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Abstract

Self-protecting systems require the ability to instantaneously detect malicious activity at
run-time and prevent execution. We argue that it is impossible to perfectly self-protect
systems without false positives due to the limited amount of information one might have at
run-time and that eventually some undesirable activity will occur that will need to be rolled
back. As a consequence of this, it is important that self-protecting systems have the ability
to completely and automatically roll back malicious activity which has occurred.

As the cost of human resources currently dominates the cost of CPU, network, and stor-
age resources, we contend that computing systems should be built with automated analysis
and recovery as a primary goal. Towards this end, we describe the design, implementa-
tion, and evaluation of Forensix: a robust, high-precision analysis and recovery system for
supporting self-healing. The Forensix system records all activity of a target computer and
allows for efficient, automated reconstruction of activity when needed. Such a system can
be used to automatically detect patterns of malicious activity and selectively undo their
operations.

Forensix uses three key mechanisms to improve the accuracy and reduce the human
overhead of performing analysis and recovery. First, it performs comprehensive monitor-
ing of the execution of a target system at the kernel event level, giving a high-resolution,
application-independent view of all activity. Second, it streams the kernel event informa-
tion, in real-time, to append-only storage on a separate, hardened, logging machine, making
the system resilient to a wide variety of attacks. Third, it uses database technology to sup-
port high-level querying of the archived log, greatly reducing the human cost of performing
analysis and recovery.
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1 Introduction

It is envisioned that self-protecting and self-healing systems have the ability to per-
fectly identify intrusions and recover from them. We argue that 1) it is impossible
to perfectly identify an intrusion while it is happening and 2) that in order to re-
cover from one after it has happened, one requires a complete and usable log of all
system activity. Consider, for example, an insider who logs in and starts deleting
files in the file system. From a system’s standpoint, it is impossible to recognize
malicious intent until after a certain amount of activity is observed.

The goal of Forensix is to build a computer equivalent to “TiVo” that supports
reliable reconstruction of all computer system activity for automatic and assisted
forensic analysis and recovery. Its overall approach is to log all system activity of
a target machine to a backend database. Queries are then issued on the backend to
quickly determine the source of malicious behavior and to selectively “undo” such
activity on the target machine. Using the case above, suppose the insider eventually
performs an activity that finally indicates destructive intent, the Forensix system
can then be used to automatically generate the entire activity tree of the session and
use it to roll back all of the modifications.

To be effective, the system must gather an accurate, high-resolution image of sys-
tem activities, sufficient for identifying a wide range of intrusions and answering
questions such as “where did the attack come from”, “what vulnerability was ex-
ploited”, and “which files did the attacker modify”. To support self-healing and
self-recovery, the system must also be able to generate a selective “undo” log that
allows the target system to be restored as if the intrusion never happened. In ad-
dition, the system activity log itself should be gathered in a tamper-resistant way,
so that intruders cannot modify it or remove it to obscure their tracks. The col-
lection mechanism should also not render the target system more vulnerable to
non-intrusion based assaults such as denial of service attacks. Ideally, the system
should have a small effect on the performance of the target system, and should be
affordable in terms of its resource requirements. Finally, it should facilitate efficient
and effective post-facto analysis, a process that is currently ad-hoc, time-intensive,
manual and error-prone. In order to support such properties, this paper describes
the design and implementation of Forensix: a high-resolution, analysis and recon-
struction tool.

2 Motivation

Currently, when a system is compromised, investigators manually sift for clues
based on the current state of the system and the log files that record the state of the
system as it was under attack. This operation method is inherently “lossy”, in that



vital information about where the hacker connected from, how the hacker entered
and what the hacker did after he entered was not collected or may have been deleted
by the hacker. This manual, error-prone process is unacceptable when considering
the goals of automatic self-protection and self-healing. Consider a compromise in
which the hacker has modified sensitive files to set up a backdoor into the sys-
tem. Upon discovery, it would be ideal if system administrators could issue simple
queries to the forensic system such as:

Query 1: Generate a list of sessions and processes that have written to the com-
promised files.

Query 2: Generate a system activity log for each session that was returned from
Query I in order to “undo” the activity.

There are many approaches for logging and auditing system usage, including appli-
cation and system log files, process accounting mechanisms, network traffic traces,
and file system checkers. While each has its strengths, none of them provide enough
information by themselves to accurately recreate what happened in the system. For
example, application and system log files only track events based on what the ap-
plications and system administrators think are necessary to log. Process accounting
mechanisms only provide information as to how commands are executed and can
fail to track what programs are doing internally. If a hacker downloads a binary onto
the system and executes it, process accounting alone will not be able to show what
the binary has done. For example, in the well-documented Mitnick case, a program
called zap2 was downloaded and compiled on the compromised system. The pro-
gram was then executed multiple times in order to delete login entries from the
system [26]. Network traffic traces alone are also problematic in that sessions are
typically encrypted. In addition, even when they are not encrypted, they are targets
for insertion and evasion attacks, thus making what has happened ambiguous [30].
It is also extremely difficult to correlate network forensic information directly to
higher-level application behavior that elucidates the actual damage done to the tar-
get system. Finally, file system activity logs can only detect modifications to files
and thus are unable to address attacks in which running processes are compromised
directly [11].

3 Design Goals

To adequately perform analysis and recovery, the following goals must be met:

(1) Completeness: The system should collect and log enough information to
completely capture user activity in order to efficiently reconstruct attacks. The
system should also be able to glue the who (the user) and the what (all of the
user’s activities) together. Such a system needs to ensure that all activity is
logged independent of system load. In addition, the system should be able



to support fail-closed operation when logging is compromised or disabled in
order to prevent loss of any necessary logging information.

(2) Authenticity: No one should be able to spoof logging messages or tamper
with the logging facility. Unlike the unauthenticated world of TCP/IP ses-
sions, a strong authenticated relationship must be built between the logging
facility and the storage system for the log data. The system should support
logging immutability that prevents history from being rewritten. As seen in
many cases, log files can be altered, which allows a hacker to change logging
history and makes self-healing impossible.

(3) Reproducibility: The forensic system should allow users to accurately deter-
mine who and what for a wide variety of system activities such as incoming
and outgoing network connections as well as files read or written by processes.
It should allow correlating data based on time as well as system abstractions
such as processes or sessions. The reconstruction process should be fast and
should be independent of the length of time the system has been running.

(4) Efficiency: The amount of data collected and its encoding size should be min-
imized. Although one method for achieving the previous goal of completeness
is a simple brute-force log of everything, this approach can hinder the ability to
perform accurate, high-performance replay and reconstruction, even when the
power and capacity of current hardware and software systems is fully lever-
aged. For self-healing to be practical, systems must be able to recover quickly
to reduce the downtime of the system and increase availability.

4 The Forensix approach

Figure 1 shows the architecture of Forensix, a system that attempts to meet the de-
sign goals listed above. With Forensix, the target system’s kernel is instrumented
with a logging facility. In its current implementation, the logging facility streams
system-call traces over a private network interface to a highly-secure backend stor-
age system. While system call logging is prone to such problems such as race condi-
tions, we are currently adapting our system architecture and approach to incorporate
other, more accurate forms of logging such as logging within well-placed locations
within the kernel and virtual-machine based logging [14]. This design is driven by
the observation that a successful attack can only be caused by system-calls issued
by processes running on the attacked system (provided the system is built cor-
rectly). Hence, if all system-call activity is captured and can be attributed to users,
processes or connections, then it should be possible to accurately reconstruct all
security incidents, immaterial of the type of attack. As a result, this approach helps
satisfy our goal of completeness. In addition to completeness, system call logging
provides compactness since Forensix does not record other, application-specific,
events that do not impact system state. Other methods for improving compactness
include data compression and suppressing system-call logging under certain con-
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Fig. 1. Forensix system architecture.

ditions, such as reads to load common shared libraries.

For tamper-proof and immutable operation, Forensix logs system-call activity over
a private network interface to a separate, append-only backend storage system with
console-only login access. Immutability is achieved via the file system or via CD-
R or DVD-R burning while tamper-proof operation is achieved by authenticating
each target system at startup and by exporting only a minimum set of network ser-
vices needed for securely logging system-call data. To support efficient and flexi-
ble querying, the backend periodically loads log data to a relational database. This
forms the basis for accurate and high-performance replay. Queries are efficient be-
cause the database allows indexing frequently queried fields such as the user ID,
the command executing the system call, and the starting time of the system call. In
essence, the database holds a data warehouse for forensic analysis and query. While
the amount of data being collected can be large, we argue that the system is feasible
given the capacity of networking, CPU, and storage capacity available today. As a
result, sacrificing some host and networking resources in order to add an automatic
healing capability will be a fairly attractive proposition. The following subsections
describe the logging facility and the backend storage system in more detail.

4.1 Kernel logging facility

To address the problems associated with the piecemeal logging approaches dis-
cussed in Section 2, Forensix logs within the kernel. In its current implementation,
all activity across the system-call interface is captured and logged. By collecting
all system-call activity and attributing this activity to individual connections and



sessions, the forensic backend will be able to recreate security incidents in an accu-
rate, application and attack-independent manner. As attacks and attack signatures
change, capturing activity at this point thus addresses the problem at a more funda-
mental, unified level. If the system is built correctly, the hacker will need to figure
out a way to compromise a system without using a process, file, or connection in
order to go undetected. For accurately attributing system activity to users, processes
or connections, the key issue for the logging facility is the type and the amount of
information needed.

The overall design of our logging system is founded on the notion that all intru-
sions start with a network connection or a console login, are processed by a dae-
mon (httpd, in.telnetd, in.ftpd, sshd, 1login, etc.) and cascade into
multiple system activities including other processes, file accesses, and outgoing
connections. Our high-level goal is to assign these system activities to the initiating
session, which helps to simplify and enhance the intrusion analysis and recovery
process.

Figure 2 shows a diagram of various system activities and their relationships. The
basic idea for capturing these relationships is to assign the identifier or the PID of
the process that executes the activity as ownership information to each link of the
graph. For example, incoming sessions, file accesses and outgoing connections are
all associated with a process, while process creation via exec or fork is associ-
ated with the parent process.

For single-thread processes, this relationship attributes activities unambiguously.
For example, one can derive the precise set of files accessed as a result of an in-
coming connection. Unfortunately, the relationship is more complicated for multi-
threaded daemon processes. Consider a modern web server employing a process-
mob architecture of pre-forked processes for handling requests. As several incom-
ing sessions can be active at any one time, assigning ownership of a suspicious
activity to a particular active session is difficult because threads can communi-
cate via non-system call channels such as shared memory accesses. Forensix uses
system-call tracing for achieving compactness, and while this approach may pre-
clude complete disambiguation, the timing of an activity can be used as an effective
discriminant. For example, the set of files accessed during the lifetime of a con-
nection can be discovered. Similarly, the set of connections whose lifetimes were
within the lifetime of a given connection and that accessed the previous set of files
(the set of suspicious connections) can also be easily determined using the relation-
ship graph. Based on the observations above, at a minimum, each system-call trace
record has an associated PID and a time-stamp that helps to construct the activity
relationship. Section 5 shows that this information allows constructing powerful
forensic queries. In the future, we plan on examining other low-overhead mecha-
nisms for unambiguously assigning ownership of activities to individual sessions.

Unlike previous approaches, which use system call sequences strictly for intrusion
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execve ("/bin/kill", ["kill"™, "11116"], [/* 62 vars */]) =0

uname ({sys="Linux", node="ren.cse.ogi.edu", ...}) =0

brk (0) = 0x804a9f4

open ("/etc/ld.so.preload", O_RDONLY) = -1

open ("/etc/1ld.so.cache", O_RDONLY) =3

fstat64 (3, {st_mode=S_TIFREG|0644, st_size=71060, ...}) =0

old_mmap (NULL, 71060, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40014000

close (3) =0

open("/1ib/i686/1libc.so.6", O_RDONLY) =3

read (3, "\177ELF\I\1\I\N0\O\O\NO\O\NO\NONO\NO\3\O\3\0O\I\0\0\0\260Y\1"..., 512)...
fstat64 (3, {st_mode=S_IFREG|0755, st_size=1452984, ...}) =0

0ld_mmap (0x42000000, 1290052, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0...

o0ld_mmap (0x42134000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, ...
old_mmap (0x42139000, 8004, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MA. ..

close (3) =0

old_mmap (NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,...
munmap (0x40014000, 71060) =0

brk (0) = 0x804a9f4

brk (0x804b9f4) = 0x804b9f4

brk (0) = 0x804b9f4

brk (0x804c000) = 0x804c000

open ("/usr/lib/locale/locale-archive", O_RDONLY|O_LARGEFILE) = 3
fstato64 (3, {st_mode=S_IFREG|0644, st_size=30309872, ...}) =0
mmap2 (NULL, 2097152, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40027000
mmap2 (NULL, 884736, PROT_READ, MAP_PRIVATE, 3, Oxl9a) = 0x40227000
mmap2 (NULL, 4096, PROT_READ, MAP_PRIVATE, 3, 0x298) = 0x40014000
close (3) =0

kill (11116, SIGTERM) =0

_exit (0) = 2

Fig. 3. k111 system-call trace.

detection purposes [12,17,20,39,24,4,35], Forensix captures each system call, its
timing, parameters, return values, the process issuing the call, and the owner of that
process, throughout the lifetime of the server. This type of information is difficult
to collect due to its size and semantic content. However, it is absolutely necessary,
as described in the previous section, to recreate system activity.

To get an idea of the type and amount of information that can be collected, Figure 3
shows the system call trace that results when the ki11 command is performed
on a process. While the trace is large, it is easy to identify the small number of
system calls that clearly modify system state and should be logged (i.e. the initial



execve call and the second to last kil1l call). The trace also demonstrates the
power of system-call traces over process accounting mechanisms. A wily hacker
could download a binary implementing k111 and name it something innocuous,
thus avoiding detection. When logging system calls, it will become extremely dif-
ficult to hide such an activity.

It is clear that a limiting factor of our approach is the storage space for information
being collected. As the capacity for processing and storing auditing information
grows, the capacity of the server being traced and its network connection will as
well. Fortunately, given the massive amount of unused local networking and stor-
age resources and the ability to acquire such resources at relatively modest costs,
we believe that the amount of data being collected is manageable. The fundamen-
tal reason for this is that it is clear that Moore’s law governing advances in hard-
ware systems is outpacing user and resource usage growth on the Internet. For
example, consider a popular web site such as http.://slashdot.org. While the site re-
ceives 50 million hits per month, its traffic growth has been outpaced by storage
advances [38].

4.2 Backend storage system

The main job of the backend is to receive trace data from the network and store it in
a form that allows issuing forensic queries. A simple form of storage is append-only
log files. While such log files will contain all information needed for performing
intrusion analysis, they will not necessarily be in a form amenable for efficient
searching and manipulation. For example, we anticipate the need to make forensic
queries such as

e Show all user sessions that executed /bin/sh from daemon processes other
than sshd, telnetd, or login and group sessions by user.

e Show all activity for a particular user session S, specified by a source IP address
and port, a user ID, and a connection timestamp.

To get some degree of efficiency, it is desirable to index data and ideally provide
complete DBMS query processing capabilities to run the types of queries described
above. To do so, Forensix stores the trace data in a relational database. While the
keys chosen for building indexes depend on the types of queries that are likely to be
executed, we have identified three candidate keys, process ID, time and incoming
connection identifier, based on our model of attributing ownership to activities.

In addition to fast queries, the backend must provide high throughput storage or
else it can become a bottleneck for the target system. The reason is that Forensix
ensures that logging information is not lost, i.e. fail-closed behavior, by matching
target system performance to the ability to log data and blocking the target system
when the backend is unable to keep up. A naive approach for building the backend



is to continually insert records from the log files into the database. However, this
approach places restrictive limits on rates that log file data can be absorbed, partic-
ularly because of the indexing overhead typically seen on multiple, small updates.
To address this problem, we use bulk loading facilities available in most DBMSs
for inserting large batches of traces with deferred indexing. Our experiments show
that this approach removes much of the cost of fine-grain index updates. We are
currently examining ways to avoid copying data from the log file to the database
during loading by constructing log files so that they can be directly mapped into the
data space of a specific DBMS.

5 Implementation

Forensix has been implemented on Linux and is freely available [1]. The imple-
mentation consists of 1) an auditing module and a sender daemon running on the
target system, 2) a receiver daemon and a database injector running on the back-
end, and 3) database queries and scripts that allow replay of system activities for
forensic purposes. Each is described below.

5.1 Target system

The auditing module of the target system consists of a Linux kernel module that
traps system calls and logs data in a kernel buffer. The module code hijacks the
system call table and adds stub code around several system calls to capture the
system call, its timing, its parameters, its return value and the PID of the process
making the call.

Based on our model of attributing system activity (see Figure 2), the system calls
traced fall broadly in the three categories: networking, process management and
file system. Network calls include such calls as connect, accept, listen
and shutdown. Process management calls include fork, exec, kill, exit
and setuid. Important file system calls include open, read, write, close,
symlink, 1ink, mount, unmount, dup and chown.

For tracing, Forensix adds stub code around system calls but does not change the
calls themselves. This approach allows building the auditing code as a separate
module but can introduce race conditions so that system activity cannot be com-
pletely reconstructed [18]. For example, a race condition exists between writing to
a file A via a symbolic link and modifying the symbolic link to point to a different
file B. Our stub approach may not accurately capture whether the file A or the file
B was written because the precise timing of the two operations (writing the file and
modifying the symbolic link) is not known to the tracing system. A solution to this



problem is to capture the output of pathname resolution while reading the symbolic
link during the write operation. While this solution is simple and similar techniques
can in principle be applied to resolve most timing-related race conditions, the code
will be more intrusive than our auditing code.

The sender daemon is a kernel process that reads data from the kernel buffer and
sends it over a private network to the backend. For fail-closed behavior, if this
process is unable to retrieve or send data, then the auditing module stops system
activity when the kernel buffer becomes full. This approach should provide auto-
matic hardening provided kernel code can be trusted more than user-level code.
Finally, the kernel buffer is statically sized based on the total available memory
in the system, such as 10% of memory. While we believe that this technique will
work well for most systems, other sophisticated approaches, such as buffer tuning
for TCP sockets [37], could be applied in the future if the buffer often becomes a
bottleneck.

5.2 Backend

The receiver daemon on the backend is a simple process that reads data from the
network and stores it to human-readable, tab-separated, log files that is periodically
loaded into a database. In Forensix, the database is optimized 1) for bulk loading
(with index generation) and 2) for queries. In particular, data is read-only after it
has been loaded and thus transactional guarantees are not essential.

The database stores several tables for the system call traces. The main table is
called event s, which stores common attributes, such as id, time, PID and return
value, of every system call event. Data from system calls that is unique to specific
calls is stored in separate tables to reduce redundancy and minimize the chances
of inconsistency. Examples of such tables include io, dup and connections.
The io table stores all reads and writes, while the dup table stores file opens,
closes and file descriptor duplications. The connections table stores network-
related system calls. In addition to these basic tables, Forensix constructs special
database tables upon batch insertion to accelerate subsequent query processing.
These “interval” tables precompute time-based attributes of files, connections, and
processes that are common to many of the queries being performed.

5.3 Queries

In order to be useful, a powerful set of queries must be supported for post-facto
analysis. Table 1 lists some examples of queries we have implemented. Simple
queries are implemented using SQL directly.
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Table 1
Examples of Forensix queries.

Query Name

Arguments

Output

Active_Processes

start_time,

List all active processes within a

start_time,
end_time

end_time given time interval.
Immediate_Children | PID List all immediate children of a
process.
Children PID List all children of a process.
Immediate Parent PID List immediate parent of a pro-
cess.
Parents PID List all parents of a process.
FDs_written PID, List all file descriptors written

by a process within a given time
interval and the time they were
written.

All FDs

PID,

filename,

fd_list, time

List all file descriptors that re-
fer to a filename or to other file
descriptors in fd_list at a given
time.

Did_Process_Write

PID,

filename,

start_time,

Did process write to filename
within a given time interval?

end-time

Writers filename, List all processes that wrote to
start_time, filename within a given time in-
end_time terval.

I0 PID, fd.list List the timing and the data for
I/0 performed on file descriptors
in fd_list by a process.

Replay_Shell PID Run I0 query on file descriptors

0, 1 and 2 for a shell process.

6 Evaluation

A viable auditing and replay system should have low auditing overhead, reason-
able space requirements and should be able to replay system activity in near-time.
Hence, to evaluate Forensix, we performed two types of experiments that measure
the performance and space overhead induced by auditing and the time taken to run
queries. To measure system overhead, we ran two benchmarks on the target system:
1) Linux kernel build and 2) Webstone. The kernel build benchmark is mainly CPU
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Table 2

Kernel build times.

Auditing off | Auditing on | Auditing on

Network off | Network on

Total Time 23325 | 247.1s(6%) | 252.0's (8%)
System Time 14.0s 26.3s 30.7 s

The total time represents the time to complete compilation of the Linux kernel.
The numbers in parenthesis represent the increase in completion time under Foren-
six versus standard Linux.

bound and does not stress the system much. However, it determines the viability
of Forensix when running similar applications in a regular desktop environment.
The second benchmark, Webstone, stresses a web server and is representative of a
loaded server environment.

Our experiments were run on 1.8 GHz Intel Pentium-4 processors with 1 GB of
memory. Both the target and the backend machines had the same configuration.
In addition, for Webstone, the client process was run on a third similar machine.
All the machines are connected with a gigabit network. The connection between
the target machine and the backend machine was on a separate VLAN so it was
not affected by other traffic, such as the client to target machine traffic during the
Webstone benchmark. All machines run Redhat Linux 2.4.20 with the ext 3 file
system and the target machine runs the Forensix auditing module. The backend
machine uses the MySQL version 3.23 database.

6.1 Target system

Table 2 shows the results of the kernel build benchmark. The base result for build-
ing a kernel under Linux without Forensix auditing is shown under the “Auditing
off” column. The second “Auditing on, Network off” column shows the results
when auditing is turned on in the kernel and the sending daemon retrieves data
from the kernel but does not stream it to the backend. In the final column, data is
also streamed to the backend and stored in log files. The numbers in the table are
generated by running the t ime command on the kernel build process.

The table shows that the benchmark completion time in our unoptimized implemen-
tation increases by 6% when auditing and by 8% when auditing and transmitting
data. We believe that this overhead is a small price to pay for the ability to accu-
rately and systematically reconstruct system state to capture the increasing number
of system compromises we see today. Note that, as expected, almost all the addi-
tional time is spent in system activity.
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Table 3

Webstone throughput.
Auditing off | Auditing on | Auditing on
Network off | Network on
Throughput (Mb/s) 296.8 | 276.2 (93%) | 186.87 (63%)

The Webstone benchmark stresses a standard Apache web server running on the tar-
get system by issuing back-to-back client requests. Figure 3 presents the key results
for this benchmark, the throughput achieved by the web server. All the Webstone
tests were run for approximately 36 minutes. The “Auditing off” column is the
base throughput under Linux without Forensix auditing. The next column shows
the throughput when auditing data and retrieving it from the kernel. The decrease
in throughput in this case is 7%, which is similar to the overhead observed earlier
for the kernel build benchmark.

The final column shows the result when data is also streamed to the backend and
stored in log files. In this case, the throughput decreases by as much as 36%. Cur-
rently, we are in the process of profiling the kernel to investigate the reasons for this
decreased throughput. However, we believe that there are two obvious optimiza-
tions that will help improve our results. First, our implementation is unoptimized
and uses a very simple memory allocation mechanism for storing trace data. We
expect that improving the auditing module’s memory allocator will significantly
reduce performance overhead. Second, for simplicity, the auditing module copies
code from the kernel to the user space which is then copied back to the kernel to be
sent to the backend. To minimize copies, data can be sent to the backend directly
from the kernel. This optimization will also help reduce pressure from the memory
subsystem.

6.2 Backend system

To evaluate the throughput of the database, we measured the row insertion rate of
the database, i.e. the actual number of rows that can be inserted per second in the
database. For the Webstone log files, the MySQL database could be bulk loaded at
approximately 7400 rows/second. We also measured the row generation rate or the
number of rows that are generated per second as data is captured in log files in real-
time. For the Webstone test, the row generation rate is 17900 rows/second. This
result indicates that for near-time intrusion analysis, where database loading takes
less time on average than data generation, the web server can be heavily loaded for
no more than 40% time during the day. We expect that this limitation will not be a
problem in practice because of typical diurnal server activity [8].

Next, we measured the space requirements of the compressed log files for the kernel
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build and the Webstone benchmarks. For the kernel build benchmark, the log files
grow at 8.8GB/day, while for the Webstone benchmark they grow at 30GB/day.
There are several reasons that these numbers are significantly larger than compara-
ble data generated by ReVirt [14]. The first is that, unlike Forensix, ReVirt does not
log filesystem 1/O, relying instead on periodic checkpoints whose storage costs are
not reported. Moreover, if checkpoints are infrequent, then replaying system activ-
ity for forensic analysis can take a long time, as much as the time period since the
last checkpoint. The second reason is that we use a Gigabit network in our Web-
stone experiments and thus produce much more data than the 100 Mb/s network
used in evaluating ReVirt. Normalizing for network speed, the Webstone log-file
growth rate for Forensix is comparable to ReVirt.

6.3 Queries

In order to be useful, queries must be efficiently supported in near real-time. For
evaluation, the Webstone benchmark was re-run and at the same time a user edited
the /etc/passwd file on the target machine. We executed the Replay_Shell
query (which uses the IO query, see Table 1) with the PID of the shell process in
which the password file was modified. This complex query took under 10 seconds
to run under MySQL, which we believe is a reasonable time to replay this system
activity.

7 Forensix in practice

In this section, we describe results from experiences in using Forensix on a hon-
eypot target system that was attacked multiple times during the course of a week.
Then we show that our analysis tools that can be used interactively even on large
data sets. Finally, we evaluate the performance overhead of the system and show
that complete auditing imposes a small performance overhead and it is economi-
cally feasible to store all audit data for several months.

7.1 Setup

Our honeypot setup consists of a target and a backend machine both running AMD
Athlon MP 2600+ machines with 512 MB RAM. The target runs stock RedHat 7.2
that has well-known vulnerable services including Apache httpd with SSL, Wu-
ftpd, Sendmail, SAMBA and the ptrace exploit. We used the Snort network intru-
sion detection tool to detect potential intrusions. The backend machine is connected
to the target on a separate network and has a firewall with a single open port that
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/bin 74 /bin/kill 05-12 17:11:58
/bin/ps 05-12 17:11:46

/dev 3

/etc 84 /etc/passwd 05-12 17:11:20

/home 11

/1lib 588

/root 3 /root/.bash_history 05-12 18:40:32
/sbin 175 /sbin/ldconfig 05-12 17:12:09
/tmp 26

/usr 26 /usr/bin/killall 05-12 17:11:46
/var 452

Fig. 4. File-accesses for ftpd attack.

only allows a single connection from the target machine. The backend machine
uses the MySQL version 4.1.10 database.

The target was run with the vulnerable services for approximately a week from
May 11th until May 18rd, 2005. During this time, the target was attacked externally
with the Wu-ftpd remote root exploit around Spm on May 12th. We shut down the
machine later that evening and reinstalled a new target system next morning.

7.2 Analysis of Ftpd Attack

In a typical ftpd intrusion, a remote attacker gains root access to the vulnerable
system. On May 12 around 17:10 Snort reported an anonymous FTP login followed
by command overflow attempts that contained shellcode. While Snort helps with
detecting attacks, it provides little information about what actually happened on
the system. To look for any recent changes in the file system, we ran a file-access
tracking query to list all the files or directories modified between 17:00 and 19:00
of that day. A partial report, shown in Figure 4, lists the modified files grouped
by root directories and their last modification times. The numbers in the second
column show the number of modified files. Based on this report, we suspected that
a rootkit had been installed.

Next we ran queries to calculate a dependency graph using the modified /usr/bin/killall
(shown above) as one of the detection points. A partial resulting graph is shown in
Figure 5. It shows the bash process that was spawned by the ftp daemon, the use of
the passwd command and downloading of the rk.jpg file.

We then queried the backend for any instances of /dev/pts/x creations between
17:00 and 19:00. This query returned one row that showed that an interactive shell
was used from 17:12 until 18:40. A query to obtain the process owner showed that
this attacker’s shell was run as root. Next, we used queries to obtain IO data in order
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xinetd

xinetd 69.167. XXX XXX

\

in.ftpd

ftp.pids-all bash

S

bash bash

\

bash bash useradd

shadow+ passwd+
shadow passwd
passwd group+
group

65.113. XXX XXX
passwd
VS

wget tar

rk.jpg tar @

Fig. 5. Tracking the FTP intrusion.
to replay the shell. Key output from the shell session is shown in Figure 6.

Using our IO tracker, we recreated the removed psyBNC.tgz file that acts as both
an IRC bot and an IRC bouncer or anonymizer. Its executable files are disguised
as crond. The attacker runs the SucKIT rootkit that is loaded through /dev/kmem
and does not need a kernel with support for loadable kernel modules [34]. With the
rootkit, the attacker tried to hide the fake crond process but since we use LIDS [46]
on the target system to disable writes to /dev/kmem, the attacker was not successful.
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[root@rex wwwl# ftp -v 65.113.XXX.XXX

Name: XXXXXXX

Password:

get psyBNC.tgz

[rootW@rex www]# tar xzvf psyBNC.tgz

[root@rex www]# rm -rf psyBNC.tgz

[root@rex md4all# crond

Listening on: 0.0.0.0 port 6001

Thu May 12 17:18:11 :psyBNC2.3.1-cBtITLdDMSNp started (PID
:3975)

[root@rex .sk1l2]# ./sk 1 3975 [= SucKIT version 1.3a, Jan 27
2005 =]

Can’t open /dev/kmem for read/write (1)

[root@Rrex www]# w

6:40pm up 4:20, 0 users,

[rootRrex logl# pico /var/log/messages

[root@rex www]# logout

Fig. 6. Shell replay for the ftpd attack.

Based on the dependency tracker graph, we recreated the removed rk.jpg file that
installs a backdoor and then clears its traces from log files. To find out more about
the backdoor, we issued a query on the connection and the process interval tables
to find out about open ports between 17:00 and 18:00 and found a process called
sendmail that was listening on port 212 from 17:12 and was used to run the inter-
active shell. Based on the analysis of this attack, it seems to be similar to the report
available from the Honeynet Project [45].

7.3 Analysis Results

The total time taken to run each of the queries described above is shown in Table 4.
This table shows that all these queries run quickly and can be used by an interactive
user.

8 Self-healing via selective recovery

In this section, we describe the design of our selective-recovery tools that have been
built over the Forensix audit system described in the previous sections. Selective re-
covery is necessary for self-healing systems so that they can keep running with min-
imal disruption after a compromise or other damage. The selective recovery tools
we have built recover file system data after a remote intrusion or after local damage
has occurred (e.g., management errors, disgruntled employees). This approach al-
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Table 4
Time taken for each query.

Ftpd attack analysis Time taken
List all the modified files and directories 20s
Find root-owned setuid files that were executed by non-root 7
processes
Dependency graph generation 25s
Finding the interactive shells <l1s
Finding uid of the shell process <ls
Replaying attacker’s shell 1s
Recreation of the removed attack files 3s
Finding execves issued by children of compromised in.ftpd s
Finding the listening port set by the attack code <l1s

lows systems to be more resilient to intrusions [2]. Selective recovery is the process
of undoing “tainted” file-system modification activities while preserving legitimate
activities. It has similarities with system software upgrade where the upgrade can
be selectively rolled back without affecting the rest of the system [6,16].

Selective recovery presents two main challenges. First, the set of tainted file-system
activities, or activities that were “affected” by the malicious activity, must be de-
termined. Unlike with software upgrades, where the set of files associated with
the upgrade is known, tainted activities can occur at arbitrary locations and can be
the result of direct damage from an authorized user account or from an intrusion.
Furthermore, determining such tainted activities can be difficult as they may be per-
formed directly by the malicious entity or indirectly via a legitimate process that
is vulnerable to attack. For example, consider a web server that services a mali-
cious connection that in turn sets up a back-door to the system. The attacker then
logs into the system via the back-door. If the web-server’s activities are marked as
tainted forever [23], then every future server activity will be tainted even though
the server performs logically distinct and unrelated activities. Ideally, only the file-
system activities related to the malicious connection and the back-door should be
undone.

The second issue with selective recovery is that certain legitimate activities can
depend on tainted activities. For example, a tainted activity may create a file that is
later modified by a legitimate activity. We term such activities as “conflicting”. With
selective recovery, the challenge is to preserve legitimate file-system modification
activities, minimize or isolate the ill-effects of conflicting activities, and at the same
time, automate recovery as much as possible.

18



8.1 Selective recovery approach

The Forensix logs relate file-system activities to processes and allow analysis tools
to replay execution. Using this rich source of audit information, a dependency ana-
lyzer is then run to create dependencies between processes, files, and sockets. These
dependencies are based on the activities performed. This analysis and an initial set
of externally provided tainted processes, files or sockets (e.g., either by an admin-
istrator or an intrusion detection system) helps derive the set of tainted activities.
Finally, this set is used to selectively undo the effects of tainted file activities.

The choice of the set of tainted activities involves an inherent tradeoff in selective
recovery. This set can be chosen conservatively, which simplifies the recovery pro-
cess, but can mistakenly mark legitimate activities as tainted, causing legitimate
data to be lost. In contrast, an optimistic choice helps preserve legitimate activity,
but can miss tainted activities, thus making recovery less effective. Our analysis ex-
poses this tradeoff by providing a choice of dependency policies, from conservative
to optimistic. The most conservative policy taints all data after an attack and hence
recovery leads to a snapshot of the file system before an attack. The optimistic
policies recover data selectively by either limiting or ignoring dependencies. For
example, we can optimistically assume that the web server’s activities across dif-
ferent connections are unrelated and explicitly limit dependency within the server
process to a certain time interval based on the connection it is serving.

The optimistic analysis policies lead to conflicts during recovery where legitimate
activities that need to be preserved may “depend” on tainted activities that are un-
done. To enable automatic conflict resolution during recovery, we separate file-
system activities into name, content and attribute activities and apply recovery ac-
tions to each type of activity separately. This approach simplifies resolution, allows
recovery actions that are suited for each type of activity, and enables dealing with
name and attribute conflicts completely automatically.

8.2 Example scenarios

We evaluated the functionality of the selective recovery system using several dif-
ferent attack or local damage scenarios that are briefly described below. For each
scenario, we also describe the correct recovery action that should be taken. We then
carried out these scenarios with Forensix logging turned on and used the logs to
compute the set of recovery actions. We report in Section 8.3 on how the calculated
recovery actions correspond to the stipulated recovery actions.
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8.2.1 lllegal storage

A guest user logs into the system and executes the sendmail attack to get a root
shell and creates a new root account by directly writing to the /etc/passwd and the
/etc/shadow files. Later, the attacker logs in via this new account and changes the
/etc/ftpaccess file so that anonymous users can create or delete files in the system.
Finally, he uploads 500 illegal pictures into the system as an anonymous user.

Correct recovery action: Remove all the pictures, the files in /var/spool/mqueue
that are generated by the sendmail attack and the home directory of the attacker’s
root account. In addition, the legitimate versions of the /etc/ftpaccess, /etc/passwd
and /etc/shadow files need to be recovered.

8.2.2 Unhappy student

An attacker launches a remote attack on the wu-ftpd daemon running on the system.
The attacker gets a root shell and downloads, compiles and installs a bindshell back-
door. In addition, the attacker modifies a professor’s home directory to be globally
writable. Later, student A with a regular account creates a file in his own directory
and then replaces the professor’s grades file with a new file. Then student B copies
the modified grades file to his own home directory.

Correct recovery action: Shut down the back-door process, recover the original
grades file in the professor’s directory, restore the attributes of the directory and the
file and remove the copy of the file in student B’s home directory.

8.2.3 Content destruction

A software developer has been working on the files src/project.c, hfiles/p1l.h and
hfiles/p2.h. He has also saved a backup of the C file in backup/project.c.bak. An-
other developer on the system launches the pwck local escalation exploit to get a
root shell. This attacker deletes the project.c and p2.h files. The victim notices that
the project.c file is missing. He copies the backup file and moves the p1.h file to the
src directory. Then, he deletes the hfiles directory and notifies the administrator.

Correct recovery action: Restore the hfiles directory, restore p2.h file into this
directory, recover the original project.c file and deal with the two different versions
of this file (the one copied by the user and the original deleted version).

8.2.4 Software installation

The next two scenarios present and analyze system administration errors. Using a
root account, we installed the Realplayer 8 in the wrong directory which caused
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it to create many files and subdirectories in this directory. In addition, it created
or updated various Netscape, KDE and Gnome configuration files or directories in
/root.

Correct recovery action: All the Realplayer files and subdirectories should be
removed and the configuration files should be restored.

8.2.5 Inexperienced administrator

We download Gallery, a popular web-based photo album application. The Gallery
administrator creates two accounts, one for himself and the other for a guest with
a easily guessable password. The administrator then adds new albums and pictures
to the website. Concurrently, an attacker logs in by correctly guessing the password
of the guest account from a different remote site. The attacker creates a new album
and a few pictures in this new album and visits the administrator’s album. Then the
administrator visits the attacker’s album and detects a problem.

Correct recovery action: Remove the attacker’s album and all related data (e.g.,
thumbnails) generated by Gallery.

8.3 Selective recovery evaluation

In all cases above, our selective recovery system produces less than two false pos-
itives (legitimate activity is marked tainted) or negatives (tainted activity is not
caught) even though the number of recovery actions ranges between 5 to 1200.
Given this positive result and the widely different scenarios and the recovery ac-
tions described above, we believe that our selective recovery system forms a good
basis for a self-healing tool.

9 Related Work

This work consists of two main components, analysis and recovery. We focus on
related work in these areas in turn.

9.1 System analysis and replay

System call traces have been used in the past to identify normal system behavior
and then to automatically detect suspicious behavior or intrusions [20,36,39]. How-
ever, these approaches examine system-call patterns over a short window of 5-100
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calls and are insufficient for completely capturing system activity for forensic pur-
poses. In contrast, Forensix captures system calls, their timing, their parameters,
their return values, the process making the call and their owners throughout the
lifetime of the target system for accurate replay.

Forensix enables the off-line execution of techniques similar to those found in the
STAT and USTAT systems which employ state transition diagrams to identify sus-
picious activities [21,15,28]. Forensix differs from these systems in that the auditing
is done within the kernel at the system call level and the audit trail is securely trans-
fered to an append-only backend storage system. The information being gathered
is thus a super-set of that collected by the audit records in USTAT and is stored
remotely in a secure manner. It should be possible to take the system call records
and recreate the audit records of USTAT at the database backend and to run USTAT
along with other intrusion analysis tools such as Tripwire [22]. In addition, because
the information itself is archived, the information can be re-analyzed as additional
knowledge is gained on specific intrusions.

Our analysis tools are directly motivated by the BackTracker [23] that uses a time-
based approach to generate dependencies between processes, files and sockets and
uses the dependency graph to view intrusions. The primary difference between the
two stems from the difference in their goals. While the BackTracker is focused on
tracking the sources of an intrusion, our analyzer generates a set of tainted files that
need to be recovered. As a result, the BackTracker’s tainting policies are conser-
vative or else it would miss the intrusion, while we provide optimistic policies so
that data can be preserved during recovery as much as possible. In addition, our
optimistic policies use interval-based analysis and dependency sources to limit the
effects of tainting. Another difference is that BackTracker does not provide precise
details about all of the system activities. For example, it would show the steps that
led to the modification of a sensitive password file, but does not show the precise
changes made to the file. For the latter information, BackTracker must be used in
combination with ReVirt, which places the system within a virtual machine and
logs the VM-to-host instruction system. The clear advantage of ReVirt is that it re-
moves non-determinism by serializing all system activity at the logging point and
hence allows complete system replay. Another advantage is that the virtual machine
approach does not require kernel integrity. However, unlike Forensix, ReVirt can-
not support arbitrary queries without forcing the user to replay the entire instruction
stream. On a heavily loaded system, such replay requires time that is proportional
to the length of time the system has been running since the last checkpoint. Since
forensic analysis is often an iterative process, such an approach defeats the initial
goal of our work in reducing the time and human overhead required to perform
forensic analysis.

Garfinkel [18] discusses the problems associated with system call interposition

based security tools. Many of the problems described, such as argument races, oc-
cur due to user-level interception and do not exist in Forensix where auditing occurs
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within the kernel. However, an important problem is understanding the complex
Unix API and its side effects so that queries can be implemented correctly. Another
problem is race conditions due to time-of-check/time-of-use bugs [5]. The main
one we identified was traversal of symbolic links and relative pathnames during file
system operations. Both can be solved by capturing the output of pathname res-
olution while reading the symbolic link during the file system operation. Quinlan
and Dorward discuss a novel approach for storing append-only archival data [32] in
Venti. Like in various peer-to-peer storage systems [13,10], data blocks for archival
storage in Venti are identified by a collision-resistant hash, which eases the secure
implementation of append-only storage. Such an approach could be used for the
Forensix backend.

9.2 System recovery

Magpie [3] extracts the control flow and the resource requirements of requests in
a clustered server environment by monitoring kernel and application-level events
and correlating these events using an application-specific event schema. Magpie
uses interval-based correlation similar to our dependency analysis. However, while
Magpie uses undirected dependencies to clustered sets of events, our analysis uses
directed dependencies to derive data flow. Data lifetime analysis using system-level
simulation [9] or hardware-based information flow [42] allows detecting or pro-
tecting programs against malicious software attacks by identifying spurious infor-
mation flows from untrusted I/O sources. Both can provide much more accurate
dependency analysis than our approach but either run orders of magnitude times
slower or require special architectural support.

Versioning file systems retain earlier versions of modified files, allowing recovery
from user mistakes or system corruption. A key focus of versioning systems is en-
coding efficiency. For example, the Elephant file system [33] uses a clever purging
method that keeps “landmark™ data versions and purges generated and temporary
files aggressively, while CVFS encodes metadata versions efficiently [41,40]. Our
system, which uses a unoptimized data storage mechanism, would benefit from
some of these techniques, although purging data versions would limit some of the
benefits of selective recovery. While versioning approaches provide the basic ca-
pability to rollback system state to a previous time, such a rollback discards all
modifications made since that time, regardless of whether they were done by a
tainted or legitimate process.

The Repairable File System [47] has goals closest to our work. Its contamination
analysis is similar to our dependency analysis although it only uses a propagation
phase and does not have a notion of dependency intervals. In addition, the recovery
phase does not seem to consider conflicting activities. Application-specific con-
flict resolution has been extensively studied in the context of replicated file sys-
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tems [31,25] and databases [44]. While we have not experimented with these poli-
cies, they would directly apply to our recovery techniques.

Fastrek [27] applies selective recovery to databases by attributing modifications
to malicious activities and then rolling back changes selectively. A potential issue
with this approach is cascading aborts where a legitimate activity is rolled back if it
may have depended on the data produced by a tainted activity. While conservative
dependency policies in our system effectively achieve the same result, our conflict
resolution policies allow using optimistic policies that reduce this problem.

Brown [7] describes a recovery service that deals with operator errors in a mail
server. Their system provides application-specific recovery that works well for a
mail server, and while it is possible to extend the service to other applications, it
is unclear how much effort is involved. In contrast, our system is geared towards
server applications that do not necessarily have the clearly defined semantics of a
mail server and hence our recovery techniques are more generic.

Sun [43] provides a safe execution environment (SEE) that enables users to try out
new software (or configuration changes to existing software) without fear of dam-
aging the system in any way. This is accomplished via a novel one-way isolation
mechanism where processes running within the SEE are given read-access to the
environment provided by the host OS, but their write operations do not affect the
host until a commit point. The commit is performed if a consistency criteria is met
or else the SEE is rolled back. This approach allows recovery only until the commit
point and rollback may become more likely for long running SEEs.

Sandboxing techniques are complementary to our approach. They interposition
code that allows blocking program actions that may compromise security, while
recovery deals with intrusions after they occur. Janus [19] interpositions system
calls using the proc file system. Systrace [29] notifies the user about system calls
executed by an application. Then it generates a sandboxing policy based on user
response. Sandboxing raises the issue of policy selection, i.e, determining what
actions are permissible for a given piece of software.

10 Conclusions

This paper has presented Forensix, a robust, high-precision reconstruction and anal-
ysis tool for automated analysis and recovery of compromised systems. The salient
features of Forensix are its kernel-level auditing of system activities, tamper-resistant
logging on a separate back-end machine, and use of database technology to support
efficient, high-level querying of data. A Linux-based implementation of Forensix
was described, and a performance evaluation of it showed its overhead in terms of
system throughput and storage capacity. While both costs are significant, they are
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within the bounds of acceptability for many applications. Furthermore, technology
trends, such as the rapid increase in disk capacity, will reduce these costs further in
the future. The complete Forensix system is currently available at the project web
site [1]
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