Dependable Software Systems

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE 1781, Winter 2018
Topics

- Overview
- What are dependable systems?
 - Why do we care about them?
- Why do systems stop?
 - What can we do about it?
- Topics
- Class format
Overview

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining class mailing list
 - Instructions available from class website
- Seminar style course
 - Reading, discussion, presentation
- No assignments
- Project, presentation
- No quizzes or final exams
What are Dependable Systems?
Dependable Systems

- Hard to define, but examples are easy to find
 - Transportation, e.g., cars, airplanes
 - Appliances, e.g., toaster, fridge, TV
 - Medical devices, e.g., MRI, X-rays, prosthesis

- Properties
 - Traditionally, have redundancy, keep running
 - Easily understood operation model
 - Allow monitoring for (well-documented) errors
 - Degrade gracefully
 - Simple configuration for users
Software Systems

- Tightly intertwined with our lives
 - Increased networking, e.g., wireless
 - Cheap devices, e.g., cell phones
- Complex and failure-prone
- Hard to manage

- Dependability issues dominate total cost of ownership
Current Challenges

“The products of forty years of OS research are sitting in everyone's desktop computer, cell phone, car, etc., — and it is not a pretty picture.”

— Researchers from Microsoft, 2005.

Some key problems

* Dependability: frequent unexpected behavior
* Security: systems protect users from each other, not from outside threats
* Configuration: DLL hell
Insight

- Performance is not the only concern today
 - Few applications require all available resources
- Use resources to improve dependability

Examples
- Store all data versions to guard against data loss
 - Read “A Conversation with Jim Gray” (acmqueue.org)
- Replicate processes, data
- Isolate sub-systems to reduce fault propagation
- Use bug detection, recovery methods
Why Do Systems Stop?

Jim Gray, 1985
Conventional TP Systems

- On average, fail for 90 min every 2 weeks
- Restart time includes
 - Detection time
 - Time to take snapshot for later analysis
 - OS, database, communication n/w reboot
 - Client (e.g, ATM machines) reboot
 - Users take time to refocus on job

- How available is the system?
 - 99.6% availability (2 weeks / (2 weeks + 90 min))
 - Sounds wonderful, isn't!
Highly Fault-Tolerant System

- Analyzed failure reports of 2000 systems running a fault-tolerant Tandem system
- Analysis covered 10M system hours
 - 1300 system years!
- 166 failures reported
- Mean time between failure (MTBF) = 7.8 years!
- Where did the failures occur?
Breakup of Failures

- 59 “infant mortality” failures
 - Recurrent failures due to new software or hardware
 - Bugs should have been fixed before deployment
- Contributors to the other 107 failures

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>42%</td>
</tr>
<tr>
<td>Software</td>
<td>25%</td>
</tr>
<tr>
<td>Hardware</td>
<td>18%</td>
</tr>
<tr>
<td>Environment</td>
<td>14%</td>
</tr>
</tbody>
</table>

- Maintenance, operations, configuration
- Fire, flood, >4 hr power loss
Implications

- Reliability requires tolerating *software faults* and *administration errors*
- Hardware becomes more reliable over time
 - Hardware fault tolerance is feasible
- New and changing systems have higher failure
 - If it's not broken, don't fix it
- High % of outages caused by known bugs
 - Install software and hardware fixes ASAP
- Contradiction?
H/W Fault Tolerance

- Modularize hardware to limit faults
- Make each module fail-fast
 - Either it does the right thing or stops
- Detect faults promptly
 - Have module signal failure
- Configure extra backup modules
- Resulting MTBF is in years to decades!
S/W Fault Tolerance

- Use techniques similar to h/w fault tolerance?
- Software modularity via processes and messages
- Fail-fast modules
- Process-pairs to tolerate transient software faults
 - Bohrbug/Heisenbug hypothesis
- Transactions to provide data integrity
- Combine process-pairs and transactions
Administration Errors

“Dealing with system configuration, operations and maintenance remains an unsolved problem”

Topics
Main Topics

- Bug finding and testing
- Debugging and failure diagnosis
- Fault isolation
- Failure recovery
- Updating software
- System misconfiguration
Class Format
Overview

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining class mailing list
 - Instructions available from class website
- Seminar style course
 - Reading, discussion, presentation
- Zero assignments
- Project, presentation
- No quizzes or final exams
Reading and Discussion

- Advanced
- Background in OS, networking, distributed systems
- At least 2 papers per week
 - Unless marked optional, all papers are required reading
- Will take about 4-6 hours per week
- Allows discussion in class
- It will show if you don't do the reading!
Presentation

For discussion, you *must* prepare five questions

- One slide for *each* question
- Then one slide for *each* of your answers
- That is a total of 10 slides at the end of the presentation
- The order is Q1, A1, Q2, A2,…,Q5, A5

Detailed instructions on website

Please follow carefully

- E.g., make sure you number slides!
- Fonts should be reasonably large (>24)
- Follow this style
Choosing A Paper

- First-come, first served
- Pick 2 papers you will present from website
- Send a message to the group mailing list
- Make sure that your choice is not taken
Assignments

- There will be no assignments in this course
Project

- Choose a project based on topics covered
- Sample topics will be posted on website
- Options
 - Implement and evaluate a system
 - Evaluate existing system
 - Write a research paper
- Write up your work
 - 8-10 pages
- Present your work
Grading Policy

- Class presentation: 30%
- Class project: 50%
 - Description: 5%
 - Mid-term report: 10%
 - Final report: 35%
- Class participation: 20%
Please join class mailing list and choose papers at

http://www.eecg.toronto.edu/~ashvin

Thanks!