
Protecting Kernels from Untrusted Modules using
Dynamic Binary Instrumentation

University of Toronto

Kernel modules cannot be trusted Existing kernel protection methods

Modules can compromise:
 • Control-flow integrity
 • Data integrity
 • Both (e.g. stack integrity)

Kernel modules can be:
 • Malicious
 • Buggy
 • Exploited

Existing solutions cannot secure against all native kernel
modules. They either:

 • Secure only virtualized modules (HUKO, Gateway, etc.)
 • Many native modules cannot be run under
 • virtualization

 • Secure only modules whose source code is available (BGI,
 • LXFI, etc.)
 • Many modules are provided as pre-compiled binaries
 • by third-party vendors

Goals:
 • Secure all kernel modules
 • Secure pre-compiled binary modules
 • No overhead when running in the kernel

Securing kernel modules is challenging:
 Interrupt handling
 Complex kernel interface

 Sensitive kernel data exposed through shared data,
 macros, etc.
 • BGI and LXFI lead the way

 Difficult to maintain integrity of kernel stack
 • Call/return consistency is manageable
 • Data consistency is challenging

Dynamic Binary Instrumentation

Goals and Approach

Challenges

Two thirds of all kernel vulnerabilities reside in kernel modules
[CVE 2010].

Architecture

Akshay Kumar
ak.kumar@mail.utoronto.ca

Peter Goodman
pag@cs.toronto.edu

Ashvin Goel
ashvin@eecg.toronto.edu

Angela Demke Brown
demke@cs.toronto.edu

Problematic instructions are
identified

Instrumented code is stored as
basic blocks

Summary

Instrumentation code
enforces read and write
permissions stored in
shadow memory.

Control flow transfers are
mediated by kernel-to-
module and module-to-
kernel wrappers

The module is just-in-time
compiled into a private
DRK code cache

 • Protect the kernel from malicious or misbehaving modules

 • Use DynamoRIO Kernel to secure pre-compiled binary modules

 • Run non-module kernel code natively without overhead

Approach:
 • Secure modules by modifying their binary code at runtime
 • using DynamoRIO Kernel (DRK)
 • Instrument only while the module code is running

Kernel modules will be secured in three steps:
 1. Isolate modules in separate protection domains
 2. Mediate all control transfers between the kernel and its
 2. modules
 3. Verify all memory accesses by modules

Original Code

Instrumented Code

