Advances in Distributed Systems

An Introduction

Ashvin Goel

Distributed Systems, ECE 1746, Fall 2004
Topics

- Class format
- Characteristics of distributed systems
- Design issues in distributed systems
- Should distributed and centralized systems behave similarly?
Class Format

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining the class mailing list
 - Instructions available from class website
- Seminar style course
 - Lots of advanced material
- No quizzes or final exams
- Short assignments
- Project, presentation
What is a Distributed System?

- A computing facility built with many computers
 - That operate concurrently
 - That are physically distributed
 - Have their own failure modes
 - That have independent clocks
 - That are linked by a network
Why do we have them?

- People are distributed but need to work together
- Hardware needs to be close to people
- Information is distributed, but needs to be shared
 - Issue of trust
- Hardware needs to be shared (resource sharing)
Examples

- Distributed file systems
- Database systems
- Distributed operating systems
- WWW
 - Net news (newsgroups)
 - E-commerce web sites
 - Search engines
Characteristics of Distributed Systems
Heterogeneity in Resources, Env

- Resource = hardware, networks
- Environment = OS, languages, implementation
- Data type representation, byte ordering, API, protocols
- Middleware - layer that tries to hide these differences
 - Uniform computational model
- Virtual machines - run code on any hardware
 - Provide uniform environment
Openness

- System can be extended and re-implemented
- Interfaces published
- Uniform mechanism to access resources
- Heterogeneous h/w and software
 - Provided that they conform to the specification
Concurrency

- Many users
 - Many concurrent pieces of work
- Servers need to be responsible for many clients
 - Concurrency needed
- Many computers
 - Many resources available for parallelism
- Concurrency allows parallelism
Scalability

- Resources
 - Adding physical resources
 - Adding software resources

- Users
 - Performance degradation
 - Challenge between distributing versus centralization
Security

- Confidentiality: protection against disclosure to unauthorized individuals
 - Secrecy
 - Authentication
- Integrity: protection against alteration
- Availability: protection against interference with accessing resources
- Mobile code execution
Fault Tolerance and Availability

- Partial failures
 - Detect failure
 - Mask failure
 - Tolerate failure
 - Hardware redundancy
- Software recovery (rollback)
Design Issues in Distributed Systems
Naming

- We need names in order to use resources
- User-friendly names vs. internal (machine) names
- Issues in designing a namespace
 - Scale
 - Implementation of name lookup
Communication

- How does one computer "talk to" another?
- Latency vs. bandwidth
- Software Overhead
 - High-level programming model with low overhead!
Caching and Replication

- Alternative to remote access
- Distribution vs. centralization issue
Workload Allocation

- Load sharing
- Load balancing
Consistency Maintenance

- Updates
 - Immutable objects!
- Clocks
- Replicas
Exception and failure

- Exception: within specification of object
- Failure: outside specification of object
Transparency

Something hidden from the client

Access Transparency

NFS vs ftp

Location Transparency

Domain name vs IP address

Concurrency Transparency

From whom is concurrency concealed? From the programmer? Or from the client?

Replication Transparency
Transparency (2)

- Failure Transparency
 - Hide faults

- Migration or Mobility Transparency
 - Conceals movement of resources

- Performance Transparency
 - Allows system to be reconfigured to improve performance

- Scaling Transparency
 - Users
Quality of Service

- Performance
 - Throughput
 - Latency
 - Jitter
- Reliability
- Security
Should distributed systems behave like centralized systems?
“A Note on Distributed Computing”
Samuel C. Kendall, Jim Waldo, Ann Wollrath, Geoff Wyant
Differences

- Latency
 - 4-5 orders magnitude
 - Object migration?

- Memory access
 - Local vs. remote address space
 - DSM? References instead of pointers?

- Partial failure
 - Impossible to mask!
 - No global state
 - Independent failures possible
 - Interfaces should expose failure!
Class Format (For Late Comers)

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining the class mailing list
 - Instructions available from class website
- Seminar style course
 - Lots of advanced material
- No quizzes or final exams
- Short assignments
- Project, presentation
Choosing A Paper to Present

- First-come first-served
- Send email to mailing list