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Abstract

In this paper, we study replication techniques for scal-
ing and continuous operation for a dynamic content server.
Our focus is on supporting transparent and fast reconfigu-
ration of its database tier in case of overload or failures.
We show that the data persistence aspects can be decoupled
from reconfiguration of the database CPU. A lightweight
in-memory middleware tier captures the typically heavy-
weight read-only requests to ensure flexible database CPU
scaling and fail-over. At the same time, updates are handled
by an on-disk database back-end that is in charge of making
them persistent.

Our measurements show instantaneous, seamless recon-
figuration in the case of single node failures within the flex-
ible in-memory tier for a web site running the most com-
mon, shopping, workload mix of the industry-standard e-
commerce TPC-W benchmark. At the same time, a 9-node
in-memory tier improves performance during normal oper-
ation over a stand-alone InnoDB on-disk database back-
end. Throughput scales by factors of 14.6, 17.6 and 6.5 for
the browsing, shopping and ordering mixes of the TPC-W
benchmark, respectively.

1. Introduction

This paper investigates replication techniques for high-
performance, self-configuring database back-end tiers in
dynamic content servers. Dynamic content sites currently
need to provide very high levels of availability and scala-
bility. On-the-fly reconfiguration may be needed to either
adapt to failures or bursts of traffic and should be auto-
matic, fast and transparent. The presence of the database
tier in such sites makes fast reconfiguration hard to achieve.
Above all, data consistency needs to be ensured during re-
configuration, typically through complex and lengthy re-
covery procedures. The reconfiguration problem is ex-

acerbated by the need to scale the database tier through
asynchronous content replication solutions [5, 10, 20, 13].
Replica asynchrony has been proved absolutely necessary
for scaling. On the other hand, because data is not fully
consistent on all replicas at all times, asynchronous replica-
tion is at odds with fast, transparent reconfiguration. Asyn-
chronous replication techniques thus tend to sacrifice failure
transparency and data availability to performance scaling by
introducing windows of vulnerability, where effects of com-
mitted transactions may be lost. Alternatively, complex fail-
ure reconfiguration protocols imply reloading transactional
logs from disk and replaying them on a stale replica. Re-
suming servicing transaction at peak-throughput can take
on the order of minutes [12] and possibly more; fail-over
times are rarely formally measured and reported.

In this paper, we introduce a solution that combines
transparent scaling and split-second reconfiguration. Our
key idea is to interpose an in memory tier, consisting of
lightweight database engines, providing scaling and seam-
less adaptation to failures on top of a traditional on-disk
database back-end. Our middleware tier implements Dy-
namic Multiversioning, a database replication solution al-
lowing both scaling and ease of self-reconfiguration of the
overall system. Specifically, our replication solution has the
following desirable properties:

1. provides consistency semantics identical to a 1-copy
database (i.e., 1-copy serializability), thus making the
underlying replication mechanism completely trans-
parent to the user.

2. scales by distributing reads to multiple replicas without
restricting concurrency at each replica in the common
case.

3. provides data availability through simple and efficient
techniques for reconfiguration in case of failures.

In contrast to industry solutions which rely on costly shared
network-attached storage configurations [3], our solution



uses only commodity software and hardware. Our focus is
on achieving fast reconfiguration for scaling and data avail-
ability in the common case of single node failures, while
ensuring data persistence in all cases.

An in-memory database tier with asynchronous, but
strongly consistent replication offers high speed and scal-
ability during normal operation and inherent agility in re-
configuration during common failure scenarios. An on-disk
back-end database with limitted replication offers data reli-
ability for rare failure scenarios, e.g., a power outage. Our
research focus on in-memory database tiers is supported by
industry trends towards: i) large main-memory sizes for
commodity servers, ii) the popularity of database workloads
with a high degree of locality [4], such as the most common
e-commerce workloads [22], which result in working sets
on the order of a few Gigabytes.

Our in-memory replication scheme is asynchronous in
order to provide scaling. We have previously shown that
the presence of distributed versions of the same page in
a transactional memory cluster with asynchronous replica-
tion can be exploited to support scaling for generic appli-
cations [16]. In this paper, our focus is on supporting both
scaling and fast reconfiguration for an in-memory database
cluster. In our solution, the fine-grained concurrency con-
trol of the database works synergistically with data repli-
cation to ensure high performance and ease of reconfigu-
ration. Update transactions always occur on an in-memory
master replica, which broadcasts modifications to a set of
in-memory slaves. Each master update creates a version
number, communicated to a scheduler that distributes re-
quests on the in-memory cluster. The scheduler tags each
read-only transaction with the newest version received from
the master and sends it to one of the slaves. The appropri-
ate version for each individual data item is then created dy-
namically and lazily at that slave replica, when needed by
an in-progress read-only transaction. The system automati-
cally detects data races created by different read-only trans-
actions attempting to read conflicting versions of the same
item. Conflicts and version consistency are detected and
enforced at the page level. In the common case, the sched-
uler sends any two transactions requiring different versions
of the same memory page on different replicas, where each
creates the page versions it needs and the two transactions
can execute in parallel.

We further concentrate on optimizing the fail-over recon-
figuration path, defined as integrating a new replica (called
a backup) into the active computation to compensate for a
fault. The goal is to maintain a constant level of overall
performance irrespective of failures. We use two key tech-
niques for fail-over optimization. First, instead of replaying
a log on a stale replica, we replicate only the changed pages
with newer versions than the backup’s page versions from
an active slave onto the backup’s memory. These pages

may have collapsed long chains of modifications to database
rows registering high update activity. Thus, selective page
replication is expected to be faster on average than modifi-
cation log replay. Second, we warm up the buffer cache of
one or more spare backups during normal operation using
one of two alternative schemes: i) we schedule a small frac-
tion of the main read-only workload on a spare backup or
ii) we mimic the read access patterns of an active slave on
a spare backup to bring the most-heavily accessed data in
its buffer cache. With these key techniques, our in-memory
tier has the flexibility to incorporate a spare backup after a
fault without any noticeable impact on either throughput or
latency due to reconfiguration.

Our in-memory replicated database implementation is
built from two existing libraries: the Vista library that pro-
vides very fast single-machine transactions [15], and the
MySQL in-memory “heap table” code that provides a very
simple and efficient SQL database engine without transac-
tional properties. We use these codes as building blocks
for our fully transactional in-memory database tier because
they are reported to have reasonably good performance and
are widely available and used. Following this “software
components” philosophy has significantly reduced the cod-
ing effort involved.

In our evaluation we use the three workload mixes of
the industry standard TPC-W e-commerce benchmark [22].
The workload mixes have increasing fraction of update
transactions: browsing (5%), shopping (20%) and ordering
(50%).

We have implemented the TPC-W web site using three
popular open source software packages: the Apache Web
server [7], the PHP web-scripting/application development
language [19] and the MySQL database server [2]. In our
experiments we used MySQL with InnoDB tables as our
on-disk database back-ends and a set of up to 9 in-memory
databases running our modified version of MySQL heap ta-
bles in our lightweight reconfigurable tier.

Our results are as follows:

1. Reconfiguration is instantaneous in case of failures of
any in-memory node with no difference in throughput
or latency due to fault handling if spare in-memory
backups are maintained warm. We found that either
servicing less than 1% of the read-only requests in a
regular workload at a spare backup or following an ac-
tive slave’s access pattern and touching its most fre-
quently used pages on the backup is sufficient for this
purpose. In contrast, with a traditional replication ap-
proach with MySQL InnoDB on-disk databases, fail-
over time is on the order of minutes.

2. Using our system with up to 9 in-memory replicas as
an in-memory transaction processing tier, we are able
to improve on the performance of the InnoDB on-disk



database back-end by factors of 14.6, 17.6 and 6.5
for the browsing, shopping and ordering mixes respec-
tively.

The rest of this paper is organized as follows. Section 2
introduces our scaling solution, based on Dynamic Multi-
versioning, Section 3 describes our prototype implemen-
tation and Section 4 presents its fault-tolerance and fast-
reconfiguration aspects. Sections 5 and 6 describe our ex-
perimental platform, methodology and results. Section 7
discusses related work. Section 8 concludes the paper.

2. Dynamic Multiversioning

2.1. Overview

The goal of Dynamic Multiversioning is to scale the
database tier through a distributed concurrency control
mechanism that integrates per-page fine-grained concur-
rency control, consistent replication and version-aware
scheduling.

The idea of isolating the execution of conflicting update
and read-only transactions through multiversioning concur-
rency control is not new [8]. Existing stand-alone databases
supporting multiversioning (e.g., Oracle) pay the price of
maintaining multiple physical data copies for each database
item and garbage collecting old copies.

Instead, we take advantage of the availability of dis-
tributed replicas in a database cluster to run each read-only
transaction on a consistent snapshot created dynamically at
a particular replica for the pages in its read set. In addition,
we utilize the presence of update transactions with disjoint
working sets in order to enable non-conflicting update trans-
actions to run in parallel, thus exploiting the available hard-
ware optimally.

We augment a simple in-memory database with a repli-
cation module implementing a scheme that is i) eager by
propagating modifications from a set of master databases
that determines the serialization order to a set of slave
databases before the commit point, ii) lazy by delaying the
application of modifications on slave replicas and creat-
ing item versions on-demand as needed for each read-only
transaction.

In more detail, our fine-grained distributed multiversion-
ing scheme works as follows. A scheduler distributes re-
quests on the in-memory database cluster as shown in Fig-
ure 1. We require that each incoming request is preceded
by its access type, e.g. read-only or update. The sched-
uler is pre-configured with the types of transactions used
by the application and the tables each of them accesses [5].
It uses this information to categorize the incoming requests
into conflict classes [18], based on the set of tables that they
access. The scheduler assigns a master database to each
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Figure 1. System design.

conflict class. It sends all queries belonging to the update
transactions in each conflict class to the respective master
node. If no information on conflict classes is available or
if conflict classes cannot be statically determined, all up-
date transactions are scheduled on a single node designated
as master database. Read-only transactions are distributed
among the slave (non-master) database replicas as shown
in Figure 1. Read-only transactions can be scheduled on a
master replica as well as long as the set of tables they access
are not in the master’s conflict class. The master database
decides the order of execution of write transactions in each
conflict class it manages based on its internal two-phase-
locking per-page concurrency control. In our scheme, con-
flict classes are disjoint. Hence, there is no need for inter-
master synchronization, which permits a fully parallel exe-
cution of updates.

Each update transaction committing on a master node
produces a new consistent state of the database. Each
database state is represented by a version vector with a sin-
gle integer entry for each table of the application, called
DBVersion. Upon transaction commit, each master
database flushes its modifications to the remaining repli-
cas. The master communicates the most recent version vec-
tor produced locally to the scheduler when confirming the
commit of each update transaction. The scheduler merges
incoming version vectors and it tags each read-only trans-
action with the version vector that it is supposed to read
(i.e., the most recent version produced by all of the masters)
and sends it to a slave replica. Each read-only transaction
applies all fine-grain modifications received from a conflict-
class master, for each of the items it is accessing, thus dy-
namically creating a consistent snapshot of the database ver-
sion it is supposed to read.

Versions for each item are thus created dynamically
when needed by a read-only transaction in progress at a
particular replica. Specifically, the replica applies all local
fine-grained updates received from a master on the neces-



sary items up to and including the version vector that the
read-only transaction has been tagged with. Different read-
only transactions with disjoint read sets can thus run con-
currently at the same replica even if they require snapshots
of their items belonging to different database versions. Con-
versely, if two read-only transactions need two different ver-
sions of the same item(s), respectively they can only execute
in parallel if sent to different database replicas.

2.2. Version-Aware Scheduling

Dynamic Multiversioning guarantees that each read-only
transaction executing on a slave database reads the latest
data version as if running on a single database system. The
scheduler enforces the serialization order by tagging each
read-only transaction sent to execute on a database replica
with the latest version vector. The latest version vector con-
tains the most recent version communicated by the master
replicas on each respective table position.

The execution of read-only transactions is isolated from
any concurrent updates executing on the master replicas
whose write set intersects with the read set of the read-only
transactions. This means that a read-only transaction will
not apply and will not see modifications on items that were
written later than the version it was assigned.

Assuming that the read-only transaction has been tagged
with version V (v1, . . . , vn) by the scheduler, the slave
replica creates the appropriate version on-the-fly for all
items read by the transaction. Specifically, the slave replica
applies all local fine-grained updates received from each
master, only on the necessary items up to and including ver-
sion V (v1, . . . , vn).

The scheduler selects a replica from the set of databases
running read-only transactions with the same version vector
as the one to be scheduled if such databases exist. Other-
wise, it selects a replica by plain load balancing. In case of
insufficient replicas, read-only transaction may need to wait
for other read-only transactions using a previous version of
an item, or for update transactions writing the item to fin-
ish. A read-only transaction T1 may need to be aborted if
another read-only transaction T2 upgrades a shared item to
a version higher than that required by T1. If T1 has already
read a page with its assigned version, then reading a higher
version of a different page, would result in version inconsis-
tency. Since we do not keep old versions around, T1 would
need to be aborted in this case. However, we expect these
situations to be rare.

3. Implementation

Based on the standard MySQL HEAP table we have
added a separate table type called REPLICATED HEAP to
MySQL. Replication is implemented at the level of physical

1: MasterPreCommit(PageSet[] PS):
2: WriteSet[] WS = CreateWriteSet(PS)
3: Increment(DBVerVector, WS)
4: For Each Replica R Do:
5: SendUpdate(R, WS, DBVerVector)
6: WaitForAcknowledgment(R)
7: Return DBVerVector

Figure 2. Master node pre-commit actions.

memory modifications performed by the MySQL storage
manager. Since MySQL heap tables are not transactional
we add an undo and a redo log. The unit of transactional
concurrency control is the memory page. The redo log con-
tains a list of per-page modification encodings. Figure 2
shows the pseudo-code for pre-committing a transaction on
the master node. The parameter PS (from Page Set) is a
data structure maintaining all the pages that the transaction
modified. At pre-commit, the master generates the write-set
message with the modifications for each modified page. It
then increments the database version and sends the write-
set and the version that it would turn the database into to
all other replicas. The increment of DBVersion vector on
line 3 is implemented as an atomic operation to ensure that
each committed transaction obtains a unique version vec-
tor. After the pre-commit step completes, the master node
reports back to the scheduler that the transaction has suc-
cessfully committed and piggybacks the new DBVersion on
the reply. Finally, all page locks are released and the master
commits the transaction locally. The scheduler records the
new version vector and uses it to tag subsequent read-only
transactions with the appropriate versions they need to read.

4. Fault Tolerance and Data Availability

In this section, we first describe our reconfiguration tech-
niques in case of master, slave or scheduler node failures.
Second, we describe our mechanisms for data persistence
and availability of storage in the on-disk back-end database
tier. We assume a fail-stop failure model where failures of
any individual node are detected through missed heartbeat
messages or broken connections.

4.1. Scheduler Failure

The scheduler node is minimal in functionality, which
permits extremely fast reconfiguration in the case of sin-
gle node fail-stop failure scenarios. Since the scheduler’s
state consists of only the current database version vector,
this data can easily be replicated across multiple peer sched-
ulers, which work in parallel. If one scheduler fails and mul-
tiple schedulers are already present, one of the peers takes



over. Otherwise, a new scheduler is elected from the re-
maining nodes.

The new scheduler sends a message to the master
databases asking them to abort all uncommitted transactions
that were active at the time of failure. This may not be nec-
essary for databases that automatically abort a transaction
due to broken connections with their client. After the mas-
ters execute the abort request, they reply back with the high-
est database version number they produced. Then, the new
scheduler broadcasts a message to all the other nodes in the
system, informing them of the new topology.

4.2. Master Failure

Upon detecting a master failure, one of the schedulers
takes charge of recovery. It asks all databases to discard
their modification log records, which have version numbers
higher than the last version number it has seen from the
master. This takes care of cleaning up transactions whose
pre-commit modification log flush message may have par-
tially completed at a subset of the replicas but the master
has not acknowledged the commit of the transaction before
failure.

For all other failure cases, reconfiguration is trivial. The
replication scheme guarantees that the effects of committed
transactions will be available on all the slaves in the system.
Hence, reconfiguration simply entails electing a new master
from the slave replicas to replaces the failed master replica.
Thereafter, the system continues to service requests. In the
case of master failure during a transaction’s execution, the
effects of the transaction are automatically discarded since
all transaction modifications are internal to the master node
up to the commit point.

4.3. Slave Failure

The failure of any particular slave node is detected by all
schedulers. Each scheduler examines its log of outstand-
ing queries, and for those sent to the failed slave, the cor-
responding transaction is aborted and an error message is
returned to the client/application server. The failed slave is
then simply removed from the scheduler tables and a new
topology is generated.

4.4. Data Migration for Integrating Stale
Nodes

In this section, we present the data migration algorithm
for integrating recovering or other stale replicas. New repli-
cas are always integrated as slave nodes of the system, re-
gardless of their rank prior to failure.

The reintegrating node (Sjoin) initially contacts one of
the schedulers and obtains the identities of the current mas-

ters and an arbitrary slave node. We refer to this slave node
as the support slave.

In the next step, Sjoin subscribes to the replication
list of the masters, obtains the current database version
vector DBV ersion and starts receiving modification log
records. The node stores these new modifications into its
local queues, as any other active slave node without apply-
ing these modifications to pages. It then requests page up-
dates from its support node indicating the current version
it has for each page and the version number that it needs
to attain, according to DBV ersion, as obtained from the
master replicas upon joining. The support node then selec-
tively transmits only the pages that changed after the joining
node’s version to Sjoin.

In order to minimize integration time, all nodes im-
plement a simple fuzzy checkpoint algorithm [8], modi-
fied to suit our in-memory database. At regular intervals,
each slave starts a checkpointing thread, which iterates the
database pages and persists their current contents together
with their current version onto local stable storage. A flush
of a page and its version number is atomic. Dirty pages,
which have been written to but not committed, are not in-
cluded in the flush. However, our checkpointing scheme is
flexible and efficient, because it does not require the system
to be quiescent during checkpoints. Since our in-memory
database normally works with its data pages having differ-
ent versions at the same time, a checkpoint does not have to
be synchronous either across replicas or across the pages
checkpointed at each replica. Furthermore, a stale node
only receives the changed pages since its last checkpointed
version of each page. These pages might have collapsed
long chains of modifications to database rows registering
high update activity. Hence, our scheme allows for poten-
tially faster reintegration of stale nodes into the computation
compared to replaying a log of update transactions.

4.5. Fail-Over Reconfiguration Using Spare
Backups

Database fail-over time consists of two phases: data mi-
gration for bringing the node up to date and the new node’s
buffer cache warmup. An additional phase occurs only
in the case of master failure due to the need to abort unac-
knowledged and partially propagated updates, as described
in the master failure scenario above.

The data migration phase proceeds as in the algorithm
for stale node integration described in the previous section.
In the buffer cache warmup phase, the backup database
needs to warm up its buffer cache and other internal data
structures until the state of these in-memory data struc-
tures approximates their corresponding state on the failed
database replica. The backup database has its in-memory
buffer cache only partially warmed up, if at all, because it is



normally not executing any reads for the workload.

In order to shorten or eliminate the buffer cache warmup
phase, a set of warm spare backups are maintained for a
particular workload for overflow in case of failures (or po-
tentially overload of active replicas). These nodes may be
either idle e.g., previously failed nodes that have just recov-
ered or intentionally maintained relatively unused e.g., for
power savings or because they may be actively running a
different workload. The spare backups subscribe to and re-
ceive the regular modification broadcasts from the master
replicas just like active slave replicas. In addition, we use
two alternative techniques for warming up the spare backup
buffer caches during normal operation.

In the first technique, spare backups are assigned a num-
ber of read-only transactions with the sole purpose of keep-
ing their buffer caches warm. The number of periodic read-
only requests serviced by spare backups is kept at a mini-
mum.

In the second technique, a spare backup does not receive
any requests for the workload. Instead, one or more desig-
nated slave nodes collect statistics about the access pattern
of their resident data set and send the set of page identifiers
for pages in their buffer cache to the backup periodically.
The backup simply touches the pages so that they are kept
swapped into main memory. In this way, the backup’s valu-
able CPU resource can be used to service a different work-
load. For spare backups running a different workload, care
must be taken to avoid interference [21] in the database’s
buffer cache for the two workloads. This aspect is, how-
ever, beyond the scope of this paper.

4.6. Data Persistence and Availability in
the Storage Database Tier

We use a back-end on-disk database tier for data persis-
tence in the unlikely case that all in-memory replicas fail.

Upon each commit returned by the in-memory master
database for an update transaction, the scheduler logs the
update queries corresponding to this transaction and, at the
same time, sends these as a batch to be executed on one or
more on-disk back-end databases. Replication in the case of
the on-disk databases is for data persistence and availabil-
ity of data and not for CPU scaling; only a few (e.g., two)
on-disk replicas are needed. Once the update queries have
been successfully logged, the scheduler can return the com-
mit response to the application server without waiting for
responses from all the on-disk databases. The query log-
ging is performed as a lightweight database insert of the
corresponding query strings into a database table [21]. In
case of failure, any on-disk database can be brought up to
date by replaying the log of missing updates.

5. Evaluation

5.1. TPC-W Benchmark

We evaluate our solution using the TPC-W benchmark
from the Transaction Processing Council (TPC) [22], that
simulates an on-line bookstore.

The database contains eight tables: customer, address,
orders, order line, credit info, item, author, and country.
We implemented the fourteen different interactions speci-
fied in the TPC-W benchmark specification. The most com-
plex read-only interactions are BestSellers, NewProducts
and Search by Subject which contain complex joins.

We use the standard size with 288K customers and 100K
books, which results in a database size of about 610MB.
The memory-resident set of the workload is about 360MB
and it consists of the most-frequently accessed sections of
the database.

We use the three workload mixes of the TPC-W bench-
mark: browsing, shopping and ordering. These workloads
are characterized by increasing fraction of writes from the
browsing mix (5%) to the most commonly used workload,
the shopping mix (20%) to the ordering mix (50%).

5.2. Experimental Setup

We run our experiments on a cluster of 19 dual AMD
Athlons with 512MB of RAM and 1.9GHz CPU, running
the RedHat Fedora Linux operating system. We run the
scheduler and each of nine database replicas on separate
machines. We use 10 machines to operate the Apache
1.3.31 web-server, which runs a PHP implementation of the
business logic of the TPC-W benchmark and use a client
emulator, which emulates client interactions as specified in
the TPC-W document.

To determine the peak throughput for each cluster con-
figuration we run a step-function workload, whereby we
gradually increase the number of clients from 100 to 1000.
We then report the peak throughput in web interactions per
second, the standard TPC-W metric, for each configuration.
At the beginning of each experiment, the master and the
slave databases mmap an on-disk database. Although per-
sistence is ensured through an InnoDB database, our pro-
totype currently requires a translation of the database from
the InnoDB table format into the MySQL heap table for-
mat before initial mmap-ing. We run each experiment for a
sufficient time such that the benchmark’s operating data set
becomes memory resident and we exclude the initial cache
warm-up time from the measurements. Our experiments fo-
cus on demonstrating the system scalability, resiliency and
efficiency of failover.
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Figure 3. Comparison against InnoDB.

6. Experimental Results

In our experimental evaluation, we first show the perfor-
mance benefits brought about by our fast in-memory trans-
actional layer, compared to a stand-alone on-disk InnoDB
database, in Section 6.1. Then, we demonstrate fast re-
configuration under failures in our in-memory tier versus
a stand-alone InnoDB replicated tier in Section 6.2.

6.1. Performance Experiments

Figure 3 shows the throughput scaling we obtained over
the fine-tuned single InnoDB on-disk database back-end. In
the experiment InnoDB was configured for serializable con-
currency control. We performed experiments with 1, 2, 4
and 8 slave replicas respectively. Overall, we improve per-
formance over stand-alone InnoDB by factors of 6.5, 17.6
and 14.6 in our largest configuration with 8 slaves with Inn-
oDB for the ordering, shopping and browsing mixes respec-
tively. Furthermore, we can see that a performance jump
is seen from adding the in-memory tier even in the small-
est configuration due to its superior speed. Finally, sys-
tem throughput scales close to linearly with increases in in-
memory tier size for the browsing and shopping mixes and
less well for the ordering mix. This is caused by saturation
of our master database with update transactions including
lock waiting on the master as a side-effect of the costly in-
dex updates in our system (due to rebalancing for inserts in
the RB-tree index data structure). The read-only transac-
tions aborted due to version inconsistency are below 2.5%
out of the total number of transactions in all experiments.

6.2. Failure Reconfiguration Experiments

In this section, we first show a fault tolerance experiment
with reintegration of a failed node after recovery. Next, we
concentrate on fail-over onto backup nodes and we show
the impact of the three components of the fail-over path on
performance in our system: cleanup of partially propagated
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updates for aborted transactions, data migration and buffer
cache warmup. For this purpose, we inject faults of either
master or slaves in the in-memory tier and show reconfigu-
ration times in the following scenarios:

i) Stale backup case: Master or active slave failure with
reintegration of the failed node or integration of a stale
backup node. ii) Up-to-date cold backup case: Master
or active slave failure followed by integration of an up-to-
date spare backup node with cold buffer cache. iii) Up-
to-date warm backup case: Master or active slave failure
followed by integration of an up-to-date and warm spare
backup node. We also compare our fail-over times with the
fail-over time of a stand-alone on-disk InnoDB database.

6.2.1 Fault Tolerance with Node Reintegration Exper-
iment

In this section, we evaluate the performance of the node
reintegration algorithm we introduced in section 4. The
algorithm permits any failed node to be reallocated to the
workload after recovery. This implies a period of node
down-time (e.g., due to node reboot).

We use the master database and 4 slave replicas in the
test cluster configuration, running the shopping TPC-W
workload. Figure 4 shows the effect of reintegration on both
throughput and latency.

We consider the most complex recovery case, that of
master failure by killing the master database at 720 seconds
by initiating a machines reboot. We see from the graph that
the system adapts to this situation instantaneously with the
throughput and latency gracefully degrading by a fraction
of 20%. Since all slave databases are active and execute
transactions their buffer caches are implicitly warm. Hence
throughput drops no lower than the level supported by the
fewer remaining slave replicas.

After 6 minutes of reboot time (depicted by the line in
the upper part of the graph), the failed node is up and run-
ning again, and after it subscribes with the scheduler, the
scheduler initiates its reintegration into workload process-
ing as a slave replica. Since we used a checkpoint period of



40 minutes, this experiment shows the worst case scenario
where all modifications since the start of the run need to be
transfered to the joining node. It takes about 5 seconds for
the joining node to catch up with the missed database up-
dates. After the node has been reintegrated, it takes another
50 to 60 seconds to warm-up the in-memory buffer cache of
the new node, after which the throughput is back to normal.
The next section provides a more precise breakdown of the
different recovery phases.

6.3. Failover Experiments

In this section we evaluate the performance of our au-
tomatic reconfiguration using fail-over on spare back-up
nodes. In all of the following experiments we designate
several databases as backup nodes and bring an active node
down. The system immediately reconfigures by integrat-
ing a spare node into the computation immediately after the
failure.

We measure the effect of the failure as the time to re-
store operation at peak performance. We run the TPC-W
shopping mix and measure the throughput and latency that
the client perceives, averaged over 20 second intervals.

Depending on the state of the spare backup, we differen-
tiate failover scenarios into: stale backup, up-to-date cold
backup and up-to-date warm backup. In the stale backup
experiments, the spare node may be behind the rest of the
nodes in the system, so both catch-up time and buffer warm-
up time are involved on fail-over. In the up-to-date experi-
ments, the spare node is in sync with the rest of the nodes
in the system, but a certain amount of buffer warm-up time
may be involved.

Stale Backup

As a baseline for comparison, we first show the results of
fail-over in a dynamic content server using a replicated
on-disk InnoDB back-end. This system is representative
for state-of-the-art replicated solutions where asynchrony is
used for scaling a workload to a number of replicas.

In this experiment, the InnoDB replicated tier contains
two active nodes and one passive backup. The two ac-
tive nodes are kept up-to-date using a conflict-aware sched-
uler [6] and both process read-only queries. The spare node
is updated every 30 minutes. Figures 5(a) and 5(b) show
the failover effect in an experiment where we kill one of the
active nodes after 30 minutes of execution time. We can see
from the figure that service is at half its capacity for close
to 3 minutes in terms of lowered throughput, and higher la-
tency correspondingly.

We conduct a similar experiment interposing our in-
memory tier, having a master and two active slaves and one
30 minute stale backup. We used two active slaves, because
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Figure 5. Failover onto stale backup: compar-
ison of InnoDB and DMV databases.

in the normal operation of our scheme the master is kept
lightly loaded and does not execute read-only transactions.
Subsequently, we kill the master node to generate the worst-
case fail-over scenario that includes master reconfiguration.
The results are presented in figures 5(c) and 5(d). In this
case, the total failover time is about 70 seconds, less than
a third of the InnoDB fail-over time in the previous experi-
ment.

Furthermore, from the breakdown of the time spent in
the three fail-over stages presented in Figure 6, we can see
that most of the fail-over time in our in-memory Dynamic
Multiversioning based system is caused by the buffer-cache
warm-up effect. The figure also compares the durations of
the failover stages between the InnoDB and in-memory Dy-
namic Multiversioning cases. We can see that the database
update time during which the database log is replayed onto
the backup (DB Update) constitutes a significant 94 second
fraction of the total fail-over time in the InnoDB case. This
time reflects the cost of reading and replaying on-disk logs.
In contrast, the catch up stage is considerably reduced in
our in-memory tier where only in-memory pages are trans-
fered to the backup node. The cache warm-up times are
similar for both schemes. For the DMV case, there is an ad-
ditional 6 second clean-up period (Recovery), during which
partially committed update transactions need to be aborted
due to the master failure and master reconfiguration occurs.
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Figure 6. Failover stage weights: cleanup
(Recovery), data migration (DB Update) and
Buffer cache warmup (Cache Warmup)

Up-to-date Cold Backup

In this suite of experiments, the spare node is always kept
in sync with the rest of the system by sending it the log of
modifications.

In order to emphasize the buffer warmup phase during
failover, we used a slightly larger database configuration
comprised of 400K customers and 100K items. This yielded
a database size of 800MB and a resident working set of ap-
proximately 460MB. We use a three-node cluster: one mas-
ter, one active slave and one backup.

In this first experiment, the buffer cache of the spare node
is cold, so upon fail-over the database needs to swap-in a
significant amount of data, before achieving peak perfor-
mance. We run the TPC-W shopping mix and after approx-
imately 17 minutes (1030 seconds) of running time, we kill
the active slave database forcing the system to start integrat-
ing the cold backup. Figure 7 shows the perceived through-
put for the duration of the cold backup experiment.
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Figure 7. Fail-over onto cold up-to-date DMV
backup.

We can see that the drop in throughput is significant in
this case due to the need to warm-up the entire database
cache on the cold backup. It takes more than 1 minute until

the peak throughput is restored.

Up-to-date Warm Backup

In this section, we investigate the effect on fail-over perfor-
mance of our techniques for mitigating the warm-up effect.

In the first case, the scheduler sends 1% of the read-only
workload to the spare backup node. We conduct the same
experiment with the same configuration as above and we
kill the active slave database at the same point during the
run as in the previous experiment. As before, the system
reconfigures to include the spare backup. Figure 8 shows
the throughput for this case. The effect of the failure is al-
most unnoticeable due to the fact that the most frequently
referenced pages are in the cache.
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Figure 8. Fail-over onto warm DMV backup
with 1% query-execution warm-up.

Figure 9 shows the failover effect for our alternate
backup warmup scheme using page id transfers from an
active slave. The active slaves transfers page ids to the
backup every 100 transactions while the backup touches
these pages. We see that the performance in this case is
the same as that for periodic query execution allowing for
seamless failure handling.
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Figure 9. Fail-over onto warm DMV backup
with page id transfer.



7. Related Work

A number of solutions exist for replication of rela-
tional databases that aim to provide both scaling and strong
consistency. They range from industry-established ones,
such as the Oracle RAC [3] and the IBM DB2 HADR
suite [1] to research and open-source prototypes, such as
MySQL Cluster [17], C-JDBC [9, 10], Postgres-R [14] and
Ganymed [20].

The industry solutions provide both high availability and
good scalability, but they are costly and require specialized
hardware such as Shared Network Disk [3]. MySQL Clus-
ter [17] provides very fast in-memory replicated storage en-
gine with lazy logging of updates, similar to the one in our
system prototype. However, it uses traditional two-phase
locking for concurrency control which may stall readers ac-
cessing data that’s being modified. In contrast, our solu-
tion resolves read/write conflicts optimistically and hence
avoids thread blocking. Existing research prototypes use
commodity software and hardware, but they either have lim-
ited scaling for moderately heavy write workloads [5, 10]
due to their use of coarse-grained concurrency control im-
plemented in the scheduler, or sacrifice failure transparency
and data availability by introducing single points of fail-
ure [20]. Even the solutions that offer transparent fail-over
and data availability [5] do so by means of complex proto-
cols due to the crucial data that resides inside the scheduler
tier. In contrast, our solution provides transparent scalabil-
ity as well as fast, transparent failover. The scheduler node
is minimal in functionality, which permits extremely fast re-
configuration in the case of single node fail-stop scenarios.

Previous work in the area of primary-backup replica-
tion [24] has mostly followed a “passive backup as a hot-
standby” approach where the backup simply mirrors the up-
dates of the primary. These solutions either enforce a fully
synchronous application of updates to the backup or do not
enforce strict consistency although the backup does main-
tain a copy of the database on the primary. The backup is
either idle during failure free system execution [24] or could
execute a different set of applications/tasks. In contrast to
these classic solutions, in our replicated cluster, while back-
ups are used for seamless fail-over, a potentially large set of
active slaves are actively executing read-only transactions
with strong consistency guarantees.

More recent efforts towards integration of database fine-
grained concurrency control and replication techniques use
snapshot isolation [11, 23, 20] to minimize consistency
maintenance overheads. These solutions depend on support
for multiversioning within each database replica. In con-
trast, our solution dynamically creates the required versions
on a set of distributed replicas.

8. Conclusions

In this paper, we introduce novel lightweight reconfigu-
ration techniques for the database tier in dynamic content
web sites. Our solution is based on an in-memory replica-
tion algorithm, called Dynamic Multiversioning, which pro-
vides transparent scaling with strong consistency and ease
of reconfiguration at the same time.

Dynamic Multiversioning offers high concurrency by ex-
ploiting the naturally arising versions across asynchronous
database replicas. We avoid duplication of database func-
tionality in the scheduler for consistency maintenance by
integrating the replication process with the database concur-
rency control. Furthermore, we avoid copy-on-write over-
heads associated with systems that use stand-alone database
multiversioning offering snapshot isolation. We show how
a version-aware scheduler algorithm distributes transactions
requesting different version numbers across different nodes,
thus keeping aborts due to version conflicts at negligible
rates.

Our evaluation shows that our system is flexible and ef-
ficient. While a primary replica is always needed in our
in-memory tier, a set of active slaves can be adaptively and
transparently expanded to seamlessly accommodate faults.
We scale a web site using an InnoDB on-disk database back-
end by factors of 14.6, 17.6 and 6.5 for the TPC-W brows-
ing, shopping and ordering mixes, respectively when inter-
posing our intermediate in-memory tier with 9 replicas. We
also show that our in-memory tier has the flexibility to in-
corporate a spare backup after a fault without any noticeable
impact on performance due to reconfiguration.
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