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Scalable Synthesis and Clustering Techniques using

Decision Diagrams
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Abstract— BDDs have proven to be an efficient means to
represent and manipulate Boolean formulae [1] and sets [2] due to
their compactness and canonicality. In this work, we leverage the
efficiency of BDDs for new areas in FPGA CAD flow including cut
generation and clustering by reducing these problems to BDDs
and solving them using Boolean operations. As a result, we show
that this leads to more than 10x reduction in runtime and memory
use when compared to previous techniques as reported in [3]
and [4]. This speedup allows us to apply our work to new areas
in the FPGA CAD flow previously not possible. Specifically, we
introduce a new method to solve the logic synthesis elimination
problem found in FBDD, a recently reported BDD synthesis
engine with an order of magnitude speedup over SIS. Our new
elimination algorithm results in an overall speedup of 6x in FBDD
with no impact on circuit area.

Index Terms— FPGAs, Cut Generation, Clustering, BDD.

I. INTRODUCTION

A
S the FPGA capacity grows with each chip generation,

the scalability of FPGA CAD tools is a growing concern.

This is a result of the exponential space and time complexity

many CAD algorithms have in relation to the circuit size, n.

Scalability problems have traditionally been handled by divide

and conquer techniques where the circuit is partitioned into

several smaller circuits ([5], [6]). This reduces the problem

size and, as a result, dramatically reduces the solution space

the CAD tool must explore. Although partitioning has proven

to improve the scalability of CAD algorithms, partitioning a

design will lead to solutions much further from optimal when

compared to non-partitioning based techniques.

As an alternative to partitioning techniques, we propose

using heuristics that improve the scalability of CAD algorithms

by removing redundant operations and data. Specifically, in

this work we improve the scalability of cut generation and

FPGA LUT clustering. By recognizing that both cut gen-

eration and clustering can be reduced to set operations, we

can represent cut and cluster sets as reduced-ordered binary-

decision diagrams (BDDs) and, as a consequence of this,

leverage efficient BDD managers to solve the cut generation

and clustering problem ([7], [8]).

To generate the cut and cluster set for a given node v,

a dynamic programming approach is devised in [9] and [4]

respectively. In [9], cuts for node v are created by using the

cuts from the fanin nodes of v and combining them to form

larger cuts. An example of this is illustrated in Fig. 1. Here,
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to generate a cut for node g, a cut from node e and f are

duplicated and combined to form a larger cut.

g

fe

{cd}

dcba

{ab}

(a)

g

fe {abcd}

dcba

(b)

Fig. 1. Illustration of cut generation through dynamic programming. (a) Two
cuts for nodes e and f . (b) Larger cut created by duplicating and concatenating
cuts ab and cd for node g.

In [4], a similar dynamic programming approach is adapted

to clustering and is shown in Fig. 2 where the large cluster

shown in Fig. 2b is formed by duplicating and combining the

smaller clusters shown in Fig. 2a.
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Fig. 2. Illustration of cluster generation through dynamic programming. (a)
Two clusters rooted at node b and e. (b) Larger cluster created by duplicating
and combining clusters ab and ecd.

Unfortunately, both of these approaches duplicate subsets

to form larger sets of data which leads to scalability problems

for large circuits and set sizes. In contrast, we represent our

cut and cluster sets as a BDD. BDDs are generated using

a dynamic programming framework, as in the case of cut

and cluster generation. However, unlike cut generation or

clustering, the BDDs are not duplicated when creating larger

BDDs. This property is illustrated in Fig. 3. Here, two smaller

BDDs, g and h, are joined to create function f . However, the

subfunctions are not duplicated to form the larger function

f . This is possible since old BDDs can be referenced from

multiple sources. Thus the top node, c, in function f , simply

references to the original locations of function g and h without

needing to recreate and store the original functions. This saves

both runtime and memory when creating large BDDs. We will

sbrown
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Fig. 3. Illustration of BDD creation using dynamic programming. (a) Two
BDDs representing function g = ab and h = a+b. (b) New BDD representing
function f = cab + ca + cb = cg + ch; note that previous BDDs g and h
do not have to be duplicated.

show in later sections how we reduce cut and cluster sets

to BDDs such that we can leverage this important property

of BDDs to improve the scalability of cut generation and

clustering. As a result, our approach is an order magnitude

better than previous approaches, both in terms of runtime and

memory.

The rest of the paper will be organized as follows. Section II

will give problem preliminaries and background material. Sec-

tion III will describe our cut generation approach. Section IV

will describe our clustering approach. Section V will give an

overview of our results followed by some concluding remarks

in Section VI.

II. BACKGROUND

A. Terminology

Before we can describe our problem, we first review

some basic terminology here. The combinational portion of

a Boolean circuit can be represented as a directed acyclic

graph (DAG) G = (VG, EG). A node in the graph v ∈ VG

represents a logic gate, primary input or primary output, and

a directed edge in the graph e ∈ EG with head, u = head(e),
and tail, v = tail(e), represents a signal in the logic circuit

that is an output of gate u and an input of gate v. The set of

fanin edges for a node v, fanine(v), is defined to be the set

of edges with v as a tail. Similarly, the set of fanout edges

for v, fanoute(v), is defined to be the set of edges with v

as a head. A primary input (PI) node has no fanin edges and

a primary output (PO) node has no fanout edges. The set of

distinct nodes that supply fanin edges to v are referred to as

fanins and is denoted fanin(v). Similarly, the set of distinct

nodes that connect to fanout edges from v are referred to as

fanouts and is denoted fanout(v). A node v is K-feasible if

|fanin(v)| ≤ K. If every node in a graph is K-feasible then

the graph is K-bounded.

Each edge e has an associated delay, delay(e). The length

of a path is the sum of the delays of the edges along the path.

At a node v, the depth, depth(v), is the length of the longest

path from a primary input to v and the height, height(v), is

the length of the longest path from a primary output to v. Both

the depth for a PI node and the height for a PO node are zero.

At an edge e, the depth, depth(e), is the length of the longest

path from a primary input to e and the height, height(e), is

the length of the longest path from a primary output to e. Both

the depth and the height of an edge include the delay due to

the edge itself. The depth or height of a graph is the length

of the longest path in the graph.

A cone of v, Cv , is a subgraph consisting of v and some

of its nonPI predecessors such that any node u ∈ Cv has a

path to v that lies entirely in Cv . Node v is referred to as the

root of the cone. The size of a cone is the number of nodes

and edges in the cone. At a cone Cv , the set of fanin edges,

fanine(Cv), is the set of edges with a tail in Cv and the set

of fanout edges, fanoute(Cv), is the set of edges with v as a

head. The set of fanins to the cone are also known as a cut in a

graph. Thus, there is a one to one correlation between all cuts

and cones in a graph. With fanin edges and fanout edges so

defined, a cone can be viewed as a node, and notions that were

previously defined for nodes can be extended to handle cones.

Notions such as fanin(·), fanout(·), depth(·), height(·) and

K-feasibility all have similar meanings for cones as they do

for nodes.

B. Problem Description and Related Work

1) Cut Generation: While cut generation has been tradi-

tionally applied to iterative FPGA technology mappers, such

as DAOmap [10] and IMap [11], there has been a renewed

interest in the cut generation problem [3], [12] due to its

growing use in several other CAD problems including:

• Boolean matching of PLBs [13], [14]

• resynthesis of LUTs [15]

• synthesis rewriting [16]

• synthesis elimination [17], [18]

One of the first pieces of work to define the cut generation

problem was in [19] where the authors define the set relation

to generate all K-feasible cuts shown in equation 1. For a

detailed explanation of equation 1, please refer to [19]. This

contrasts with incremental cut generation methods based on

network flow [20], [21] and has proven to be much faster.

Φ(v) = {cu ∗ cw | cu ∈ {{u} ∪ Φ(u)|u ∈ fanin(v)}, (1)

cw ∈ {{w} ∪ Φ(w)|w ∈ fanin(v)}, u #= w, ‖cu ∗ cw‖ ≤ K}

In equation 1, Φ(v) represents the cut set for node v; {u}
represent the trivial cut (contains u only); cu represents a cut

from the cut set {{u}∪Φ(u)}; and Φ(u) represents the cut set

for fanin node u. Traditional methods generate cuts by visiting

each node in topological order from PIs to POs and merging

cut sets as defined by equation 1. Two cut sets are merged by

performing a concatenation (cu ∗ cw) of all cuts found in each

fanin cut set, and removing any newly formed cuts that are

no longer K-feasible (‖cu ∗ cw‖ ≤ K). For example, referring

to Fig. 4, cut c2 is generated by combining the cut c1 with

the trivial cut v4 (c2 = c1 ∗ v4 = v1v2v4). Generating cuts

this way is not scalable to large cut sizes (K ≥ 6) and for

circuits containing a large degree of reconvergent paths. For

example, in IMap [11], which utilizes a popular technology

mapping framework, cut generation takes more than 99% of

the runtime for K = 7. In [9], the authors address this problem

by selectively pruning cuts that they deem to be wasteful.
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However, for large cut sizes, pruning tends to remove too many

cuts that may be valuable in the final mapping solution.
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Fig. 4. Example of two cuts in a netlist for node v5 where c2 dominates c1
(K = 3).

The main reason equation 1 is not scalable for large cut

sizes is because subcuts must be duplicated every time a new

cut is generated. For example, referring to Fig. 4, cut c1 must

be duplicated to generate cut c2. Furthermore, equation 1 can

generate redundant cuts. A cut, c2, is redundant if it completely

contains all the input nodes of another cut, c1, in which case

c2 is known as a dominator cut. Fig. 4 illustrates this relation.

These cuts can be removed because they will not affect the

final quality of a mapping solution. In ABC [3], the authors

address this problem by assigning all cuts a signature such that

dominator cuts can be quickly identified and removed. This,

along with several other optimization, results in an order of

magnitude runtime reduction over previous techniques. As a

consequence, ABC is currently the fastest LUT technology

mapper available with competitive depth and area results.

However, even with its clever heuristics, ABC cut generation

time slows down significantly for cuts sizes of 8 or larger.

Although this is not a problem for commercial FPGAs that

restrict their LUT size to 6 or less [22], migrating the covering

problem to larger problems requires a more scalable cut

generation solution. As a solution, we will show that reducing

cut generation to BDDs dramatically improves its scalability

and as a result, expands the application of cut generation to

new problems previously not thought possible. As a practical

example, we will show how we apply cut generation in the

elimination step in a BDD-based synthesis flow which leads

to a 6x speedup in runtime without any degradation to circuit

area.

2) Clustering of K-LUTs: Modern FPGAs are hierarchical

in nature where LUTs are grouped into regular logic array

blocks (LABs), also known as clustered logic blocks (CLBs)

or more simply, clusters. Deciding how to pack a given LUT

netlist into an array of clusters is the clustering problem

and it has a significant impact on the final performance of

the circuit. Clustering has typically not been a bottleneck

during the CAD flow where traditionally clustering has been

solved using greedy algorithms [23]. In [23], LUTs are suc-

cessively packed together such that routability or delay is

optimized. Although this produces good clustering solutions

in a reasonable amount of time, a recently reported study

has shown that solving the clustering problem from a global

perspective leads to significant performance gains [4]. In [4],

the authors combine clustering and technology mapping into a

single phase. During this process, several alternate clustering

solutions are stored and evaluated. This allows the tool to

explore a much larger solution space than solving technology

mapping and clustering disjointly. Also, while evaluating each

clustering solution, an optimal delay value is maintained. The

results are fairly impressive where the authors are able to get

a 12.3% improvement in circuit delay on average. However,

solving technology mapping and clustering together explores a

much larger search space than disjoint methods. Furthermore,

a large set of clustering solutions must be computed and

explored during the forward traversal of the algorithm. Both

these factors has led to a 100x runtime penalty when compared

to previous techniques. Since FPGA design sizes are reaching

an order of 100K LUTs, we feel that a 100x runtime penalty

will be a barrier for the practical application of [4] without

heuristics to improve its runtime.

In our approach, we adopt a similar global heuristic as

in [4] since we feel that this is a significant factor leading

to performance gains found in [4]. However, we perform

clustering as a disjoint step after technology mapping to

reduce the search space of our clustering tool. We suspect

that maintaining global information during clustering is an

important factor to improve the final performance of the

circuit. however, this requires storing a large set of clustering

solutions which is the main factor for the runtime penalty

reported in [4]. To alleviate this problem, we propose using

zero-suppressed BDDs (ZDDs), which are extremely efficient

in representing sets, to represent our clusters. In sections IV

and V, we will prove that this will have a significant runtime

advantage when compared to [4] while maintaining some of

its performance gains.

C. The Covering Problem

The covering problem seeks to find a set of covers to cover

a graph such that a given characteristic of the final covered

graph is optimized. For example, when applied to K-LUT

technology mapping, the covering problem returns a covered

graph such that the number of distinct covers in the graph

is minimized where each cover gets mapped directly into a

single LUT. This is illustrated in Fig. 5. We will show in later

sections how to adapt the covering problem for the synthesis

elimination step.
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Fig. 5. Illustration of the covering problem when applied to K-LUT
technology mapping. (a) Initial network. (b) A covering of the network. (c)
Conversion of the covering into 4-LUTs.

A common framework to solve the covering problem is

shown in Fig. 6. The covering problem starts by generating all
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1 GENERATECUTS(K)
2 for i ← 1 upto MaxI
3 TRAVERSEFWD()
4 TRAVERSEBWD()
5 end for

Fig. 6. High-level overview of network covering.

K-feasible cuts in the graph (line 1). This is followed by a set

of forward and backward traversals (line 3-4) which attempt

to find a subset of cuts to cover the graph such that a given

cost function is minimized. Iteration is necessary (MaxI > 1)

if the covering found in TRAVERSEBWD() influences the cost

function used in TRAVERSEFWD(). A detailed description of

this algorithm when applied to technology mapping can be

found in [11].

1 foreach v ∈ TSORT(G(V,E))
2 cutv ← MINCOSTCUT(v)
3 costv ← COST(cutv)
4 end foreach

Fig. 7. High-level overview of forward traversal.

1) Forward Traversal: Fig. 7 illustrates the high-level

overview of the forward traversal. Here, each node is visited

in topological order from PIs to POs. For each node, the

minimum cost cut is found (line 2). After the minimum cost

cut is found, the cost of the root node v is assigned the cost

of the cut (line 3). Note that MINCOSTCUT is dependent on

the goal of the algorithm. In later sections, we will describe

the cost function used when we apply the covering problem

to elimination.

1 MARKPOASVISIBLE()
2 foreach v ∈ RTSORT(G(V,E))
3 if VISIBLE(v)
4 foreach u ∈ fanin(cutv)
5 MARKASVISIBLE(u)
6 end if
7 end foreach

Fig. 8. High-level overview of backward traversal.

2) Backward Traversal: Fig. 8 illustrates the high-level

overview of the backward traversal. First, all POs are marked

as visible (line 1). Next, the graph is traversed in reverse

topological order. If a node is visible, its minimum cost cut

found in the preceding forward traversal, cutv , is selected and

all of its fanins are marked as visible (line 4-5). After the

backward traversal completes, the minimum cost cuts of all

visible nodes in the graph are converted to cones to cover the

network.

III. BDDCUT: SCALABLE CUT GENERATION

As described in section I, there is a growing need for

scalable cut generation. Prior to this work, cut generation has

generally been limited to applications requiring small cuts

where K is smaller than 6 [10], [11], [16]. In this section,

we will explain how to reduce cut generation to BDDs which

will later prove to dramatically improve its scalability.

As described in equation 1, cuts are generated by combining

the subcuts in every possible way. This is extremely inefficient

since subcuts are duplicated every time they are used to

generate a new cut. Our BDD-based approach solves this

problem by sharing subcuts between larger cuts. Referring

back to our original cut expression in equation 1, we can

rewrite our equation as a Boolean expression.

fv = Πu∈fanin(v)(u+ fu) (2)

Equation 2 is very similar to the set relation shown in

equation 1; however, in contrast with previous approaches, we

maintain cut set representations as a Boolean function. In our

approach, we map a unique Boolean variable to each node v

found in our netlist and represent cuts by the conjunction of

the fanin node variables. Thus, our cut set fv will be a Boolean

expression in SOP form where each cube will represent a cut.

To join cut sets, we replace the set union operation (∪) with a

logic OR. Furthermore, the Π operation can be thought as the

logical AND of all clauses (u + fu). For example, consider

Fig. 9. Here, each node is represented by a Boolean variable

cb

a

fc=egfb=de

fa=bc+deg+cde+beg

d e g

Fig. 9. Symbolic representation of cut sets.

where each product term in the function represents a cut. Also,

notice that the cut set function fa is the conjunction between

the clauses (c+ fc) and (b+ fb).

A problem with using cubes to represent our cut set is

that it suffers from similar scalability problems as traditional

cut generation methods since each cut needs to be stored

separately as a cube and no subcut sharing occurs. A solution

to this is to represent our cut set as a BDD, (for a detailed

description of the BDD data structure, please refer to [1]).

BDDs are DAGs which represent a Boolean function where

each node in the DAG represents one variable. Node edges

represent positive (1) or negative (0) assignments to the

variable where each edge points to the associated cofactor. For

example, referring back to Fig. 9, the BDD used to represent

the cut set fa is shown in Fig. 10. Here, positive edges are

represented by a solid line and negative edges are represented

by a dotted line.

Notice that representing cut sets as a BDD allows subcuts

to be shared as cofactors. Thus, subcuts can be reused in

expressing larger cuts. For example, consider Fig. 11 which

shows the BDDs representing the cut set functions shown in

Fig. 9. In Fig. 11a, two small BDDs are shown. In Fig. 11b,

the BDDs shown in Fig. 11a are reused as cofactors to build
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Fig. 10. BDD representation of cut set in Fig. 9.

the BDD for function fa. Thus, subcuts de and eg do not have

to be duplicated to form larger cuts for node a.
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Fig. 11. Illustration of reusing BDDs to generate larger BDDs. (a) Small
BDDs representing cut set function fb and fc. (b) Reusing BDDs in (a) as
cofactors within cut set function fa.

BDDs can also share cofactors within a single cut set.

For example, consider Fig. 12. Notice that in the BDD

cb

a

c2=degc1=de
d e g

c3=cde

(a)

c

d

g
e

1 0

(b)

Fig. 12. BDD representation of node a cuts c1, c2, and c3 (K = 3).

representation, the subcut c1 = de is a positive cofactor

for variable c and g, and is shared by two larger cuts

c3 = cde and c2 = deg. The benefit of subcut sharing is

very sensitive to variable ordering. For example, in the

previous example, c1 could not be shared if variables d

and e were found at the top of the BDD. Hence, to ensure

that subcut sharing is maximized, we assign BDD variables

to nodes such that fanin node variables are always found

below their fanout node variables in the BDD cut set. This

is stated formally in lemma 3.1 and proposition 3.2.

Lemma 3.1: Consider two functions f1 and f2 repre-

sented as BDDs where f1 is composed of f2 and some

other variables (i.e. f1 = g(f2, x0, ..., xn)). Also, let θ be

the set of variables found in f1 which are not in f2. The

BDD graph f2 can exist as a subgraph in f1 if and only

if all the variables in f2 are below all variables in θ.

An intuitive explanation to lemma 3.1 can be seen in

Fig. 11 where the BDD representing fb is a subgraph in

fa, which would not be possible if variables d and e were

not at the bottom of the BDD in fa.

Cut sharing will only occur if BDD variables are

assigned nodes in the following manner. If the variable

assigned to node v and the variable assigned to node

u appear in the same BDD, f , and if u ∈ fanin(v),
the variable assigned to node v should appear above

the variable assigned to node u in f . For example, this

relationship is shown in Fig. 12. Here, the node labeled c

in Fig. 12a has fanins labeled e and g. This translates to

the BDD shown in Fig. 12b where BDD variable c appears

above variables e and g. This variable ordering condition

is stated formally in proposition 3.2.

Proposition 3.2: Cut set sharing can only occur if the

variable assigned to nodes is such that variables assigned

to a node will appear above variables assigned to their

transitive fanins if those variables appear in the same BDD

cut set.

Proof: Proof by contradiction. Recall from equation 2

that the Boolean expression to generate the cut set for a

given node v is fv = Πu∈fanin(v)(u + fu). First we will

look at a single fanin to v. Let us assign g = (u+ fu) and

assume the BDD fu exists as a subgraph in g and hence

is shared. Also assume that u is not the top variable in g.

However, if u is not the top variable in g, fu cannot exist

in g by lemma 3.2. Thus by contradiction, if fu is shared

in g, u must be the top variable in g. Since all variables

in fu are assigned to the transitive the fanin nodes to the

node u, the variables assigned to the transitive fanin nodes

appear below u in function g. A same argument can be

applied to all fanin nodes u ∈ fanin(v).
Another benefit of using BDDs is that redundant cuts,

such as dominator cuts, are automatically removed. For

example, consider Fig. 13a containing the cut c1 and the

dominator cut c2. As a BDD, c1 and c2 are shown in

Fig. 13b. Since BDD node c is now redundant, it can be

removed as in Fig. 13c which removes the dominator cut

c2. BDD managers will perform this redundancy removal

during the BDD construction. If both the positive and

negative cofactor of a node are common, it is removed and

the parent edge to the redundant node will be adjusted to

point to the common cofactor . For example, in Fig. 13b, if

a parent edge to c existed it would be adjusted to point to

node e after c is removed. Both dominator cut removal and

subcut sharing substantially reduces the space complexity

of a BDD represented cut set.
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Fig. 13. BDD representation of node a cuts c1 and c3 (K = 3).

As we will show in later sections, zero-suppressed BDDs

(ZDDs) are another method to represent sets efficiently.

These can also be used to represent our cut sets; however,

the benefit of redundant cut removal is not possible with

ZDDs. For example, in Fig. 13, a ZDD will not remove the

node c in Fig. 13b since it will treat the dominator cut as a

unique element in the cut set. Furthermore, since we can

represent a cut directly as a cube, BDDs can be directly

leveraged without the need to use the ZDD structure.

A. Symbolic Cut Generation Algorithm

Fig. 14 illustrates our cut generation algorithm. First, the

CutGeneration()
1 G(V,E) ← TSORT()
2 foreach v ∈ G(V,E)
3 fv ← 1
4 bv ← CREATENEWBDDVARIABLE()
5 end foreach
6 foreach v ∈ G(V,E)
7 foreach u ∈ fanin(v)
8 fx ← BDDOR(bu, fu)
9 fv ← BDDANDPRUNE(fv, fx,K)
10 end foreach
11 end foreach

Fig. 14. High-level overview of symbolic cut generation algorithm.

netlist is sorted in topological order (line 1). Next, the cut

set function, fv , for each node in the graph is initialized to a

constant 1 and assigned a unique variable (line 2-5). Finally,

for each node, v, its cut set is formed following equation 2

(line 7-10). When forming the cut set for node v, each fanin

node, u, is visited (line 7) and a temporary cut set is formed

by the logical OR of the trivial cut u and its cut set fu. Next,

the temporary cut set is conjoined to the cut set of v using

the logical AND operation (line 9). When forming larger cuts

with the logical AND operation, it is possible to form cuts

larger than K, thus BDDANDPRUNE is also responsible for

pruning cuts that are not K-feasible. It does so by removing

all cubes that are contain more than K positive literals which

will be explained in the detail in the following section.

B. Ensuring K-Feasibility

When conjoining two cut sets together using the logical

AND operation, we must ensure that all cuts remaining in

the new cut set are K-feasible. We achieve this by modifying

the BDD AND operation to remove cubes with more than

K literals. This recursive algorithm is illustrated in Fig. 15.

Notice that the only difference in this algorithm compared to

< fz > BddAndRecurPrune(fx, fy,K, n)
1 if ISCONSTANT(fx) AND ISCONSTANT(fy)
2 return < fxANDfy >
3 b ← GETTOPVAR(fx, fy)
4 fnx ← fx(b = 0)
5 fny ← fy(b = 0)
6 fpx ← fx(b = 1)
7 fpy ← fy(b = 1)
8 fnb ← BDDANDRECURPRUNE(fnx, fny,K, n)
9 if n ≤ K

10 fpb ← BDDANDRECURPRUNE(fpx, fpy,K, n + 1)
11 else
12 fpb ← 0
13 SETTOPVAR(fz, b)
14 SETCOFACTORS(fz, fnb, fpb)
15 return < fz >

Fig. 15. High-level overview of BDD AND operation with pruning for K.

the recursive definition of a BDD AND operation is the check

in line 9. The algorithm starts off by checking the trivial case

where both BDD cut sets are constant functions (line 1). If

not the trivial case, the top most variable of both cut sets is

retrieved (line 3). Next, the cofactors relative to the variable

b are found for the cut sets fx and fy (line 4-8). This is

followed by recursive calls to find the negative and positive

cofactors of the new cut set fz (line 9-12). When constructing

the positive cofactor, we make sure that the number of positive

edges seen is less than or equal to K (line 9-10). If not,

we prune out all cubes that form due to that branch in the

BDD. This works since our cut sets, fx and fy , only contain

positive literals and n is initialized to zero in the first call to

BDDANDPRUNERECUR. Thus, we can assume n is equivalent

to the size of the cube in the current branch of the BDD.

Finally, we join the cofactors and form a new cut set, fz , and

return (line 13-15).

C. Finding the Minimum Cost Cut

In general, the cost of a given cut is usually defined

recursively with the form as shown in equation 3.

costc = Σu∈fanin(c)costmin(cu) (3)

In equation 3, u is a fanin of cut c, cu is the minimum cost

cut associated with node u, and costmin(cu) is the cost of the

cut cu. For traditional cut generation methods where subcuts

are not shared, each cut has to be traversed independently

to determine the minimum cost cut. Conversely, since we

represent our cut set as a BDD where we share subcuts,

we can leverage dynamic programming to calculate the cut

cost and find the minimum cut cost. This is illustrated in the

recursive algorithm in Fig. 16. In MINCUTCOSTRECUR, the

minimum cost cut, cmin, and its cost, cost, from the cut set fv

is returned. Notice that cmin is returned as a cube where each

positive literal in the cube represents a fanin node to the cut.

First, if the cut set is trivial (fv ≡ 1), the algorithm returns an
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< cmin, cost > MinCutCostRecur(fv)
1 if fv ≡ 1
2 return < 1, 0 >
3 else if fv ≡ 0
4 return < φ, φ >
5 // dynamic programming step

6 if CACHED(fv)
7 return < LOOKUP(fv) >
8 b ← TOPVAR(fv)
9 fnv ← fv(b = 0)

10 fpv ← fv(b = 1)
11 < cnmin, costn >← MINCUTCOSTRECUR(fnv)
12 < cpmin, costp >← MINCUTCOSTRECUR(fpv)
13 costp ← costp + GETNODECOST(b)
14 if VALID(cnmin) AND VALID(cpmin)
15 if costn < costp
16 CACHE(fv, < cnmin, costn >)
17 else
18 fx ← BDDAND(cpmin, b)
19 CACHE(fv, < fx, costp >)
20 end else
21 else if VALID(cpmin)
22 fx ← BDDAND(cpmin, b)
23 CACHE(fv, < fx, costp >)
24 else
25 CACHE(fv, < cnmin, costn >)
26 return < LOOKUP(fv) >

Fig. 16. Find the minimum cost cut in a given cut set.

empty cube (const 1) with zero cost (line 1-2). If the cut set

is empty, an invalid cube is returned (line 3-4). If the cut set

is not an empty set, the algorithm checks if this cut set has

been visited already, and if so, returns the cached information

(line 6-7). If the cut set has not been visited previously, two

recursive calls are done to find the minimum cost cut and cost

for the cofactors (line 9-12). Next, the positive cofactor cost is

modified with the node cost of the current variable (line 13).

Finally, the minimum cost cut set and cost are returned (line

14-26). Note that when the minimum cost cut is found, it is

cached for future reference (line 15-25).

D. A Practical Application: Elimination

As a practical driver for our cut generation technique, we

look at applications that require large cut sizes (K > 6).

Although we listed several applications requiring cut gener-

ation [14], [15], [16] in section I, in this work we only focus

on synthesis elimination found in FBDD.

FBDD is a BDD based synthesis engine [24] which has

proven to be an order of magnitude faster than SIS with com-

petitive area results. In FBDD several logic transformations,

such as decomposition or shared extraction [17], were sped

up significantly and as a result, elimination emerged as the

primary bottleneck for scalability and has been reported to

take up to 70% of the runtime [17]. Removing the elimination

bottleneck will further increase the speedup experienced by

FBDD. FBDD currently adopts an elimination scheme similar

to SIS. In FBDD elimination, regions are grown from a given

seed node where its fanins are successively collapsed into

the node in a greedy fashion. If the new logic representa-

tion simplifies after the collapse operation, the collapse is

committed into the netlist, otherwise the collapse is undone.

For BDDs, this collapse and uncollapse operation is relatively

slow compared to other BDD operations. A solution to this

is to treat elimination as a covering problem, as opposed to

a greedy algorithm. Here, each elimination region is created

by covering the netlist where each cover has at most 8 inputs.

Following this, each cover is collapsed into a single node.

The cost function used to derive our covers is similar to the

area flow heuristic described in [11]. However, here we adapt

area flow to elimination and rename it as edge flow. Edge flow

attempts to minimize the total cut size of the final covering (i.e.

minimize the number of edges in the final graph). Edge flow

is defined recursively in equation 4 and is denoted ef(·). The

ef(Cv) =
∑

e∈fanine(Cv)

ef(e)
(4)

ef(e) =Ae +
ef(head(e))

‖fanoute(Chead(e))‖
(5)

edge flow of cover Cv is defined as the sum of the edge flows

of the fanin edges to Cv . The edge flow of an edge e is the

weight of an edge, Ae, plus the edge flow of its head divided

by the number of fanouts of the cover rooted at the head of e.

Picking covers which minimize the overall edge flow of the

final covering leads to covers which capture a high degree of

reconvergence. This will remove any redundancies within the

reconvergent cone after the collapse of the cover is done. We

will show later that solving elimination this way results in a

significant speedup in FBDD with no sacrifice to area.

IV. ICLUSTER: ITERATIVE CLUSTERING

Here, we describe our iterative clustering algorithm. As

in [4], we maintain an optimal delay during clustering to

improve performance, however, to represent our clustering

sets, we propose using zero-suppressed BDDs (ZDDs [2]).

Our clustering algorithm works in two phases. First, an

iterative approach is applied where the clustering tool does a

forward and backward traversal of the LUT netlist to form an

intermediate clustering solution. This is followed by a packing

phase to recover area where duplication is reduced and each

cluster is filled to its full capacity.

A. Iterative Phase

The iterative phase of our algorithm is responsible for

finding an optimal global delay value of our LUT netlist.

This will act as a bound when selecting various clusters to

cluster the LUT netlist. This is analogous to the iterative

step during technology mapping to LUTs. Fig. 17 illustrates

ITERATIVEPHASE

1 GENERATECLUSTERS()
2 for i ← 1 upto MaxI

3 TRAVERSEFWD()
4 TRAVERSEBWD()
5 end for

Fig. 17. ICluster iterative phase framework.
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the entire iterative phase flow. First, all clusters containing

N or less LUTs are generated (line 1). During the iterative

phase, only clusters that form a cone rooted at a single node

are generated (this is not the case during the packing phase

following the iterative phase). Following cluster generation,

a series of forward and backward traversals are applied (line

3 and 4). The forward traversal is responsible for finding a

cluster for each node such that delay and area is minimized

and the backward traversal is responsible for finding a final

cluster covering of the LUT netlist.

1) Cluster Generation (GENERATECLUSTERS): As stated

previously, the iterative phase is responsible for finding an

intermediate clustering of the LUT netlist. To do this, we

need to generate a large set of clusters that will form the

solution space of our intermediate clustering solution. We

define a cluster for a LUT, v, as all cones containing at most N

LUTs rooted at node v. Although in reality, an FPGA cluster

can implement any structure of N LUTs (i.e. not necessarily

forming a cone), we ignore these structures in the iterative

portion of our algorithm. To generate all cone based clusters,

we traverse the netlist in topological order for each node v and

generate clusters for v as described in the set relation shown

in equation 6.

Φ(v) = {
⋃

i=1..K

{v} × Φ(u1)× ...× Φ(uj)

| uj ∈ fanin(v), ‖Cv‖ ≤ N |Cv ∈ Φ(v)}

(6)

In equation 6, all clusters for node v are generated by

combining the clusters rooted at the fanin nodes of v in every

possible way, and discarding all resulting clusters that are

larger than size N . Φ(v) is the set of all cones rooted at node

v containing at most N LUTs. K are the number of fanin

combinations for node v (e.g. if there are 3 fanins, K = 6). Cv

represents a cone rooted at fanin node uj , v is the trivial cone

containing only node v, Φ(uj) represents the set of cones for

fanin uj , and N is the maximum number of LUTs that can fit

into a cluster. The × operator represents the Cartesian product

where taking the Cartesian product of two sets combines all

elements within each set in every possible way. Equation 6

combines the elements of all fanin cone sets, Φ(uj), in every

possible way where all elements with more than N nodes

are discarded. These cones form the set of clusters used in

the iterative portion of our clusterer. For example, in Fig. 18,

Φ(v) represents our cluster set for node v and it is generated by

combining the cluster sets of its fanins. Note that Φ(u)×Φ(w)
represents the Cartesian product of sets Φ(u) and Φ(w).

Φ(v) = ({v} × Φ(u)) ∪ ({v} × Φ(w)) ∪ ({v} × Φ(u)× Φ(w))

v

w u

Φ(w) Φ(u)

Fig. 18. Cluster set formulation example.

Although in this work, we determine cluster capacity to

be the number of distinct LUTs within a single cluster, other

constraints such as input constraints (i.e. the number of distinct

inputs allowed into a single cluster) can also be added to the

formulation with added complexity. Storing clusters explicitly

using equation 6 is not scalable due to the exponential number

of clusters that need to be stored. As a solution, we propose

generating and storing our cluster sets as ZDDs. The benefit

of using ZDDs to store clusters is that subclusters can be

shared as cofactors within our ZDD. This is similar to the

cut generation case where subcuts were shared as cofactors

within the BDD.

ZDDs are similar to BDDs, however, nodes whose positive

edges point to zero are “suppressed” and will not appear in

the graph while nodes whose positive and negative edge point

to the same node are kept in the graph (it is recommended that

those not familiar with ZDDs should refer to [2]). This makes

ZDDs efficient at representing and manipulating sets [2]. For

example, consider Fig. 19. To represent the set, Φ, the Boolean

function F is formed. Here, F is known as the characteristic

function for set Φ, where F evaluates to one if the variables

are set to a valid element found in set Φ. Set operations

on Φ such as the union operator (∪) can be applied to F

using standard Boolean operations. In F , each product term

represents a set element where each positive literal represents

that the given node exists in that element. Representing F as

a ZDD as opposed to a BDD is beneficial since nodes whose

positive edges point to zero can be removed in the ZDD. This

is clearly shown by looking at Fig. 19 and as a result the BDD

representing F is much larger than the ZDD representation of

F . As with BDDs, ZDDs can be combined together to form

larger ZDDs. This leads to a compact representation of cluster

sets.

Φ = {{vw}, {vu}, {w}}
F = vūw + vuw̄ + v̄ūw

u

w

v

10

u

w

w

v

10

u

(a) BDD (b) ZDD

Fig. 19. Representing sets as BDDs versus ZDDs.

2) Forward Traversal (TRAVERSEFWD): After all clusters

have been generated, a series of forward and backward traver-

sals of the LUT netlist is done. During the forward traversal,

for each node v, a cluster rooted at v is chosen to cluster v and

some of its predecessors. For the first traversal, the cluster with

minimal delay is chosen where after the entire netlist has been

traversed, an optimal delay, ODelay, of the circuit is found.

A backward traversal follows which produces an intermediate

clustering solution and establishes a height for all nodes in

the graph. The height, height(Cv), is used in conjunction

with the optimal delay in successive forward traversals as a
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depth bound when selecting clusters for each node as shown

in equation 7. Of the clusters that meet equation 7, the clusters

with the lowest area flow are selected.

ODelay ≥ delay(Cv) + height(Cv) (7)

Lemma 4.1: From equation 7, after the forward traver-

sal, all clusters selected for each node will not exceed the

optimal delay, ODelay, of the entire circuit.

Area flow gives a close estimation of the area found in the

final mapped solution. It was first described in [11], and it is

described recursively by equations 8 and 9 using the symbol

af(·).

af(Cv) = Av +
∑

e∈fanine(Cv)

af(e)
(8)

af(e) =
af(head(e))

‖fanoute(head(e))‖
(9)

Here, the area flow of a cluster rooted at node v is the sum of

the area flow of the fanins to cluster Cv plus the area associated

with the cluster Cv denoted as Av . The area flow of a fanin

edge is the area of the head node of the edge divided evenly

with its fanouts.

3) Backward Traversal (TRAVERSEBWD): The backward

traversal is responsible for finding an intermediate clustering

of the LUT netlist. First, each PO is marked as visible. Then,

for each visible node, the minimum cost cluster found in the

preceding forward traversal is used to cluster that node and

some of its predecessors. The fanins of the minimum cost

clusters are marked as visible and the process continues until

the PIs are reached. This process is illustrated in Fig. 20 where

the primary outputs of the circuit are located at the top of the

picture.

(a) (b) (c)

Fig. 20. Illustration of the steps taken during the backward traversal. (a)
LUTs feeding the primary outputs are marked as visible. (b) Cluster found
in previous forward traversal are used to cover visible nodes and some of its
predecessors. (c) Fanins feeding clusters selected previously are marked as
visible.

The backward traversal is also responsible for updating

the internal heights of each node. This is done by looking

at all the fanouts of a given node, v, and setting its height

to the largest height of its fanout edges. This is shown in

Fig. 21 where delay(e1) represents an inter-cluster delay and

delay(e2) represents an intra-cluster delay.

After an intermediate clustering solution is found, the root

node of all clusters are checked to see if they can be merged

into existing clusters to save area. Clusters can be merged

if the merge will not increase the delay of the critical path.

For example, consider Fig. 22. In Fig. 22a, two clusters are

shown, where the root node with height h3 and some of its

h3 = max{h1 + delay(e1), h2 + delay(e2)}

h
1

h
3

h
2

e
1 e

2

Fig. 21. Updating height of node v to h3.

successors must be duplicated. However, if h3 is greater than

h2+delay(e2), the node with height h3 has some slack and the

two clusters can be merged together as in Fig. 22b. Merging

clusters is possible since clusters have multiple outputs to

support the output of all LUTs found within the cluster.

Lemma 4.2: Merging clusters is guaranteed to not vio-

late the optimal delay constraint.

h
1

h
3

h
2

e
1 e

2

(a) (b)

Fig. 22. Leveraging the multi-outputs of a given cluster by merging clusters.

Theorem 4.3: After the backward traversal, a clustered

circuit will be returned with an optimal delay, ODelay.

Proof: In the forward traversal, all clusters created

will have a delay less than or equal to ODelay from

lemma 4.1. Since the backward traversal can only select

clusters created from the forward traversal, no cluster will

have a delay greater than ODelay. Furthermore, since

merging clusters will not increase the delay of a cluster

beyond ODelay by lemma 4.2, all clusters will obey the

delay of ODelay. Thus, the final clustered circuit will have

a delay of ODelay.

B. Packing Phase

Since the iterative flow described previously will lead to

much unnecessary duplication and will not necessarily fill all

clusters to their full capacity, a packing phase is applied to the

intermediate clustered netlist. The packing phase will break

the previous assumption that all clusters will form a cone by

packing clusters in various ways. The packing heuristics are

very similar to those described in [4] and consist of:
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• Pack Fanin - Pack a fanin cluster with its fanout cluster.

Fanins found on the critical path are clustered before

other fanins.

• Pack Duplicated - Pack clusters which share the same

LUTs. This reduces the number of duplicated LUTs in

the final netlist.

• Pack General - Do a bin packing of unfilled clusters.

The conjunction of these packing heuristics dramatically re-

duces the area overhead of our iterative clusterer.

V. RESULTS

Here, we evaluate our cut generation technique where we

create a tool called BddCut followed by an evaluation of our

iterative clustering tool called ICluster.

To evaluate our cut generation technique, we look at two

aspects. Since BddCut can be plugged into any iterative

technology mapper to generate cuts and achieve exactly

the same area and delay, our first evaluation focuses on

its scalability against two representative, state-of-the-art

mappers: IMap, one of the earliest mappers to use an

iterative strategy; and ABC, the most recently reported

iterative mapper that employs a scalable cut generation

algorithm. Our second evaluation attempts to measure

the benefits of the proposed method under the context

of a complete logic synthesis flow. To this end, we embed

BddCut as a replacement of the elimination procedure in

FBDD, and evaluate its impact on runtime and area.

Following this, we look at the scalability and performance

impact of our iterative clustering approach. Here we compare

ICluster against the traditional VPR flow [25] which utilizes

t-vpack [23] to cluster its LUTs. All of our experiments were

run on a Pentium D 3.2 GHz machine with 2GB of RAM.

We used the Somenzi’s CUDD BDD package [8] and applied

our algorithms to the MCNC [26] and IWLS [27] benchmark

(includes ISCAS89, ITC, and several large circuits) suite.

A. BddCut: Scalable Cut Generation

To investigate our symbolic approach to cut generation,

we compare the cut generation time of BddCut against

IMap’s [11] and ABC’s [3] cut generation time. Note

that all technology mappers were set to generate all

possible cuts (i.e. no pruning) and there was no sacrifice to

solution quality, hence final mapping results are omitted.

Table I shows detailed results for select circuits, followed

by Table II and III with summarized results for the entire

ITC and ISCAS89 benchmark suite. We also show a peak

memory use comparison between ABC and BddCut as

shown in Table IV. Finally, we compared BddCut with

ABC for one of the largest IWLS circuits which is shown

in Table V. In cases that the technology mapper ran out

of memory, the circuit time is marked as n/a.

The results in the previous table clearly indicate that

due to subcut sharing and redundant cut removal, our

symbolic approach scales better than traditional tech-

niques where IMap is more than an order of magnitude

slower. When compared against ABC, our technique scales

much better where our average speedup and relative

TABLE II

AVERAGE RATIO OF
IMap

BddCut
CUT GENERATION TIMES. IMAP COULD NOT

BE RUN FOR K ≥ 8.

Benchmark K=6 K=7

ITC 27.8x 46.5x
ISCAS89 12.2x 26.5x

TABLE III

AVERAGE RATIO OF
ABC

BddCut
CUT GENERATION TIMES.

Benchmark K=6 K=7 K=8 K=9 K=10

ITC 0.512x 1.07x 1.77x 4.25x 11.2x
ISCAS89 0.781x 1.08x 1.59x 2.39x 4.87x

TABLE IV

AVERAGE RATIO OF
ABC

BddCut
MEMORY USAGE.

Benchmark K=6 K=7 K=8 K=9 K=10

ITC 0.22x 0.60x 1.58x 2.12x 6.13x
ISCAS89 0.14x 0.24x 0.73x 1.55x 2.71x

TABLE V

RUNTIME COMPARISON OF BDDCUT WITH ABC ON CIRCUIT LEON2

(CONTAINS 278,292 4-LUTS).

runtime (sec) memory (GB)

Cut Size BddCut ABC BddCut ABC

6 23.3 77.9 0.43 1.41
7 58.9 n/a 0.45 n/a
8 152.9 n/a 0.60 n/a
9 547.6 n/a 0.81 n/a

reduction in memory use improves as K gets larger. Unlike

runtime, the improvement in memory does not occur until

K gets large (K > 7). We found that because there

is a fixed overhead in the CUDD BDD manager, and

therefore only at the larger cut sizes was this overhead

amortized through subcut sharing or if the benchmark is

large as in the case of leon2 shown in Table V. Without

subcut sharing, memory runs out for a few of the larger

benchmark circuits when K = 10. This is also true for

extremely large benchmark circuits as shown in Table V

where ABC runs out of memory in circuit leon2 for

K > 6. Fortunately, ABC supports cut dropping which

has proven to reduce the memory usage by several fold,

but, from our experience, cut dropping increases the cut

computation time so we did not turn on this feature. For

example, with cut dropping enabled, ABC took more than

12 hours to generate 10-input cuts for circuit b20, whereas

BddCut takes less than 15 minutes.

Although ABC outperforms BddCut for small cut sizes, the

longest 6-input cut generation time in BddCut was 2.8 seconds.

For small cut sizes, the overhead in storing and generating

BDDs is not amortized when generating cut sets symbolically,

thus ABC is still the better approach for smaller values of K.

The exception to this trend occurs for circuits with a high

degree of reconvergence such as for circuit C6288 (C6288

is a multiplier). For these circuits, our relative speedup is much

larger for all values of K because reconvergent paths dramat-
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TABLE I

DETAILED COMPARISON OF BDDCUT CUT GENERATION TIME AGAINST IMAP AND ABC. IMAP COULD NOT RUN FOR K ≥ 8.

K=6 (sec) K=7 (sec) K=8 (sec) K=9 (sec) K=10 (sec)
Circuit BddCut IMap ABC BddCut IMap ABC BddCut ABC BddCut ABC BddCut ABC

C6288 0.20 40.64 0.52 0.67 660.76 5.66 2.48 14.49 9.91 150.13 41.86 1758.44
des 0.36 10.46 0.19 0.70 294.05 3.34 9.05 10.70 74.66 105.16 828.44 1126.50
i10 0.22 14.27 0.25 1.58 98.27 2.00 2.83 6.06 11.41 57.17 50.78 581.09
b20 1.84 81.89 0.88 8.27 890.67 8.69 42.01 73.53 200.27 889.92 895.63 n/a
b21 1.91 86.84 0.94 8.59 929.90 8.66 44.03 80.34 205.25 942.88 920.22 n/a
b22 1 2.17 107.16 1.38 8.81 n/a 10.3 41.22 84.36 180.58 924.38 766.63 n/a
s15850.1 0.11 3.96 0.13 0.33 38.32 0.75 1.08 7.61 4.11 16.69 17.94 192.72
s38417 0.45 13.68 0.31 1.39 133.83 0.72 4.31 6.19 14.19 58.09 47.97 536.84
s4863 0.11 19.27 0.11 0.36 269.07 0.84 1.45 4.99 6.53 50.66 30.77 555.59
s6669 0.11 15.73 0.09 0.33 197.76 0.63 1.20 3.53 5.88 32.63 31.61 295.38

Ratio Geomean 63x 0.83 225x 1.8x 2.5x 4.9x 10x

ically increase the number of cut duplications in conventional

cut generation methods.

A concern one could raise with our symbolic approach is

the effect of BDD representation of cuts on the cache. Since

the CUDD package represents BDDs as a set of pointers, the

nodes in each BDD may potentially be scattered through-

out memory. Thus, any BDD traversal would lead to cache

thrashing, which would dramatically hurt the performance of

our algorithm. However, CUDD allocates BDD nodes from a

continuous memory pool leading to BDDs that exhibit good

spatial locality. Our competitive results support this claim and

indicate that good cache behaviour is maintained with CUDD.

1) Elimination: A Practical Application: After ensuring our

symbolic cut generation approach was scalable, we applied

our cut generation to elimination and evaluated our elimination

scheme against greedy based elimination schemes. To compare

the two approaches, we replaced the folded elimination step

in FBDD with our covering-based elimination algorithm and

compared both the area and runtime of the original FBDD

flow against our new flow. Logic folding exploits the inherit

regularity of logic circuits by sharing transformations between

equivalent logic structures. This has a huge impact on runtime

where it has been shown to reduce the number of elimination

operations by 60% on average. Thus, comparing against the

folded version of elimination has much more value. We also

compare against SIS for a common reference point. For

ease of readability, we will refer to our flow which uses

covering-based elimination as FBDDnew. Starting with un-

optimized benchmark circuits, we optimized the circuits with

FBDDnew, FBDD, and SIS. To compare their area results, we

technology mapped our optimized circuits to two technologies:

the SIS standard cell library (map) [18] and 4-LUTs using

the technology mapping algorithm described in [11]. When

optimizing the circuits in SIS, we used script.rugged [18].

Table VI illustrates detailed results for a few benchmark

circuits. Column Circuit lists the circuit name, column Time

lists the total runtime in seconds, column Std Cell lists the

standard cell area when mapped to SIS’ default standard cell

library, and column 4-LUT lists the 4-LUT count. Note a few

circuits caused SIS to run out of memory and are marked as

n/a. The final row lists the geometric mean of the ratio when

compared against FBDDnew.

For the circuits shown in Table VI, our new flow is

significantly faster than the original FBDD with an average

speedup of over 5x and an order of magnitude speedup over

SIS. The results also show that this speedup comes with no

area penalty.

We also explored the effect of the maximum cut size used

in our elimination algorithm on runtime and area where we

varied the cut size from 4 to 10. This is shown in Table VII

where we applied our new flow to the entire ITC, ISCAS89,

and select IWLS benchmarks and take the geometric mean

ratio of the FBDD result over FBDDnew. Column K lists

the cut size used in FBDDnew when generating resynthesis

regions, column Time is the time ratio, column Std Cell is the

final standard cell area ratio, and column 4-LUT is the final

4-LUT area ratio. Each ratio column is given a benchmark

heading indicating the benchmark suite used. As Table VII

shows, it appears that using a cut size of 4 or 6 has a substantial

speedup of more than 10x in many cases; however, this comes

with an area penalty, particularly in the IWLS benchmarks.

This implies that the elimination regions created with these

cut sizes are too small and does not capture large enough

resynthesis regions in a single cone. In contrast, a cut size of

8 still maintains a significant average speedup of more than

6x for all benchmarks with negligible impact on the final area

when compared to the original FBDD.

B. ICluster: Iterative Clustering

A runtime, area overhead, and placed and route delay

comparison between ICluster against the traditional VPR flow

is shown in Table VIII and Table IX. Table VIII shows

detailed results for a few select circuits and Table IX shows

a summarized result for the ITC and MCNC benchmark suite

and also the benchmark circuits used in [4] labeled SMAC.

T-vpack is used in the traditional VPR flow to cluster LUTs

where both t-vpack and VPR are set to timing driven mode and

all circuits are optimized and technology mapped to 4-LUTs

with ABC prior to clustering [3]. The clustering architecture

we used contained 10 LUTs per cluster. When comparing the

results, the results of the ICluster-VPR flow are divided by

the results of the traditional tvpack-VPR flow. The results

show that our technique is approximately 50% slower with

a 15% area overhead and an improvement of 4-8% place

and route delay on average. In [4], the authors report a

23% area overhead with a 12.3% improvement in place and
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TABLE VI

DETAILED COMPARISON OF AREA AND RUNTIME OF FBDDnew AGAINST FBDD AND SIS FOR K = 8.

Time (sec) Std Cell Area 4-LUT Area

Circuit FBDDnew FBDD SIS FBDDnew FBDD SIS FBDDnew FBDD SIS

s38417 1.9 7.2 58.0 15992 15711 18617 3560 3559 4052
s38584 3.0 13.7 3927.3 17388 17783 16846 4289 4152 4174
s35932 3.9 4.1 n/a 18630 17806 n/a 3264 3360 n/a
s15850 0.8 9.1 68.8 5707 5605 5735 1282 1270 1329
b20 5.5 44.8 154.5 20280 20002 20776 4514 4324 4773
b22 1 6.2 38.4 202.4 26402 29725 25265 5788 6505 5664
b17 8.9 102.8 583.1 44355 41115 46701 10722 9896 11574
systemcdes 3.1 11.3 123.1 5582 5683 5276 1152 1207 1143
vga lcd 38.9 585.2 n/a 18435 178033 n/a 40680 40676 n/a
wb conmax 18.6 104.2 1313.5 76719 82514 77329 19135 19479 19726

Ratio Geomean 5.7x 70x 1.00 1.01 1.00 1.03

TABLE VII

COMPARISON OF AREA AND RUNTIME OF FBDD AGAINST FBDDnew FOR VARIOUS VALUES OF K .

ITC Ratios ISCAS89 Ratios IWLS Ratios
K Time Std Cell 4-LUT Time Std Cell 4-LUT Time Std Cell 4-LUT

4 12.4x 0.978 1.001 11.9x 0.975 0.982 12.8x 0.964 0.913
6 8.76x 1.00 1.00 9.26x 0.965 0.984 8.72x 0.950 0.921
8 6.16x 0.995 1.00 6.24x 0.994 0.987 6.84x 0.968 0.971
10 2.55x 1.02 0.991 2.62x 0.987 0.984 2.76x 0.966 0.964

TABLE VIII

DETAILED COMPARISON OF RUNTIME, AREA, AND DELAY OF

ICLUSTER-VPR FLOW AGAINST THE TVPACK-VPR FLOW.

t-vpack ICluster
Circuit area P&R delay area P&R delay

# CLBs (ns) # CLBs (ns)

b14 172 69.9 211 64.3
b15 320 96.2 374 79.8
des 146 33.1 214 32.3
i9 27 22.4 29 19.9
too large 21 27.9 23 25.3
C3540 37 42.7 49 37.4

TABLE IX

AVERAGE COMPARISON OF RUNTIME, AREA, AND DELAY OF

ICLUSTER-VPR FLOW AGAINST TVPACK-VPR FLOW.

Benchmark Time area P&R delay

ITC 0.43 1.14 0.92
MCNC 0.67 1.13 0.96
SMAC 0.56 1.15 0.93

route delay. However, their technique is 100x slower than the

traditional clustering flow. Our original hypothesis was proven

here where we showed that maintaining global information

during clustering can improve the circuit performance. By

solving clustering disjointly from technology mapping and

using ZDDs to represent our cluster sets, our performance

improvement was achieved with a significantly smaller runtime

impact than [4]. Though, we recognize that the improvement

is not as dramatic as the numbers reported in [4]. However,

our approach does not have the 100x runtime penalty reported

in [4] which is a limitation for its practical application on large

designs with 100K LUTs or more.

VI. CONCLUSION

We introduced a novel BDD-based reduction technique for

problems important to CAD including cut generation and

clustering of LUTs. Prior to our work, these algorithms were

facing scalability issues particularly when the circuit size or

the problem parameters were large. The primary benefit of

our approach is its generality. For example, there has been

extensive research done on pruning the solution space of cut

generation to reduce its runtime and memory use [9], [12].

Interestingly, all these techniques are orthogonal to our work.

Since the benefit of our approach is how we represent our

cut sets, we can apply the same pruning techniques used in

previous work on top of our BDD cut generation approach to

get a further speedup.

Our approach, however, does come with limitations. In

section III-C, we illustrated an algorithm to evaluate our cut

sets using dynamic programming. It should be emphasized that

this can only work when the cost of each cut is independent

of elements found within the cone of logic created by the

cut. For example, when mapping to generalized PLBs, the

function of each cut needs to be evaluated [14]. Thus, in

such cases, a dynamic programming approach to the cut set

traversal will not be applicable. In this case, the cuts must

be traversed individually which is the case in current cut

generation algorithms. Furthermore, cut generation can only

be applied to single output cones. As future work, we would

like to investigate possible means to generate multi-output

cones efficiently. This would be valuable for many logic

transformations applicable to multi-output functions.

Overall, we have shown a general technique that leverages

BDDs to represent sets. We have shown that this idea is general

enough to be applied to cut generation and clustering where

we proved this leads to an order of magnitude speedup on
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average.
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