, over time. Finally, OX pro-
actively reduces network utilization on inter-
rack links, whenever the opportunity arises. In
this way, OX provides application flexibility in
case of pattern changes, as well as protection
against unpredictable infrastructure anomalies.

The overall goals are to (1) increase appli-
cation availability and (2) improve application
resilience to anomalies in the network commu-
nication fabric, e.g, network interference. To
address the former, redundant VMs are placed
on separate server racks, according to tenant-
defined availability constraints. For the latter,
any two VMs that communicate frequently are
hosted on the same rack, as long as there is no
availability constraint between them.

Towards this, OX models placement opti-
mization as an incremental graph partitioning
problem. FEach distributed application is rep-

resented as a graph. Graph vertices are VM
instances composing each application, while
edges are defined based on availability con-
straints or communication patterns between
VMs. The OX optimization component runs
periodically and selects VMs for partition re-
assignment as follows. Each VM, which by
its current placement either wviolates an avail-
ability constraint, or is involved in more inter-
partition traffic than intra-partition traffic, is
selected. The OX algorithm then re-assigns
the selected VMs to new partitions, in a greedy
fashion, based on the latest traffic and avail-
ability constraint graphs. For relatively sta-
ble application traffic patterns and constraints
only a small subset of application VMs require
re-assignment.

Once a new logical application partition con-
figuration is determined, OX uses a partition-
to-rack assignment algorithm to decide parti-
tion placement onto racks. This assignment al-
gorithm aims to minimize VM migration costs
while also considering available rack resources.
Finally, OX completes the assignment by live
migrating VMs across racks. Migrations are
performed in parallel as long as they are dis-
joint, e.g., they do not incur network traffic
across the same rack switch. The end result
is segregation on different server racks of VMs
part of a high availability group, while VMs
that might be impacted by anomalies in the
network communication fabric, such as, net-
work interference, are colocated on the same
rack.

In the following, we describe the components
of OX and the interface it offers for accessing
cloud resources.

3 Accessing Cloud Re-

sources

3.1 Basic Interface

TaaS cloud providers facilitate tenant access to
cloud resources through a basic command in-
terface. In Table 1, we show a restricted sub-
set of commands, similar to Amazon EC2’s
API [1]. From a tenant’s viewpoint, there are
three main building blocks: root filesystem im-
ages (images), VM instances, and block devices



(volumes).

The cloud typically provides a repository of
pre-installed images for various applications,
such as Hadoop [4], Apache, MySQL, etc. Ten-
ants can also upload images for any operat-
ing system and with any pre-installed software
packages. Using images in the cloud image
repository, tenants instantiate VMs as compo-
nents of tenant applications hosted on the cloud
infrastructure. VMs can be created with vari-
ous resource quotas, e.g., CPU/RAM; tenants
are usually billed based on the VM resources
requested. Configuration of VM instances as
part of distributed applications is done after
boot, based on dynamic IP addresses and in-
formation about other related VMs. Volumes
are used to store data on behalf of applications.
For example, an instance running a DBMS can
use a volume to store the actual database. In
our cloud system we offer two types of volumes:
local and remote. Local volumes are created on
the local server disk drives where the VM is
hosted; these volumes are tied to the respec-
tive server location for the lifetime of the VM.
Remote volumes reside on a network storage
system and are typically more reliable than lo-
cal volumes.

3.2 OX Semantic Interface

We enrich the basic interface with a collection
of commands to allow tenants to make appli-
cation semantics explicit, as well as to inquire
about and use the logical VM locations as-
signed by OX. A description of the proposed
semantic extensions is given in Table 1.

Tenants can employ high availability groups
to define availability constraints among appli-
cation VMs. Availability constraints should be
used to separate redundant VMs — that is, VMs
that implement a common function. To create
high availability groups, we introduce a create-
hagroup command. Application VMs can be
placed into a high availability group in two
ways: (1) by specifying the hagroup-id when
calling run-instances, or (2) by using the addto-
hagroup command. Tenants can remove VMs
from a high availability group through rmfrom-
hagroup.

We also introduce the notion of a tenant-
defined segregation degree per high availability

group. The default semantic-aware placement
policy is to host each VM from a high availabil-
ity group on a distinct rack, therefore, achiev-
ing full segregation. This default policy corre-
sponds to a segregation degree of 1. Tenants,
however, can specify lower values for the seg-
regation degree in order to create opportuni-
ties for OX to strengthen application resilience
to other infrastructure anomalies, e.g., network
interference effects. For instance, by defining a
segregation degree of 0.5, tenants instruct OX
to split the VMs across two racks, only.

Some applications replicate functionality
across components by taking VM location into
account — see Section 3.3. Through the com-
mand get-location, tenants can query OX for
logical VM locations. Tenants can thus discover
how VMs are separated on the cloud infrastruc-
ture and incorporate this information into the
application. VM location information matches
the application’s logical partitioning across the
infrastructure, with no reference to the physical
infrastructure architecture.

3.3 Application Semantics

Cloud tenants provision VMs with various
functions, ranging from components in web ap-
plications — e.g., LAMP stacks, to elements in
platforms for data analytics, such as Hadoop.
Web applications and data analytics plat-
forms normally consist of several tiers, each tier
composed of multiple VMs. For instance, a web
application can include a load balancer tier —
HAProxy, a web server tier — Apache, a caching
tier — Memcached and a data tier — a relational
database system such as MySQL, or a noSQL
system, e.g., Cassandra [20]. Similarly, data
analytics applications, such as Hadoop, rely on
a Map-Reduce [16] computational framework
to administer job execution and a distributed
filesystem, e.g., HDFS [5], for storing data.
By and large, availability constraints for
stateful tiers — e.g., application server tier,
data tier, follow the underlying data repli-
cation semantics. Common approaches for
replicating data fall into one of the follow-
ing categories: mirroring, i.e., primary/backup,
chained declustering as employed by dis-
tributed hash table (DHT)-based systems, e.g.,
Cassandra, or random replica placement, like



Basic Interface

describe-images

returns list of images available in the repository

run-instance -i image-id -s size

instantiate VM from image image-id; size defines re-
sources, i.e., CPU/RAM

create-volume -s size -t type [ -i instance-id -d device | create volume of size and type; type is local or remote;
device is local VM device, e.g., /dev/sdb; returns new
volume-id
Semantic Interface

create-hagroup [ -s seg-degree |

create a high availability group; seg-degree defines group
segregation — default is 1 (full segregation)

run-instance -i image-id -s size [ -g hagroup-id |

instantiate VM from image-id; hagroup-id enables ten-
ants to specify availability constraints at VM creation
time

addto-hagroup -i instance-id -g hagroup-id

add VM instance-id to high availability group hagroup-id

rmfrom-hagroup -i instance-id -g hagroup-id

remove VM instance-id from high availability group
hagroup-id

get-location -i instance-id

get logical location for VM instance-id

Table 1: Cloud Tenant Interface. We augment the basic cloud interface with commands for making application

availability constraints explicit.

in HDFS.

Cloud tenants can leverage the semantic in-
terface to make replication semantics explicit;
conversely, cloud tenants can instruct OX to
segregate VMs and then configure the high-
level replication mechanism according to the
segregation information provided by OX.

For example, mirroring can be used to im-
plement large-scale data tiers by partitioning
data and deploying a primary/backup pair of
VMs for each partition, for availability pur-
poses. In this case, the application can de-
fine a high availability group for each pri-
mary/backup partition. Chained declustering
can be viewed as a generic case of mirroring,
with primaries and backups chained together.
Finally, with randomized schemes, data repli-
cas are usually spread randomly across VMs,
at a finer data granularity, based on available
capacity. Due to the higher vulnerability to
failures for data tiers relying on random place-
ment, tenants can conservatively place all tier
VMs into a single high availability group with a
segregation degree of 1, to achieve full segrega-
tion. Alternatively, these schemes may inquire
about and incorporate VM location informa-
tion when storing data replicas.

In stateless tiers — e.g., load balancer, web
server, caching tiers, the functions imple-
mented by individual VM components are typ-
ically interchangeable. Therefore, the failure of
one VM in the tier has a reduced overall effect

on application performance and availability, as
load is easily rebalanced across the remaining
components. Furthermore, stateless VMs are
easier to recover and reintegrate into the ap-
plication. Tenants can either create high avail-
ability groups for a subset of VMs in a state-
less tier, or create whole-tier availability groups
with lower segregation degrees. Tenants can
thus ensure overall tier availability when facing
unpredictable hardware failures.

Cloud tenants can define/update availability
constraints for owned VMs at any time. All
availability constraints specified by tenants are
considered by OX when optimizing placement
for hosted applications.

4 Optimizing Placement

4.1 Initial VM Placement

At the infrastructure level, the placement of
new VMs complies with availability constraints
specified by tenants at VM instantiation time.
In addition, VMs are initially placed in the
proximity of other VMs of the same applica-
tion.

OX, then, periodically reorganizes applica-
tion VMs across server racks according to ap-
plication dynamic changes, to satisfy applica-
tion availability requirements and reduce appli-
cation exposure to anomalies in the inter-rack



communication fabric, such as network inter-
ference effects.

4.2 Applications as Graphs

Availability Constraint Graphs: 00X
uses tenant-defined availability constraints to
construct application constraint undirected
graphs. Graph vertices are application VM in-
stances and edges are defined based on high
availability group specifications. Namely, for a
high availability group with a segregation de-
gree of 1, an edge exists between any two VM
instances in the availability group. For lower
segregation degrees, OX splits clusters of VMs
across racks, according to the degree; an edge
in the constraint graph exists between any two
VMs in different clusters.

In the following, we use CG = (V, CE) to
represent the constraint graph, where VM,
is vertex V; and an availability constraint
between VM; and VM; is defined by edge CE;;
= ( Vi, I/J ) .

Communication Graphs: OX discovers
application topologies at the infrastructure
level by monitoring virtual machine network
trafficc. We employ a number of open source
tools to gather and analyze network traffic
statistics in real-time, using the NetFlow
interface (described in Section 5).

Based on the latest statistics, a traffic ana-
lyzer daemon generates application topologies
as undirected traffic graphs. For each graph,
vertices are VM instances composing the ap-
plication. An edge exists between two vertices
if the two corresponding VMs exchanged traffic
during the last period. Edges are labeled with
the current network traffic bandwidth.

In the following, TG = (V, TE) denotes the
traffic graph, where VM; is vertex V; and edge
TE;; = (V;,V;) is shared by two communicat-
ing VMs.

4.3 OX Partitioning Algorithm

OX models application placement optimization
as an incremental graph partitioning problem
based on the current partition (placement)
configuration, P, constraint graph, CG, and
the traffic graph, TG. To solve the problem,

OX employs an approximation algorithm
structured into two phases. In phase 1, OX
uses P, CG, and TG, to verify, for every VM,
whether there are any violated availability
constraints or better placement opportuni-
ties in terms of network traffic. VMs that
require placement optimizations are logically
de-partitioned from P. Phase 2 improves
partition composition by re-integrating the
de-partitioned VMs, in a greedy breadth first
search fashion, according to TG and CG. The
output is the new partition configuration.

De-partitioning VMs: Phase 1 pro-
ceeds as follows. For each application VM, V;,
let P, € P, such that V; € P, — that is, V; is
currently assigned to partition P,. Availability
constraints are violated when VMs in the same
partition are part of the same high availability
group. Therefore, if there exists an edge in CG
from V; to another VM, V;, with V; € P, V;
and V; are marked for removal from P,.

Changes in communication patterns among
application VMs can also give rise to opportu-
nities for improved placement. To discern these
opportunities, OX computes a per-VM non-
constrained inter/intra-partition traffic ratio,
for every VM not yet marked for removal. For
Vi € P,, intra-partition traffic is traffic within
a rack between V; and the other VMs in P,.
Intra-partition traffic is derived by summing up
labels (network bandwidth values) of edges (V;,
V;)in TG, where V; € P,. Inter-partition traf-
fic represents non-constrained traffic between
Vi and VMs from partitions other than P,, i.e.,
other racks. This traffic aggregate is derived for
every partition P, € P, P, != P,, by summing
labels of edges (V;, V;)in TG, where V; € P,
and no edge (V;, V;) exists in CG.

OX uses inter/intra-partition traffic ratios
when deciding to de-partition VMs from P.
Specifically, for V; € P,, if there exists a P}, €
P, P, = P,, such that the corresponding V;
inter- P, /intra- P, traffic ratio is greater than
one, V; is marked for removal. A ratio greater
than one indicates that V; exchanges more ex-
pensive inter-rack traffic with VMs in P, than
intra-rack traffic with VMs in P,,.

All VMs marked for removal due to either
violated availability constraints, or changes
in network traffic patterns, are temporarily



de-partitioned from P. In the following, we use
D to denote this set of de-partitioned VMs.

Re-partitioning VMs: New logical partition
composition is constructed by re-integrating
the VMs from D, in a greedy breadth
first search fashion, based on TG and CG.
Re-integration is performed iteratively, by
growing partitions with de-partitioned VMs in
decreasing order of network traffic magnitude.
Moreover, a partition grows with VMs that
have no availability constraints with current
partition nodes.

The re-partitioning phase progresses itera-
tively, as follows. First, for the VMs that are
still in P, OX aggregates edges to VMs in D.
That is, given P, in P and V; in D, OX re-
places all traffic edges from V; to VMs in P,
with a single edge; this edge is labeled with the
sum of all respective edge labels. Edges with at
least one end (VM) in D are then sorted in de-
creasing order of labels (bandwidth) and added
to a queue, Q. At each iteration, the algorithm
considers the highest edge in @, TE 0. = (Vi,
V; ), for expansion. If V; and V; are both in D,
they are assigned to a new partition P,. Oth-
erwise, if V; (or V;) represents a partition P,,
V; (or V;) is assigned to P,, if the respective
VM has no availability constraints with VMs
in P,. Lastly, if both V; and V; represent in-
termediate partitions P, and P, respectively,
the two partitions are merged only if there are
no availability constraints between them. Upon
re-integration into a partition, a VM is removed
from D. Analyzed edges are removed from (@,
while labels for remaining edges in Q are up-
dated accordingly.

The iterative loop finishes when @ is empty
or when the algorithm was not able to grow a
partition in the current iteration, due to avail-
ability constraints. The set of VMs not as-
signed to a partition along with the correspond-
ing traffic/constraint subgraphs are used as in-
puts to a new instance of the re-partitioning
algorithm.

4.4 Partition Placement

Based on new logical partition configurations,
OX reshuffles application VMs across racks
such that partitions are segregated and all

VMs in a partition are hosted on the same
rack. Partitions are first assigned to racks
based on minimal VM migration costs and
available rack resources, e.g., memory. OX
then finalizes the reshuffling process by mi-
grating VMs according to the partition-to-rack
assignment.

Assigning Partitions to Racks: In or-
der to respect availability constraints or
alleviate inter-rack network traffic, each VM
partition has to be allocated to a different rack.
OX assigns partitions to server racks such
that VM migration costs are minimized. The
partition assignment algorithm also considers
available rack memory, as it is by far the
scarcest resource in most environments.

Migrating Virtual Machines: The as-
signment algorithm outputs a mapping of
partitions to racks and a set of VM instance
migrations per application. OX optimizes the
migration process for all applications, by ex-
ecuting migrations in parallel, while reducing
network congestion caused by reshuffles. To
parallelize VM migrations, while not generat-
ing network interference, OX employs a simple
heuristic policy: no two concurrent migrations
are allowed to/from the same rack.

5 Prototype

We implemented a prototype of OX as a set of
extensions to an in-house Infrastructure-as-a-
Service (IaaS) cloud management framework.
While we rely on our own IaaS cloud imple-
mentation, the concepts presented in this pa-
per can be easily integrated into existing laaS
cloud solutions, e.g., Eucalyptus [6].

5.1 Cloud Management Software

Our cloud management software allows cloud
tenants to get access to infrastructure re-
sources, by instantiating VMs, creating stor-
age volumes, and defining VM availability con-
straints. Our management software consists of:
(1) agents running on each virtualized server,
handling requests, (2) a storage server main-
taining cloud metadata and exporting root
filesystem images and remote storage volumes,



and (3) a DHCP server assigning IP addresses
dynamically to VMs.

We select one of the server agents to act
as global cloud manager. Cloud tenant re-
quests are first submitted to the cloud man-
ager, who forwards them to server agents or the
storage server, accordingly. The storage server
maintains the cloud metadata, e.g., informa-
tion about VM instances, images, volumes,
high availability groups, in a local database.
The storage server also runs an NFS server, to
export images to NFS clients running on vir-
tualized servers. To multiplex a single root
filesystem image to multiple VM instances, we
use the QCOW?2 format [7] to create Copy-on-
Write VM images from a base image. Finally,
to provide remote storage volumes to VMs, the
storage server uses the NBD implementation of
the Network Block Device protocol [8].

To exemplify the management software
workflow, suppose a tenant first creates a high
availability group, ha-zyz, by issuing the create-
hagroup command — Table 1. The request is
sent to the cloud manager who forwards it to
the storage server. The storage server then
creates an entry in the local database for ha-
zyz. Next, the tenant starts two VMs from im-
age img-abc as part of ha-zyz, by calling run-
instance. The cloud manager uses the avail-
ability constraints, location of other VMs, and
available resources, to decide the initial loca-
tion for the two VMs. Based on the placement
decision, the cloud manager forwards requests
to the server agents. Server agents create COW
images based on img-abc, instantiate the VMs
and reply back with the unique VM instance
ids. The cloud manager then sends instance
metadata, (instance-id, location, ha-groups), to
the storage server, to be added to the local
database, and replies to the tenant.

5.2 Discovering Communication
Patterns

OX discovers application topologies at the in-
frastructure level by monitoring virtual ma-
chine network trafficc. We use a number of
open source tools to gather and analyze net-
work traffic statistics in real-time. Each vir-
tualized server in the data center runs Open
vSwitch [9]. Open vSwitch is a virtual switch

implementation that supports standard man-
agement interfaces (e.g. NetFlow), and is open
to programmatic extension and control. We
configure each virtual switch to export flows to
a central collector, periodically, using the Net-
Flow interface.

The collector component is deployed in a vir-
tual machine on the cloud infrastructure and
is based on the flow-tools package [10]. Flow-
tools provides a set of programs used to collect,
send, process, and generate reports from Net-
Flow data. In OX, a flow-capture daemon col-
lects flows from the virtual switches and writes
them to disk, periodically, at a one minute in-
terval. A second traffic analyzer process runs
every minute in the background and consists of
three phases. First, the analyzer daemon uses
flow-nfilter to filter VM traffic. Second, it calls
flow-report and flow-print to generate statistics
based on the latest collected data. For each
flow, OX extracts source ip address, destination
ip address, flow start time, flow end time and
bytes transferred. Based on the latest statis-
tics, the traffic analyzer daemon generates ap-
plication topologies as undirected traffic graphs
and forwards this information to the optimiza-
tion component.

5.3 OX Optimization Component

The optimization component process is also
deployed in a virtual machine on the cloud
infrastructure. It receives up-to-date per-
application traffic graphs from the traffic an-
alyzer daemon and it fetches availability con-
straints, along with VM location information,
from the storage server. The optimization pro-
cess then executes the graph re-partitioning al-
gorithm and, following the new partition con-
figuration, the partition-to-rack assignment al-
gorithm. Lastly, to complete the new place-
ment, it issues migrate-instance commands to
the cloud manager, according to the migration
schedule. The migrate-instance admin com-
mand takes as arguments the identifier of the
VM to be migrated and the new rack hosting
the VM.



6 Evaluation

In this section, we evaluate the benefits OX
provides to applications running on the cloud
infrastructure. In the evaluation, we con-
struct realistic small-scale scenarios with cloud
tenants instantiating and configuring VMs as
part of various popular distributed applica-
tions, e.g., Hadoop, Cassandra. Tenants spec-
ify availability constraints both at VM instan-
tiation time and VM runtime. We show how
OX shields applications from inter-rack net-
work interference effects and rack-level failures,
through smart VM placement/migration oper-
ations.

In the following, we first describe the cloud
infrastructure and benchmarks. Then, we
present the experimental results with a mix of
tenant applications running on the cloud infras-
tructure.

6.1 Testbed

Cloud Infrastructure: Our evaluation
infrastructure consists of three racks, each
composed of ten servers and a rack switch.
Servers are connected to the rack switches
through 1Gbps network links. Thus, rack
switches deliver 1Gbps network bandwidth for
intra-rack server communication. We use a
third switch, the cluster switch, to interconnect
the rack switches. The rack-to-cluster switch
links are 1Gbps. Therefore, the rack-to-cluster
links are oversubscribed by a factor of 10. The
physical servers are Dell PowerEdge SC1450
and we deployed Xen 3.4.3 as virtualization
technology. The switches are Extreme Net-
works Summit 400-48t.

Benchmarks: HADOOP — We use Apache’s
Hadoop 0.21.0 distribution based on the HDFS
distributed filesystem and MapReduce frame-
work [4]. HDFS is composed of a NameNode,
maintaining metadata, and DataNodes, stor-
ing the data. The MapReduce framework en-
ables distributed processing of large data sets
on compute clusters. It consists of a Job-
Tracker and multiple TaskTrackers. Processing
jobs are submitted to the JobTracker who cre-
ates map/reduce tasks for each job and assigns
them to TaskTrackers. Map tasks process data

stored in HDFS. A data shuffling phase feeds
outputs from map tasks as inputs to reduce
tasks. Reduce tasks generate the final output
and store it in HDFS. As Hadoop workload,
we use the sort benchmark [11]. In our experi-
ments, this benchmark takes as input a 10GB
random data set stored in HDFS and produces
the sorted data using the MapReduce frame-
work.

We create a root filesystem image, img-
hadoop, based on the Hadoop software for
tenants to instantiate VMs running the
Hadoop system. In the following, each Hadoop
VM is configured 3GB of RAM and 3 vCPUs.
HDFS data is stored on local storage volumes
of size 20GB. The local volumes are created
by the cloud management software on the
servers hosting the Hadoop VMs. In general,
all Hadoop VMs act as HDFS DataNodes
/ Map-Reduce TaskTrackers, with one VM
also acting as HDFS NameNode and one as
Map-Reduce JobTracker.

YCSB-Cassandra — YCSB [14] is a frame-
work for evaluating different cloud database
systems. A cloud database is typically a
scalable key-value store, such as Amazon’s
Dynamo [17] or Cassandra [20]. YCSB tar-
gets serving systems, which provide online
read/write access to data. That is, a web
user is waiting for a web page to load, and
reads and writes to the cloud database are
carried out as part of the page construction
and delivery. YCSB consists of a workload
generating client and a package of standard
workloads with various characteristics, e.g.,
read-intensive, write-intensive, to be executed
by the client. The framework also comes
with database connectors for different cloud
database systems. To evaluate OX, we use
Cassandra as cloud database and we configure
YCSB clients to run read-intensive workloads
against the Cassandra system.

We create two root filesystem images, img-
yesb and img-cassandra, based on the YCSB
0.1.2 and Cassandra 0.6.4 releases, respectively.
Tenants instantiate YCSB VMs from img-ycsb
and Cassandra VMs from img-cassandra. In
the following scenarios, each YCSB VM is con-
figured with 512MB of RAM and 2 virtual
CPUs, while each Cassandra VM has 1GB of



RAM and 2 vCPUs. Application data is stored
on remote storage volumes of 1GB in size, one
per Cassandra VM.

6.2 Network Interference Sce-
nario

We first construct a realistic scenario to
illustrate how OX protects applications from
network congestion on oversubscribed inter-
rack links. In this scenario, we use two racks
to host three tenant applications.

Tenant Applications: Tenant; deploys
a YCSB-Cassandra distributed application,
app1, composed of two YCSB VMs, a1
and ap:192, and two Cassandra VMs, aj:¢1
and ap:c. The Cassandra tier employs 2-way
replication, and the tenant requires the tier
to be highly available. He creates a high
availability group with segregation degree 1,
ha-c1, and starts a;:c; and aq:cy, as members
of ha-ci. aj:y; and ap :yo are instantiated with
no availability constraints. Later on, while
app1 is running, tenant; decides to create a
high availability group for the YCSB tier,
ha-y1, to increase tier availability. He then
adds a;:y1 and ap:y2 to ha-y;. This is an
example of a dynamic change in availability
constraints.

Tenant, also deploys a YCSB-Cassandra
application, apps, composed of two YCSB
VMs and two Cassandra VMs. He creates
two high availability groups with the default
segregation degree of 1, ha-yo for YCSB
and ha-cp for Cassandra. The tenant then
instantiates the YCSB VMs, as:y; and ag:yo,
as part of ha-yo, and the Cassandra VMs,
az:c; and ap:cy, as members of ha-cs.

Tenants starts a Hadoop application, apps,
composed of ten Hadoop VMs, ag:hy ... ag:hig.
Tenants wants to configure HDFS with a repli-
cation degree of 3 — that is, each data block is
replicated on 3 Hadoop VMs. Moreover, the
tenant requires at least 2 replicas to be sepa-
rate. With OX, he creates a high availability
group, ha-hy, with segregation degree 0.5.
Then, he instantiates the ten Hadoop VMs as
part of ha-h;. At the infrastructure level, the

above availability requirements ensure that
the Hadoop VMs are balanced across the two
racks. A common replica placement policy
employed by HDFS, rack-aware, makes use of
VM location information. Hence, the tenant
queries OX for logical VM locations and uses
this information when configuring HDF'S.

For the network interference scenario, we
are interested in evaluating application per-
formance, when the three applications run
concurrently on the cloud infrastructure. For
app; and appe, YCSB clients constantly issue
requests to the Cassandra system. For apps, a
sort job on the 10GB data set is infrequently
submitted to the MapReduce system. We
evaluate OX against a random semantic-aware
VM placement approach.

Random Semantic-Aware VM Place-
ment: The cloud management software places
the VMs such that availability constraints are
satisfied and resource usage is reasonably bal-
anced.

For app1, a1:y1 and aq:y2 end up on racky,
since the tenant did not specify any initial
availability requirements and the VMs are rel-
atively small in size. a;:c; and a;:ca, however,
are part of ha-c;. Hence, these two VMs are
placed on different racks, with a;:c; on rack;
and aq:co on racks. appy initial VM placement
follows the availability constraints. Based on
ha-ya, az:y1 is hosted on rack;, while as:yo is
on racky. Likewise, as:cy is placed on racks
and as:co on racky, due to ha-co. For apps, five
VMs are hosted on rack;, with the other five
on racks.

In the following, we use random semantic-
aware VM placement to term this initial place-
ment.  Figure 1(a) shows app; and apps
throughput numbers — requests per second, for
an interval of 25 minutes, with the random
semantic-aware placement technique. At the
17-minute time mark, tenants starts an apps
Hadoop sort job on the 10GB data set stored in
HDFS. From this point onwards, all three ap-
plications compete for the oversubscribed inter-
rack network bandwidth. apps sort job has sub-
stantial network bandwidth requirements. The
network traffic generated impacts the through-
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(a) app1 — YCSB-Cassandra, app2 — YCSB-
Cassandra, and apps. We show throughput num-
bers for both applications with and without network
interference.
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(b) apps — Hadoop Inter-Rack Traffic. Hadoop
sort job stresses the inter-rack network interconnect,
particularly during the reduce phase.

Figure 1: Random Semantic-Aware VM place-
ment. We show three applications running concurrently
on the cloud infrastructure. Application VMs are placed
according to availability constraints, with rack resource us-
age reasonably balanced. apps causes network congestion
and impacts app1 and apps severely.

put of app; and apps. The drop in throughput
is more pronounced during the reduce phase of
sort. This is expected, as the data shuffling pro-
cess exchanges the entire 10GB data set among
apps Hadoop nodes, stressing the network in-
terconnect.

To better understand the network inter-
ference caused by the Hadoop sort job, in
Figure 1(b) we plot the inter-rack network
bandwidth consumed by apps. The horizontal
axis in Figure 1(b) can be matched against
Figure 1(a). During the map phase of sort,
the bandwidth has sporadic jumps towards
800Mbps. However, during the reduce phase,

(a) before

Figure 2: app; — Partition Composition and
OX-generated Availability Constraint / Com-
munication Graphs. In (a), availability constraint be-
tween aj:y1 and aj:ys is violated (dashed edge), as both
VMs are initially on rack; — same partition. A portion
of app1 VM traffic is inter-rack — solid thin edges. OX
produces new, optimal partition composition, as shown in

(b)

“—— 85Mbps
(a) before

(b) after

Figure 3: apps — Partition Composition and
OX-generated Availability Constraint / Com-
munication Graphs. In (a), all availability constraints
are met — dashed edges. However, all apps VM traffic is
inter-rack. In (b) we show OX-generated partition com-
position.

the bandwidth is constantly in the 800Mbps
range, causing a sharp interference effect for
the two concurrent applications, app; and

appz.

OX Placement: OX optimizes applica-
tion placement following communication pat-
terns and availability constraints. Figure 2
and Figure 3 illustrate the availability con-
straint/communication graphs produced by
OX for app; and apps, along with previous
and new partition configurations. The previ-
ous partition composition reflects the initial
semantic-aware VM placement. Graph ver-
tices are the VM identifiers, while edges are
based on availability constraints/network traf-
fic bandwidth between the pairs of VMs.



Availability constraints are shown as dashed
edges. For app; — Figure 2(a), the availabil-
ity constraint between a;:c; and aj:cy is met,
as the two VMs are hosted on separate racks
— distinct partitions. On a different note, the
constraint between a;:y; and a; :ys is violated,
as both VMs are on rack;. Tenant; defined
the availability constraint while the VMs were
running, hence the violation.

For communication graphs, solid thin edges
denote inter-rack traffic, while solid thick
edges, intra-rack traffic. For example, as a;:y;
is initially placed on rack; and a;:cy on racks,
the two VMs communicate over the oversub-
scribed inter-rack link at 85Mbps.

For app, — Figure 3(a), availability con-
straints are complied with, while all network
traffic is inter-rack.

OX then proceeds with optimizing placement
for app; and apps. Note that, due to the strict
availability requirements, and, as apps VMs
use local storage volumes, OX considers the
entire application immovable and cannot op-
timize placement for apps — e.g, by hosting all
apps VMs on a single rack.

For app;, Figure 2(b) illustrates the new par-
tition configuration generated by OX: a;:P; =
(a1:y2, a1:¢1), and a1 :Py = (a1:y1, a1:ca). The
partition-to-rack assignment algorithm assigns
a1 :Py to rack; and aq:Ps to racks. To realize
the partition assignment, OX migrates a;:y;
from rack; to racks. The new app, partition
composition is: ag:P; = (ag:y1, ag:c1), and
ag:Py = (ag:ye, ag:ca). az:Pp is assigned to
racks and ag:Po to rack;. Two VM migrations
are required to complete the assignment: as:y;
from rack; to racks, and ag:ys from racks to
rack; .

Figure 4 shows app; and apps throughput
numbers for an interval of 45 minutes, with OX
optimized placement. Around the 5-minute
time mark, OX executes the three VM live mi-
grations sequentially, to optimize VM place-
ment. Each VM migration has a slight impact
on application performance. At the 25-minute
time mark, tenants starts a Hadoop sort job
on the 10GB data set stored in HDFS. As in
Figure 1(a), all three applications now com-
pete for the oversubscribed inter-rack network
bandwidth. However, with OX, network inter-
ference is substantially reduced. app; and apps
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Figure 4: OX VM placement. app; — YCSB-
Cassandra, apps — YCSB-Cassandra, and apps
— Hadoop, running concurrently on the cloud
infrastructure. OX optimizes placement for app; and
app2 by live migrating VMs according to availability con-
straints and communication patterns. As a result, network
interference effects caused by apps are minimized.

experience only a small drop in throughput due
to the inter-rack network traffic between the
Cassandra VMs.

Therefore, OX enhanced robustness for
hosted applications, by shielding them from un-
predictable network interference effects, while
adhering to tenant-defined high availability
constraints.

6.3 Rack-level Failure Scenario

In the second scenario, we show how OX
protects applications from rack-level failures,
such as a power outage taking offline an
entire rack. We use three racks to host two
YCSB-Cassandra tenant applications.  We
evaluate OX against a traffic-aware only VM
placement approach.

Tenant Applications: A tenant deploys
two identical YCSB-Cassandra applications,
each composed of three YCSB VMs, y1, o,
y3, and three Cassandra VMSs, c¢1, ¢, c3.
The Cassandra tier employs 2-way replication
based on chained declustering. In addition,
the tier supports various levels of consistency
models — strong consistency or eventual consis-
tency, to ensure availability when dealing with
component failures. Thus, the tenant creates
three high availability groups per-application,
one for each pair of Cassandra VMs, to achieve
VM segregation.



Figure 5: YCSB-Cassandra Application — Parti-
tion Composition and OX-generated Availabil-
ity Constraint / Communication Graphs. Follow-
ing communication patterns and availability constraints,
OX produces three partitions to be segregated on three
separate racks. The traffic-aware approach ignores avail-
ability requirements, placing all VMs on a single rack.

OX wvs. TrafficcAware: The two iden-
tical YCSB-Cassandra tenant applications are
hosted on the cloud infrastructure according to
different placement policies as follows. For the
first application, app,,, VMs are placed using
OX, according to communication patterns and
availability constraints. For the second appli-
cation, app:,, we employ a traffic-aware only
VM placement policy that ignores availability
requirements.

Figure 5 shows the availability constraint
/ communication graphs for these YCSB-
Cassandra applications. The optimal partition
configuration generated by OX for app,, con-
sists of three partitions: (y1, ¢1), (y2, ¢2), (ys,
c3). Consequently, with OX, application VMs
are segregated across the three racks. On a dif-
ferent note, the traffic-aware policy colocates all
VMs of appy, on a single rack, racky, as all VMs
communicate frequently and this policy ignores
availability constraints.

In Figure 4 we illustrate throughput num-
bers for the two YCSB-Cassandra applications,
during an interval of 20 minutes. For the first
12 minutes, the applications report a similar
performance. At the 12-minute time mark, we
cause a power outage that fails the entire rack; .
As expected, the application hosted using the
traffic-aware only policy, app:,, becomes com-
pletely unavailable. With OX, however, appos
loses only a third of its VMs and the application
incurs just a small drop in performance, with
no impact on overall application availability.
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Figure 6: Rack Failure Scenario. We show through-
put numbers for two identical YCSB-Cassandra appli-
cations placed using different policies — OX (traffic &
semantic-aware) and traffic-aware only, respectively. At
the 12-minute time mark, a rack-level failure (power out-
age) takes down the entire "traffic-aware only” applica-
tion.

Therefore, by placing VMs according to
communication patterns and availability con-
straints, OX protected the application from un-
predictable rack-level failures.

7 OX in Large Scale Envi-
ronments

In this section, we discuss implementation de-
tails for scalability in generic large scale deploy-
ments of OX.

We have assumed that, typically, the data
center contains more than enough resources
within racks to accommodate a stable graph
partitioning solution for meeting each applica-
tion’s constraints. As previously mentioned,
in this common case, OX monitors and opti-
mizes network traffic per application, and fo-
cuses its adaptations unto problem areas of the
graph. Under these assumptions, our approach
is guaranteed to work by selectively moving ap-
plication VMs away from oversubscribed links,
while respecting their availability constraints.

Therefore, as long as enough resources exist
within racks, we expect larger scale scenarios
to show similar effects for OX adaptations as
our evaluation. This is intuitive because each
per-application incremental adaptation, in and
of itself, is similar to our scenario; the adapta-
tion fine-tunes the VM placement only for the
VMs involved in communication over congested



inter-rack links; incremental adaptations for
applications are performed independently.

In contrast, we argue that alternative algo-
rithms based on global reshuffle optimizations
for VM placement would incur long periods of
network instability during VM migrations. In
addition, some applications, like Hadoop, can-
not be optimized effectively, because of mas-
sive traffic exchanges among all nodes in the
Hadoop cluster. Therefore, alternative algo-
rithms, which may target global utility in terms
of network usage are likely to be costly and in-
effective.

Furthermore, we also showed in our eval-
uation a typical case of incremental evolu-
tion of, and dynamic adaptation to availabil-
ity constraints. As the tenant perceives appli-
cation vulnerabilities, our interface allows him
to create additional availability constraints.
OX addresses these additional availability con-
straints incrementally, through performing se-
lective VM migrations, as needed, to reinforce
the additional constraints. In this case as well,
we expect that OX will provide robustness for
large scale scenarios in a similar fashion as for
our small scale scenario.

8 Related Work

A number of recent efforts proposed higher
density interconnect architectures using com-
modity components to decongest data center
networks [19][12]. These architectures claim
high bandwidth connectivity between any two
servers in a data center. However, they re-
quire significant architectural changes and in-
cur high management/deployment costs. Our
approach, OX, is a low-cost scalable solution
that increases application resilience to infras-
tructure anomalies, such as network interfer-
ence on oversubscribed network links.

VM placement based on network traffic pat-
terns has been suggested as a method to ad-
dress network bottlenecks in data centers [21].
However, proposed solutions usually minimize
a data center wide objective function in isola-
tion of the current VM placement. In large-
scale data centers these global solutions are
not scalable. In contrast, OX incrementally re-
partitions applications, and progresses toward

an optimal placement, by minimizing the net-
work disruption due to VM migrations. More-
over, as proposed solutions are oblivious to
application semantics, naive implementations
increase application vulnerability to internal
data center hardware failures. For instance,
simplistic solutions could place an entire ap-
plication on a single rack to maximize net-
work performance. As rack failures are com-
monplace [15], due to faulty rack switches or
rack power units, application uptime could be
severely impacted. We describe a holistic solu-
tion for dynamic intelligent mapping of appli-
cation components (VMs) onto the virtualized
infrastructure. OX bridges high-level applica-
tion semantics, e.g., availability constraints, to
infrastructure-level metrics, e.g., network traf-
fic statistics, to optimize placement and en-
hance resilience to cloud infrastructure anoma-
lies for hosted applications.

Infrastructure-as-a-Service providers, e.g.,
Amazon [1], allow cloud tenants to use mul-
tiple availability zones when accessing cloud
resources. An availability zone is defined by
a geographical subregion, e.g., US East-1, and
it typically encompasses an entire data center.
Our system, OX, introduces high availability
groups, an abstraction that enables tenants to
define high availability constraints among dis-
tributed application components (VMs). OX
enforces availability requirements within a vir-
tualized data center, through intelligent VM
placement, without exposing data center phys-
ical infrastructure details. Moreover, OX ex-
tends current cloud tenant interfaces and can
be easily integrated into existing [aaS cloud so-
lutions.

Live virtual machine migration [13] has been
proposed to alleviate overload [22], or colocate
VMs for memory affinity [23]. We leverage it
to provide high availability guarantees and to
minimize exposure to anomalies in the network
communication fabric, such as network inter-
ference effects, for tenant applications hosted
on large-scale cloud infrastructures.

9 Conclusions

We introduce OX, a runtime system that tar-
gets on-the-fly virtual machine placement opti-



mizations for enhanced application robustness
in virtualized data center architectures. These
data centers are built by Infrastructure-as-a-
Service (IaaS) cloud computing providers, such
as Amazon, to host large numbers of tenant dis-
tributed applications, concurrently.

The common structure of cloud infrastruc-
tures consists of multiple racks of servers in-
terconnected by a hierarchical networking fab-
ric. Servers are virtualized and are shared by
multiple virtual machines (VMs) started by
cloud tenants as part of tenant applications.
Due to the large scale of cloud infrastructures,
anomalies, such as failures or bottlenecks, are
commonplace, and impact application uptime
and overall functionality. With OX, we ad-
dress application vulnerability to within-rack
failures caused by faulty servers, rack switches,
or rack power units, and inter-rack communi-
cation anomalies, e.g., network interference on
oversubscribed inter-rack network links.

OX provides an interface for tenants to spec-
ify application-level availability requirements,
following application VM roles and replica-
tion semantics. In addition, OX discovers per-
application inter-VM communication patterns
on the fly. OX uses this information to dynam-
ically implement VM placement optimizations
in order to enforce application availability con-
straints and reduce and/or alleviate application
exposure to network communication anomalies,
such as traffic bottlenecks. Specifically, OX
builds on-line topology graphs, one per applica-
tion and automatically partitions these graphs
in an incremental fashion, according to appli-
cation availability constraints and communi-
cation patterns. OX then performs live VM
migrations based on the partitioned graph for
each application.

We evaluate OX using a mix of Hadoop and
YCSB/Cassandra workloads to create dynamic
scenarios of network interference and availabil-
ity constraints. Our results show that OX en-
hances application resilience to infrastructure
anomalies, by reducing the impact of inter-rack
network interference, and by shielding applica-
tions from rack-level failures.
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