
Protecting Kernels from Untrusted Modules using 
Dynamic Binary Instrumentation

University of Toronto

Kernel modules cannot be trusted Existing kernel protection methods

Modules can compromise:
  •  Control-flow integrity
  •  Data integrity
  •  Both (e.g. stack integrity)

Kernel modules can be:
  •  Malicious
  •  Buggy
  •  Exploited

Existing solutions cannot secure against all native kernel 
modules.  They either:

  •  Secure only virtualized modules (HUKO, Gateway, etc.)
  •     Many native modules cannot be run under
  •     virtualization

  •  Secure only modules whose source code is available (BGI, 
  •  LXFI, etc.)
  •     Many modules are provided as pre-compiled binaries
  •     by third-party vendors

Goals:
  •  Secure all kernel modules
  •  Secure pre-compiled binary modules
  •  No overhead when running in the kernel

Securing kernel modules is challenging:
   Interrupt handling
   Complex kernel interface

   Sensitive kernel data exposed through shared data,
   macros, etc.
     •  BGI and LXFI lead the way

   Difficult to maintain integrity of kernel stack
     •  Call/return consistency is manageable
     •  Data consistency is challenging

Dynamic Binary Instrumentation

Goals and Approach

Challenges

Two thirds of all kernel vulnerabilities reside in kernel modules 
[CVE 2010].
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Problematic instructions are 
identified

Instrumented code is stored as 
basic blocks

Summary

Instrumentation code 
enforces read and write 
permissions stored in 
shadow memory.

Control flow transfers are 
mediated by kernel-to-
module and module-to-
kernel wrappers

The module is just-in-time 
compiled into a private
DRK code cache

  •  Protect the kernel from malicious or misbehaving modules

  •  Use DynamoRIO Kernel to secure pre-compiled binary modules

  •  Run non-module kernel code natively without overhead

Approach:
  •  Secure modules by modifying their binary code at runtime 
  •  using DynamoRIO Kernel (DRK)
  •  Instrument only while the module code is running

Kernel modules will be secured in three steps:
 1.  Isolate modules in separate protection domains
 2.  Mediate all control transfers between the kernel and its
 2.  modules
 3.  Verify all memory accesses by modules
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