Special Topics in Software Engineering: Dependable Systems

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE 1724, Winter 2009
Topics

- Overview
- What are dependable systems?
 - Why do we care about them?
- Why do systems stop?
 - What can we do about it?

Topics
- Class format
Overview

Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin

Sign up for class by joining class mailing list
 - Instructions available from class website

Seminar style course
 - Reading, discussion, presentation

No assignments

Project, presentation

No quizzes or final exams
What are Dependable Systems?
Dependable Systems

Hard to define, but examples are easy to find
- Transportation, e.g., cars, airplanes
- Appliances, e.g., toaster, fridge, TV
- Medical devices, e.g., MRI, X-rays, prosthesis
Dependable Systems

- Hard to define, but examples are easy to find
 - Transportation, e.g., cars, airplanes
 - Appliances, e.g., toaster, fridge, TV
 - Medical devices, e.g., MRI, X-rays, prosthesis

- Properties
 - Traditionally, have redundancy, keep running
 - Easily understood operation model
 - Allow monitoring for (well-documented) errors
 - Degrade gracefully

- Bug free? Secure? No configuration needed?
Computer Systems

- Tightly intertwined with our lives
 - Increased networking, e.g., wireless
 - Cheap devices, e.g., cell phones

- Complex, failure-prone and insecure

- Hard to manage

- Dependability problems dominate TCO
 - Total cost of ownership
Current Challenges

“The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture.”

— Researchers from Microsoft, 2005.
Current Challenges

“The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture.”

— Researchers from Microsoft, 2005.

Some key problems

- *Dependability*: frequent unexpected behavior
- *Security*: systems protect users from each other, not from outside threats
- *Configuration*: DLL hell
Insight

- Performance is not the only concern today
 - Few applications require all available resources

- Use resources to improve dependability

Examples

- Store all data versions to guard against data loss
 - Read “A Conversation with Jim Gray” (acmqueue.org)
- Replicate processes, data
- Use intrusion detection methods
Why Do Systems Stop?

Jim Gray, 1985
Conventional TP Systems

On average, fail for 90 min every 2 weeks

Restart time includes
 - Detection time
 - Time to take snapshot for later analysis
 - OS, database, communication n/w reboot
 - Client (e.g, ATM machines) reboot
 - Users take time to refocus on job

99.6% availability (2 weeks / (2 weeks + 90 min))
 - Sounds wonderful, isn't!
Highly Fault-Tolerant System

- Analyzed failure reports of 2000 systems running a fault-tolerant Tandem system
- Analysis covered 10M system hours
 - 1300 system years!
- 166 failures reported
- Mean time between failure (MTBF) = 7.8 years!
- Where did the failures occur?
Breakup of Failures

- 59 “infant mortality” failures
 - Recurrent failures due to new software or hardware
 - Bugs should have been fixed before deployment

Contributors to the other 107 failures

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>42.00%</td>
</tr>
<tr>
<td>Software</td>
<td>25.00%</td>
</tr>
<tr>
<td>Hardware</td>
<td>18.00%</td>
</tr>
<tr>
<td>Environment</td>
<td>14.00%</td>
</tr>
</tbody>
</table>

- Maintenance, operations, configuration
- Fire, flood, >4 hr power loss
Implications

- Reliability requires tolerating *software faults* and *administration errors*
- Hardware becomes more reliable over time
 - Hardware fault tolerance is feasible
- New and changing systems have higher failure
 - If it's not broken, don't fix it
- High % of outages caused by known bugs
 - Install software and hardware fixes ASAP
- Contradiction?
H/W Fault Tolerance

- Modularize hardware to limit faults
- Make each module fail-fast
 - Either it does the right thing or stops
- Detect faults promptly
 - Have module signal failure
- Configure extra backup modules
- Resulting MTBF is in years to decades!
S/W Fault Tolerance

- Use techniques similar to h/w fault tolerance?
- Software modularity via processes and messages
- Fail-fast modules
- Process-pairs to tolerate transient software faults
 - Bohrbug/Heisenbug hypothesis
- Transactions to provide data integrity
- Combine process-pairs and transactions
Administration Errors

“Dealing with system configuration, operations and maintenance remains an unsolved problem”

Topics
Main Topics

- Dependability Challenges
 - Faults and Defects
 - Security
 - Configuration

- Growing realization that avoidance is hard!

- Focus on
 - Detection
 - Isolation
 - Recovery
Faults and Defects

- Bug detection
- Fault isolation
- Failure recovery
Security

- Intrusion analysis and detection
- Safe execution
- Intrusion response
Configuration

- System misconfiguration
- Performance misconfiguration
Class Format
Overview

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin

- Sign up for class by joining class mailing list
 - Instructions available from class website

- Seminar style course
 - Reading, discussion, presentation

- Zero or more assignments

- Project, presentation

- No quizzes or final exams
Reading and Discussion

- Advanced
- Background in OS, security, N/W, distributed systems
- 2 papers per week
 - Unless marked optional, all papers are required reading
- Will take about 3-6 hours per week!
- Allows discussion in class
- It will show if you don't do the reading!
Presentation

For discussion, you must prepare five questions
 - One slide for each question
 - Then one slide for each of your answers

Detailed instructions on website

Please follow carefully
 - E.g., make sure you number slides!
 - Fonts should be reasonably large (>24)
 - Follow this style
Choosing A Paper

- First-come, first served
- Pick paper from website
- Send mail with your first choice to mailing list
- If you send me a paper choice that is taken, then you will be asked to send me another choice by mail and your mail will be queued at the back!
Assignments

There will be no assignments in this course
Project

- Choose a project based on topics covered
- Sample topics will be posted on website

Options
- Implement and evaluate a system
- Evaluate existing system
- Write a research paper

Write up your work
- 8-10 pages

Present your work
Grading Policy

- Class presentation: 30%
- Class project: 50%
- Class participation: 20%
Please join class mailing list at

http://www.eecg.toronto.edu/~ashvin

Thanks!