
POST-PLACEMENT BDD-BASED DECOMPOSITION FOR FPGAS

Valavan Manohararajah, Deshanand P. Singh and Stephen D. Brown

Altera Toronto Technology Center
vmanohar|dsingh|sbrown@altera.com

ABSTRACT

This work explores the effect of adding a timing driven func-
tional decomposition step to the traditional field program-
mable gate array (FPGA) CAD flow. Once placement has
completed, alternative decompositions of the logic on the
critical path are examined for potential delay improvements.
The placed circuit is then modified to use the best decompo-
sitions found. Any placement illegalities introduced by the
new decompositions are resolved by an incremental place-
ment step. Experiments conducted on Altera’s Stratix and
Stratix II device families indicate that this functional decom-
position technique can provide average performance improve-
ments of6.1% and5.6% on a large set of industrial designs,
respectively.

1. INTRODUCTION

Recent research effort inphysical synthesishas strived to
eliminate the artificial separation that exists between the var-
ious steps in CAD. Most of the existing work is applicable
to ASIC CAD flows [1, 3, 4, 5, 6, 7]. However, a few of
the more recent efforts explore FPGA CAD flows [2, 8, 9].
Some have concentrated on making the synthesis step more
aware of what happens during placement and routing [1, 2],
while others have explored the use of synthesis type algo-
rithms during placement and routing [3, 4, 5, 6, 7, 8, 9]. Our
work falls into the latter category. It considers the effect of a
functional decomposition algorithm that is used after place-
ment.

Most of the delays in an FPGA circuit are due to the
programmable routing network [10]. These delays will not
be known for certain until the routing step completes. It
would be advantageous to perform local optimizations once
routing has completed and accurate routing delays are avail-
able. However, making changes to the circuit during the
routing step is extremely complicated. Here we choose to
perform local optimizations at the placement step, which is
sufficiently close to the routing step that reasonably accurate
delays are known. Furthermore, small changes to the circuit
can still be made without much difficulty.

2. TARGET FPGA ARCHITECTURES

Altera’s Stratix [11] and Stratix II [12] chips were used as
the target for the functional decomposition experiments. The
high level structure of both chips is similar. Both chips
are comprised of I/O elements (IOEs), logic array blocks
(LABs), digital signal processing blocks (DSPs) and mem-
ory elements (M512, M4K and M-RAM). While DSPs and
memory elements perform very specific roles in the FPGA,
the LABS can be configured to perform arbitrary logic func-
tions. The LABs are also the source of significant differ-
ences between the two architectures. A LAB in a Stratix
device contains10 logic elements (LEs) while a LAB in a
Stratix II device contains8 adaptive logic modules (ALMs).
The Stratix LE, illustrated in Figure 1(a), contains a four-
input lookup table (4-LUT), a register and some logic that
facilitates the creation of arithmetic circuits. Figure 1(b) il-
lustrates the Stratix II ALM. It contains two registers, two
sets of addition circuitry and a combinational logic mod-
ule that can implement two functions of varying complexity.
The combinational logic module can be configured to imple-
ment a single 6-LUT, or two LUTs with five or fewer inputs.
If the module is configured to implement two 5-LUTs, the
LUTs must share at least two of their inputs as there are only
8 inputs connected to the module.

Our work focuses on the LUTs within the LEs and ALMs
that make up a circuit. We improve the overall timing of the
circuit by restructuring the LUTs on the critical path.

3. A FRAMEWORK FOR POST-PLACEMENT
OPTIMIZATION

Figure 2 illustrates the CAD flow used in our work. In the
first step, design entry, the design is described in terms of
a hardware description language such as VHDL or Verilog.
Logic synthesis optimizes the circuit obtained from design
entry. During logic synthesis the netlist is represented in
terms of a generic gate library. The technology mapping
stage converts the netlist to use the logic elements available
in the target FPGA architecture. In order to reduce the size
of the problem the placer has to deal with, a clustering step
is used to group the technology mapped circuit into a set of

D Q

reg1

regchain
in

4-LUT
&

Carry Out
Logic

datad

datab

datac

carry
in

dataa

addnsub

regchain
out

regout

combout

carry
out

(a) Stratix.

Combinational
Logic

dataf0
datae0
dataa
datab
datac
datad
datae1
dataf1

adder0

adder1

D Q

reg0

D Q

reg1

carry
out

shared
out

shared
in

carry
in

regchain
in

regchain
out

combout1

combout0
regout0

regout1

(b) Stratix II.

Fig. 1. Logic structures in the Stratix and Stratix II FPGAs.

Design Entry

Synthesis

Technology Mapping

Clustering

Placement

Routing

Local
Optimizations

Incremental
Placement

Fig. 2. Post-placement optimizations in the CAD flow.

clusters. In both the Stratix and Stratix II architectures, the
clustering step creates a set of LABs. Following clustering,
placement determines a position for each cluster in the cir-
cuit.

Once placement is completed, various local optimiza-
tion techniques are used to improve the circuit’s critical path.
Functional decomposition is one of the many local optimiza-
tion techniques that can be used during this step. There are
three other local optimization techniques present in Quartus
II v4.2: retiming, logic replication and rewiring [13]. These
techniques may make a circuit modification that results in an
invalid placement. For example, a functional decomposition
algorithm may create new wires that violate the constraint
on the number of wires entering a LAB. A logic replica-
tion algorithm may create new LEs or ALMs which would
then require placement. Incremental placement is used to
integrate the modifications made by the local optimization
techniques into the existing placement. It uses an iterative
improvement algorithm whose goal is to integrate the cir-
cuit modifications while peturbing the existing placement as
little as possible. Logic elements that have been added to the

circuit and logic elements within illegal LABs are moved ac-
cording to a cost function that consists of three components:

• LAB illegality cost: Each LAB is penalized if it con-
tains architectural violations. The cost is proportional
to the number of constraints violated.

• Timing cost: The timing cost is used to ensure that
critical logic elements are not moved into locations
that would drastically increase the critical path delay.

• Wirelength cost: Wirelength estimation is used to en-
sure that the circuit is easily routable after the logic
element moves.

The total cost is a weighted sum of these components. Cost
lowering moves are made until no further illegalities exist
in the placement. A novel hillclimbing strategy is used to
ensure that the iterative improvement algorithm does not get
stuck in a local optima where none of the proposed moves
seem to improve the cost even though there is remaining ille-
gality. The interested reader is referred to [14] for a detailed
description of the incremental placement step.

The final step in the CAD flow, routing, determines the
wires that will be used to connect the elements that make up
the circuit.

4. TIMING DRIVEN FUNCTIONAL
DECOMPOSITION

4.1. Preliminaries and Prior Work

If the delay within circuit components and the delay of con-
nections between circuit components are known, timing analy-
sis can be used to establish theslack [15] of every connec-
tion. The slack of a connection is defined to be the amount of
delay that can be added to the connection before it becomes
critical. A connection is critical if the length of a path it be-
longs to exceeds the path-length constraint set by the user.

Timing analysis also establishes aslack ratiofor each con-
nection. The slack ratio is a value between0 and1 which in-
dicates the relative importance of each connection to overall
circuit timing. Connections that have a significant effect on
circuit timing have slack ratios closer to0 while connections
that have negligible effect on circuit timing have slack ratios
closer to1. A precise definition of slack ratios is beyond
the scope of this paper. However, from an optimization pre-
spective, slack ratios provide the most accurate information
as the formulation accounts for multi-cycle clocks, inverted
clocks and clock skew.

Given a functionf(X,Y) defined over two sets of vari-
ablesX andY , functional decomposition finds subfunctions

g1(Y), g2(Y), . . . , gk(Y)

such thatf can be reexpressed in terms of thegs:

f(X, g1(Y), g2(Y), . . . , gk(Y))

The set of variablesX is referred to as thefree setand the
set of variablesY is referred to as thebound set. If there are
no variables common toX andY , the decomposition is said
to bedisjoint. Otherwise the decomposition isnon-disjoint.
In this work, we limit the type of non-disjoint decomposi-
tions considered. During non-disjoint decompositions, the
the number of variables common toX andY is limited to
1. Unconstrained non-disjoint decomposition had little ob-
served benefit over the constrained non-disjoint decomposi-
tion we consider here.

The LUTs in an FPGA are capable of implementing any
function ofk variables. Thus, functional decomposition (as
opposed to algebraic decomposition) can be used to find
subfunctions that fit naturally into LUTs. A number of re-
cent works have explored the use of functional decomposi-
tion for FPGA logic synthesis [21, 22, 23].

Early methods for functional decomposition [16, 17] used
data structures that were exponential in the number of vari-
ables present in the function being decomposed. Newer
methods [19] are based exclusively on the BDD data struc-
ture. Although BDDs are exponential in the worst case,
most of the functions encountered in practice can be rep-
resented compactly as BDDs.

A BDD is a directed acyclic graph that contains two
types of vertices,non-terminalandterminal. Non-terminal
vertices are associated with variables and terminal vertices
are associated with boolean constants. Every non-terminal
vertex has two outgoing edges: a 0-edge representing the re-
sult of assigning0 to the variable at the vertex and a 1-edge
representing the result of assigning1 to the variable at the
vertex. Most of the benefits of BDDs cannot be realized un-
less the BDD is reduced and ordered. A BDD is reduced
if it does not contain redundant vertices or multiple vertices
implementing the same function. A vertex is redundant if

both the 0- and the 1-edge point to the same destination ver-
tex. Two vertices implement the same function if they are
associated with identical variables and their 0- and 1-edges
point to the same vertices. A BDD is ordered according to a
specified variable order if a vertex associated with variable
u points to a vertex associated with variablev only if v fol-
lows u in the specified order. In this work, the term BDD
will always refer to a reduced, ordered BDD unless other-
wise specified.

Figure 3 illustrates a reduced, alphabetically ordered BDD
for the function

f = (p + q + r)s + (p + q + r)(st + su + stu)

Clearly, this function has a disjoint decomposition with bound
set{p, q, r} and free set{s, t, u}. A subfunction,g = p +
q + r, defined over the bound set can be extracted fromf ,
andf can be reexpressed in terms of g:

f = gs + g(st + su + stu)

This decomposition can be obtained from the BDD as fol-
lows. A cut in the BDD establishes two sets of variables.
The variables above the cut constitute the bound set and the
variables below the cut constitute the free set. Figure 3 illus-
trates a cut inf that separates the bound set,{p, q, r}, from
the free set,{s, t, u}. The portion of the BDD above the cut
references two distinct functions,f0 andf1, below the cut.
Thus, the portion of the BDD above the cut can be replaced
by a single boolean variableg that determines whetherf0 or
f1 is to be selected. A separate BDD computes the value for
g, and in the new BDD forf , f0 is selected wheng = 0 and
f1 is selected wheng = 1. Note that this encoding is abi-
trary. We could have just as easily selectedf0 wheng = 1
andf1 wheng = 0.

When there are more than two distinct functions being
referenced below a cut, a single variable is not adequate to
encode the information needed to select one of the functions.
If there aren distinct functions below the cut thendlog2 ne
variables will be needed to encode the selection information.

Some common functions can only be simplified using
non-disjoint decomposition. For example, a 4-to-1 multi-
plexer with data inputs{a, b, c, d} and selection inputs{s0, s1}
cannot be implemented with two 4-LUTs unless non-disjoint
decomposition is used. The method used for disjoint decom-
position can be extended to handle non-disjoint decompo-
sitions as well. Figure 4 illustrates the BDD for the multi-
plexer function. We decompose the function using the bound
set {s0, s1, a, b} and the free set{s0, c, d}. Non-disjoint
decomposition with a single shared variable can be viewed
as two disjoint decompositions, one where the shared vari-
able has been set to zero and another where the shared vari-
able has been set to one. The non-disjoint decomposition is
then formed by combining the two disjoint decompositions
using the shared variable. The two specialized functions

1 0

u u

t t

s s

r

q

p0-edge
1-edge

cut
f0 f1

f

r

q

p

g

0 1

1 0

u u

t t

s sf0 f1

g

f

Fig. 3. Decomposition off using bound set{p, q, r} and
free set{s, t, u}.

of m are illustrated in Figures 4a and 4b. Both functions
are decomposed using the bound set{s1, a, b}. Finally, the
non-disjoint decomposition in Figure 4c is created by using
s0 to select between the two disjoint decompositions. Ob-
serve that the resulting non-disjoint decomposition allows
the function to be implemented using two 4-LUTs.

4.2. Algorithm Overview

An overview of the timing driven functional decomposition
algorithm is given in Figure 5. Timing analysis is the first
major task performed by the algorithm. The delays within
circuit components are known at this point. However, the
delays of connections between circuit components are not
yet known as routing has not been performed. We estimate
the delay between components as the delay of the fastest
route between the component locations. Although the as-
sumption of the fastest route is inaccurate for non-critical
signals, it is quite accurate for critical and near-critical con-
nections which tend to use fastest possible routes. Timing
analysis establishes both the slack and slack ratio of every
circuit connection, and returns the worst slack seen during
the analysis. The algorithm uses the worst slack to deter-
mine whether the timing driven decompositions help im-
prove the overall timing of the circuit.

The algorithm performs a number of decomposition it-
erations until a user specified maximum is reached. A set
of parameters,params, controls how some of the functions
within an iteration behave. This set is initialized before the
iterations begin and is adjusted at the end of every iteration.
Each iteration begins with the selection ofseed LUTs(line
5). Seed LUTs are the LUTs in the circuit that pass some

0-edge
1-edge

s0

m

0 1

s1 s1

a

b

c

d

m

0 1

s1

a

b

s0 = 0

cut

g

0 1

s1

a

b

m

g

0 1

m

0 1

s1

c

d

s0 = 1

cut
m

0 1

g

c

d

g

s1

0 1

g

0 1

s1

a

b

s1

s0

g

0 1

g

c

d

m

s0

(a) (b)

(c)

Fig. 4. Non-disjoint decomposition of a 4-to-1 multiplexer.

1 bestt ← TIMING ANALYSIS()
2 bestc ← Circuit
3 INITPARAMS(params)
4 for i ← 1 upto MaxIterations
5 S ← SELECTSEEDS(params)
6 S ← SORT(S)
7 for s ∈ S
8 C ← EXPANDCONE(s)
9 C′ ← DECOMPOSECONE(C, params)
10 if C′ 6= ∅
11 Circuit ← (Circuit − C) ∪ C′

12 end if
13 end for
14 INCREMENTALPLACEMENT()
15 t ← TIMING ANALYSIS()
16 if t ≥ bestt
17 bestt ← t
18 bestc ← Circuit
19 end if
20 ADJUSTPARAMS(params)
21 end for
22 Circuit ← bestc

Fig. 5. An overview of the functional decomposition algo-
rithm.

criticality criteria (to be defined Section 4.3). Each seed
LUT is assigned a cost that reflects the potential benefits of

performing a timing driven decomposition around the LUT.
The seed LUTs are sorted according to cost (line 6) so that
the LUTs with a higher potential for improvement are con-
sidered first. This is necessary because a decomposition of
the logic around one seed LUT may affect the availability
of a decomposition around another seed LUT. Thus, by con-
sidering the most beneficial decompositions first, we avoid
the possibility that a lower valued decomposition prevents
the discovery of a higher valued one. Seed LUTs are used
as the starting point for a cone expansion procedure (line 8)
which returns a cone rooted at the seed LUT. The returned
cone is then decomposed (line 9), and if the decomposi-
tion is successful the restructured cone replaces the original
cone in the circuit. Once all seed LUTs have been consid-
ered, incremental placement (line 14) is called to integrate
the changes made by the decomposition algorithm into a le-
gal placement. A timing analysis is then performed to see if
the circuit’s timing has improved. The algorithm stores the
circuit with the best timing inbestc, and at the end, the best
circuit replaces the circuit being restructured.

We consider the procedures for seed selection, cone ex-
pansion and cone decomposition in greater detail below. We
also consider the iteration parameters that control the behav-
ior of seed selection and cone decomposition.

4.3. Selecting Seed LUTs

The selection of seed LUTs depends on the current itera-
tion’s slack ratio thresholdparameter (see Section 4.6). The
slack ratio threshold determines which LUTs are to be in-
cluded in the set of seed LUTs. Any LUT with an input
whose slack ratio is below the slack ratio threshold is added
to the set of seed LUTs. The cost of a seed LUT is defined
based on the potential benefits of performing a functional
decomposition at the LUT. We define the cost,c, of a seed
LUT as

cLUT = (1.0− rmin)α(ravg − rmin) (1)

wherermin is the minimum of the input slack ratios and
ravg is the average of the input slack ratios. The exponent,
α (α = 4 in the experiments), is used to control which of
the two components of cost has a higher effect on the final
cost. Higher values of cost indicate that the potential for im-
provement is higher. A LUT is assigned a high cost if it has
a very low minimum slack ratio or if it has an average slack
ratio which is significantly higher than the minimum slack
ratio. If the minimum slack ratio is low then the potential
improvements at the LUT benefits the entire circuit. If the
average slack ratio is high relative to the minimum slack ra-
tio then a decomposition at the LUT has a greater chance
of succeeding; the connections with high slack ratios can
be slowed down in order to speed up the connections with
lower slack ratios.

v1

v2

v3

v5

v4

s

Conee1

e2

e3

e4

e5

e6

Fig. 6. A cone being expanded arounds.

4.4. Cone Expansion

The cone expansion process begins at a seed LUT and pro-
ceeds towards theprimary inputs. For the purposes of func-
tional decomposition, any circuit component that is not a
LUT is considered to be a primary input. The first LUT
added to the cone is the seed LUT itself. Then the cone is
grown by adding LUTs that provide inputs to the cone. As
the cone is grown, we update the slack of the inputs to the
cone. Slacks are computed under the assumption that there
is a large LUT implementing the functionality of the cone
at the same position as the seed LUT. For example, in Fig-
ure 6, a cone is being grown with LUTs as the seed. The
new slack ofe1, s′(e1), is given by

s′(e1) = s(e1) + d(v4) + d(v4, s)− d(v1, s)

wheres(ei) is the slack ofei as computed by timing analy-
sis, d(vi) is the delay through LUTvi andd(vi, vj) is the
delay of the fastest route from LUTvi to LUT vj . LUTs v1,
v2 andv5 provide the current inputs to the cone, and one of
these LUTs will be the next to be selected for inclusion. The
LUT driving the cone input with the lowest slack will be the
first to be considered for inclusion. This LUT is added if it
passes one of two criteria:

1. All of the LUT outputs must be present as inputs to
the cone, or

2. an input that the LUT provides to the cone must have
a slack that is sufficiently close to the minimum slack
observed at the seed LUT.

If the LUT does not pass either of the two criteria, the next
LUT, in order of slack, will be considered for inclusion. Ex-
pansion stops if there are no more LUTs that pass the inclu-
sion criteria.

The first criterion avoids cases where a LUT needs to be
duplicated in order to be added to the cone. For example,
in Figure 6, only one ofv5’s outputs is present as an input
to the cone. If the LUT is to be added to the cone, it needs
to be duplicated. The second criterion allows the temporary
violation of the first criterion for the LUTs that have a sig-
nificant impact on the timing of the cone. Returning to our
example, assume thate5 has the lowest slack ats and thate6

has a slack close toe5’s. Cone expansion has expandedv4,
and if the second criterion is not present, the expansion stops

at this point. However, resynthesis of the cone containingv4

ands will do little to improve the overall slack at the seed
LUT becausee6 will still be present as an input. The second
criterion allows the addition ofv5 so that resynthesis may
produce significantly better timing at the seed LUT.

As the cone is expanded, a BDD that represents the func-
tionality of the cone is constructed. In addition to the criteria
described earlier, cone expansion also stops if the number
of BDD nodes exceeds a specified threshold. This is done
for three reasons. First, the computational effort of decom-
posing the cone is kept under control. Second, the circuit
changes that result from functional decomposition do not
overwhelm the incremental placer which is designed to han-
dle small changes. Third, the effect, on timing, of a change
made to a small cone of logic is easier to predict than a
change made to a large one.

4.5. Cone Decomposition

We decompose a cone by perfoming functional decompo-
sition on a BDD that represents the cone’s functionality.
In each step of the decomposition procedure, a single sub-
function is extracted and the remaining BDD is reexpressed
in terms of the extracted subfunction. The type of LUTs
present in the target architecture determine the size of the
subfunctions extracted. In Stratix, we extract subfunctions
with four or fewer inputs, and in Stratix II, we extract sub-
functions with six or fewer inputs. Decomposition continues
until the remaining BDD fits into a single LUT in the target
architecture.

Every input to the cone and consequently every variable
present in the BDD has an associated slack. When a sub-
function is extracted from the BDD, a slack is computed for
the variable that represents the subfunction in the modified
BDD. These slacks will be used to determine an ordering for
the variables in the BDD.

Two values extracted from the cone help control the tim-
ing driven aspects of the decomposition. The first value,
smin , is the minimum slack observed at the seed LUT. It
establishes a lower bound on the slack for the decomposi-
tion. The decomposition procedure stops and reports failure
if it cannot meet the slack requirement at any step. The sec-
ond value,davg , is the average delay for a single level of
logic (consisting of LUT delay and interconnect delay) in
the cone. In Figure 6, if the cone consisted of nodess, v4

andv5 thendavg would be computed as follows

davg =
d(v4) + d(v4, s) + d(v5) + d(v5, s)

2
When a subfunction is extracted from the BDD,davg will
be used in computing the slack for the variable representing
the subfunction. Specifically, the slack of a new variablev
is computed as

s′(v) = min{s′(u)|u ∈ support(v)} − davg (2)

wheresupport(v) is the set of variables thatv depends on.
In addition to the constraint on the lowest allowed slack

during decomposition, there is an additional parameter,area
threshold, which limits the number of extra LUTs that can be
created as a result of decomposition. For example, an area
threshold of1.5 indicates that decomposition is allowed to
create upto50% more LUTs than were present in the cone
initially. Any decomposition with an area greater than the
threshold is rejected.

There are three operations carried out in each decompo-
sition step. First, the variables in the BDD are reordered.
Second, a set of bound variables is identified. And finally,
the decomposition is performed using the bound variables.
We examine the variable reordering and bound set selection
operations in detail below.

4.5.1. Variable Reordering

The variable reordering procedure helps move good bound
set variables to the top of the BDD. We use the sifting algo-
rithm [18] to reorder the variables. However, unlike tradi-
tional sifting whose goal is to optimize the number of nodes
in a BDD, our sifting algorithm minimizes a cost function
that reflects the suitability of the variable order for decom-
position. The cost of a variable order,corder , consists of
three components:

1. nnodes : The total number of BDD nodes.

2. nfunctions : The number of distinct functions below
every bound set of interest. In Stratix, we are inter-
ested in bound sets of size 2–4, and in Stratix II, we
are interested in bound sets of size 2–6.

3. stotal : The total slack of the firstk variables wherek
is maximum LUT size in the target architecture.

It is defined as follows

corder =
nnodesn

β
functions

stotal
(3)

The exponent,β (β = 2 in the experiments), helps increase
the effect that the second component has on overall cost.
Each of the components in the cost function has a specific
purpose. The first component reduces the complexity of the
BDD produced by the variable order. It also ensures that a
simple function is produced after a subfunction is extracted
from the top of the BDD. The second component reduces
the number of new LUTs created as a result of subfunction
extraction. And the last component helps move variables
with lots of slack towards the top of the BDD where they
can be extracted. By extracting the variables with plenty of
slack first, we allow the variables with very little slack to go
through fewer levels of LUTs.

4.5.2. Bound Set Selection

After the variables in the BDD have been ordered, we select
some of the variables at the top of the BDD to be part of
a bound set. Both disjoint and non-disjoint decompositions
using the bound set are considered. However, the number
of new variables that result after subfunction extraction is
limited to two and the number of shared variables, in a non-
disjoint decomposition, is limited to one. Of the available
choices for the bound set, we select the bound set that re-
sults in a decomposition with the highest ratio of variables
removed to variables added.

4.6. Iteration Parameters

Two iteration parameters, slack ratio threshold and area thresh-
old, control the behavior of seed selection and cone decom-
position. Slack ratio threshold begins at a large value (0.12
in the experiments) and is decreased linearly to its final value
(0.04 in the experiments). Area threshold begins at a low
value (1 in the experiments) and is increased linearly to its
final value (2 in the experiments). This allows the early it-
erations to target a large number of LUTs, but allows very
little leeway in the amount of extra area that can be created.
And in the later iterations only the most critical LUTs are
targeted, but decomposition is allowed to create a lot more
area in order to restructure these LUTs.

5. EXPERIMENTAL RESULTS

In our experiments, the first three steps of the FPGA CAD
flow, design entry, synthesis and technology mapping, were
performed by a leading third-party synthesis tool capable of
targeting Altera devices, and the last four steps, including
functional decomposition and incremental placement, were
performed by a modified version of Quartus II v4.2.

We study the benefits of applying timing driven func-
tional decomposition on50 industrial circuits. Each circuit
was synthesized for both Stratix and Stratix II devices. Cir-
cuits synthesized for Stratix devices contained3400 LEs on
average, and circuits synthesized for Stratix II devices con-
tained1650 ALMs on average. To study the benefits of
the decomposition technique, Quartus was run twice, first
with the technique turned off and then with the technique
turned on. The maximum frequency of operation (FMAX)
observed at the end of each run is used to compute thespeedup
observed as a result of applying the decomposition tech-
nique. For example, a speedup value of1.1 indicates that
FMAX was 10% higher when the decomposition technique
was used. Figure 7 presents the speedups observed for each
circuit as a result of applying timing driven functional de-
composition. An average speedup of1.061 was observed
on Stratix devices and an average speedup of1.056 was

observed on Stratix II devices. Although the decomposi-
tion technique is careful in accepting only those transforma-
tions that improve timing, there are a few circuits whose per-
formance is degraded as a result of applying the technique
(Stratix circuits2, 3, 7, 14, 26 & 33, Stratix II circuits10,
24 & 39). These are a result of the approximation errors in
the timing analysis performed by the technique.

The primary goal of the decomposition technique is to
improve timing, and there are several instances where a de-
composition that is beneficial for timing is selected over a
decomposition that is beneficial for area. In obtaining the
speedups indicated, the technique increases the number of
Stratix LEs by0.5% and the number of Stratix II ALMs by
2.0%.

The results of Figure 7 were obtained with the maxi-
mum number of decomposition iterations set to 4. This
value was selected as each decomposition iteration increases
compile time and there were very few circuits that bene-
fited from an increased number of iterations. With the num-
ber of iterations set to 4, the decomposition technique in-
creases compile time (for the last four steps in the CAD
flow) by 81% for Stratix devices and by102% for Stratix
II devices. Although the compile time overhead for Stratix
II devices seems larger, the actual time needed for decom-
position and incremental placement is similar for both ar-
chitectures. Due to the larger LABs present in the Stratix II
architecture, placement for Stratix II devices is much faster
than placement for Stratix devices. Thus, the time taken to
perform decomposition and incremental placement appears
much larger relative to the time taken by clustering, place-
ment and routing.

6. CONCLUSION

We described a method of performing timing driven func-
tional decomposition on FPGAs. Using the delays obtained
from a placed circuit, the method finds alternative decom-
positions for the critical logic in the circuit. Decomposi-
tions were performed using BDDs, and the legalization of
any modifications made to the circuit were handled by an
incremental placement tool. A set of50 industrial circuits
were used to study the benefits of the method. An aver-
age speedup of6.1% and5.6% was observed on Stratix and
Stratix II devices as a result of using the method.

7. REFERENCES

[1] M. Pedram and N. Bhat. Layout Driven Logic Restructur-
ing/Decomposition. InICCAD Proceedings, San Jose, CA,
Nov. 1991, pp. 134–137.

[2] J. Y. Lin, A. Jagannathan and J. Cong. Placement-Driven
Technology Mapping for LUT-Based FPGAs. InProceedings
of the ACM Int. Syposium on FPGAs, Monterey, CA, Feb.
2003, pp. 121–126.

0.9

1

1.1

1.2

1.3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Circuit

Sp
ee

du
p

Stratix Gain
StratixII Gain

Fig. 7. Speedups obtained for50 industrial circuits.

[3] Y. Jiang, A. Krstic, K. Cheng and M. Marek-Sadowska. Post-
Layout Logic Restructuring for Performance Optimization.
In DAC Proceedings, Anaheim, CA, June, 1997, pp. 662–
665.

[4] Y. Lian and Y. Lin. Layout-based Logic Decomposition for
Timing Optimization. InASPDAC Proceedings, Hong Kong,
Hong Kong, Jan. 1999.

[5] G. Stenz, B. Riess, B. Rohfleisch and F. Johannes. Tim-
ing Driven Placement in Interaction with Netlist Transfor-
mations. InISPD Proceedings, Napa Valley, CA, 1997, pp.
36–41.

[6] T. Tien, H. Su and Y. Tsay. Integrating Logic Retiming and
Register Placement. InICCAD Proceedings, San Jose, CA,
1998, pp. 136–139.

[7] L. Kannan, P. Suaris and H. Fang. A Methodology and Algo-
rithms for Post-Placement Delay Optimization. InDAC Pro-
ceedings, San Diego, CA, June 1994, pp. 327–332.

[8] D. Singh and S. Brown. Integrated Retiming and Placement
for Field Programmable Gate Arrays. InProceedings of the
ACM Int. Syposium on FPGAs, Monterey, CA, Feb. 2002, pp.
67–76.

[9] K. Schabas and S. D. Brown. Using Logic Duplication to Im-
prove Performance in FPGAs. InProceedings of the ACM Int.
Syposium on FPGAs, Monterey, CA, Feb. 2003, pp. 136–142.

[10] M. Sheng and J. Rose. Mixing Buffers and Pass Transistors in
FPGA Routing Architectures. InProceedings of the ACM Int.
Symposium on FPGAs, Monterey, CA, Feb. 2001, pp. 75–84.

[11] Altera. Stratix Device Handbook (Complete Two-Volume
Set). v3.1, Sept. 2004.

[12] Altera. Stratix II Device Handbook (Complete Two-Volume
Set). v1.2, Oct. 2004.

[13] V. Manohararajah, D. P. Singh, S. D. Brown and Z. G.
Vranesic. Post-Placement Functional Decomposition for FP-
GAs. InProceedings of the International Workshop on Logic
Synthesis, Temecula, CA, June 2004, pp. 114–118.

[14] D. P. Singh and S. D. Brown. Incremental Placement for
Layout-Driven Optimizations on FPGAs. InICCAD Pro-
ceedings, San Jose, CA, 2002, pp. 752–759.

[15] R. Hitchcock, G. Smith and D. Cheng. Timing Analysis of
Computer-Hardware.IBM Journal of Research and Develop-
ment, Jan. 1983, pp. 100–105.

[16] R. Ashenhurst. The Decomposition of Switching Functions.
In Int. Symposium on Theory of Switching Functions, 1959,
pp. 74–116.

[17] H. Curtis. A Generalized Tree Circuit.Journal of the ACM,
1961, 8:484–496.

[18] R. Rudell. Dynamic Variable Ordering for Ordered Binary
Decision Diagrams. InICCAD Proceedings, Santa Clara,
CA, 1993, pp. 42–47.

[19] Y-T. Lai, K-R. Pan and M. Pedram. OBDD-Based Func-
tional Decomposition: Algorithms and Implementation.
IEEE Trans. On Computer Aided Design, Vol. 15, No. 8,
1996, pp. 977–990.

[20] C. Yang and M. Ciesielski. BDS: A BDD-Based Logic Op-
timization System.IEEE Trans. On Computer Aided Design,
Vol. 21, No. 7, July 2002, pp. 866–876.

[21] C. Legl, B. Wurth and K. Eckl. A Boolean Approach to
Performance-Directed Technology Mapping for LUT-Based
FPGA Designs. InDAC Proceedings, Las Vegas, Nevada,
1996, pp.730–733.

[22] H. Sawada, T. Suyama and A. Nagoya. Logic Synthesis for
Look-Up Table Based FPGAs Using Functional Decomposi-
tion and Boolean Resubstitution.IEICE Trans. Inf. & Syst.,
Vol. E80-D, No. 10, October 1997, pp. 1017–1023.

[23] N. Vemuri, P. Kalla and R. Tessier. BDD-Based Logic Syn-
thesis for LUT-Based FPGAs.ACM Transactions on Design
Automation of Elec. Systems, Vol. 7, No. 4, October 2002, pp.
501–525.

