Introduction

Ashvin Goel

Distributed Systems, ECE 1746, Fall 2003
Topics

- Class format
- Characteristics of distributed systems
- Design issues in distributed systems
- Should distributed systems behave like centralized systems?
Class Format

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Please sign up on class website
 - Enrollment key: ece1746
- Seminar style course
 - Lots of advanced material
- Assignments, final exams - nope
- Quizzes - 4
- Project
What is a Distributed System?

- An integrated computing or information facility, that is
- Built out of many computers
- That operate concurrently
- That are physically distributed
- Have their own failure modes
- Have independent clocks
- But are linked by a network
Why do we have them?

- People are distributed but need to work together
- Hardware needs to be close to people
- Information is distributed, but needs to be shared
 - Issue of trust
- Hardware is distributed, but needs to be shared (resource sharing)
Examples

- Distributed Unix
- Commercial Transaction Systems
- WWW
- NetNews (Unix newsgroups)
Characteristics of Distributed Systems
Heterogeneity in Resources, Env

- Resource = hardware, networks
- Environment = OS, languages, implementation
- Data type representation, byte ordering, API, protocols
- Middleware - software layer that tries to hide these differences with uniform computational model
- Virtual machines - making code executable on any hardware, provide uniform environment
Openness

- System can be extended and re-implemented
- Interfaces published
- Uniform mechanism to access resources
- Heterogeneous h/w and software, provided that they conform to the specification
Concurrency

- Many users, hence many concurrent pieces of work
- Servers need to be responsible for many clients, so they need to be concurrent
- Many computers, hence many resources available for parallelism
- Concurrency allows parallelism
Scalability

- Resources
 - Adding physical resources
 - Adding software resources

- Users
 - Performance degradation
 - Challenge between distributing versus centralization of physical and software resources
Security

- Confidentiality: protection against disclosure to unauthorized individuals
- Secrecy
- Authentication
- Integrity: protection against alteration
- Availability: protection against interference with accessing resources
- Mobile code execution
Fault Tolerance and Availability

- Partial failures
 - Detect failure
 - Mask failure
 - Tolerate failure
 - Hardware redundancy
- Software recovery (rollback)
Design Issues in Distributed Systems
Naming

- We need names in order to use resources
- User-friendly names vs. internal (machine) names
- Issues in designing a namespace
 - Scale
 - Implementation of name lookup
Communication

- How does one computer "talk to" another?
- Latency vs. bandwidth
- Software Overhead
 - High-level programming model with low overhead!
Caching and Replication

- Alternative to remote access
- Distribution vs. centralization issue
Workload Allocation

- Load sharing
- Load balancing
Consistency Maintenance

- Updates
 - Immutable objects!
- Clocks
- Replicas
Exception and failure

- Exception: within specification of object
- Failure: outside specification of object
Transparency

Something hidden from the client

- **Access Transparency**
 - NFS vs ftp

- **Location Transparency**
 - Domain name vs IP address

- **Concurrency Transparency**
 - From whom is concurrency concealed? From the programmer? Or from the client?

- **Replication Transparency**
Transparency (2)

- Failure Transparency
 - Hide faults
- Migration or Mobility Transparency
 - Conceals movement of resources
- Performance Transparency
 - Allows system to be reconfigured to improve performance
- Scaling Transparency
 - Users
Quality of Service

Performance
 Throughput
 Latency
 Jitter
Reliability
Security
Should distributed systems behave like centralized systems?
Differences

- Latency
 - 4-5 orders magnitude
 - Object migration?

- Memory access
 - Local vs. remote address space
 - DSM? References instead of pointers?

- Partial failure
 - Impossible to mask!
 - No global state
 - Independent failures possible
 - Interfaces should expose failure!