
ADAPTIVE FPGAS: HIGH-LEVEL ARCHITECTURE AND A SYNTHESIS METHOD

Valavan Manohararajah, Stephen D. Brown, and Zvonko G. Vranesic

Department of Electrical and Computer Engineering
University of Toronto

manohv|brown|zvonko@eecg.toronto.edu

ABSTRACT

This paper presents preliminary work exploring adaptive field
programmable gate arrays (AFPGAs). An AFPGA is adap-
tative in the sense that the functionality of subcircuits placed
on the chip can change in response to changes observed on
certain control signals. We describe the high-level architec-
ture which adds additional control logic and SRAM bits to a
traditional FPGA to produce an AFPGA. We also describe a
synthesis method that identifies and resynthesizes mutually
exclusive pieces of logic so that they may share the resources
available in an AFPGA. The architectural feature and its as-
sociated synthesis method helps reduce circuit size by28%
on average and up to40% on select circuits.

1. INTRODUCTION

Field programmable gate arrays (FPGAs) have become an
increasingly popular medium for implementing digital cir-
cuits due to the high costs associated with application spe-
cific integrated circuit (ASIC) implementations. An FPGA
can be bought off the shelf and can be configured to imple-
ment an arbitrary digital circuit. This programmability al-
lows reduced development and verification times, and avoids
the large costs involved in chip fabrication. The program-
mability of FPGAs comes with a steep price, however. An
FPGA-based implementation is estimated to be forty times
larger and three times slower than a comparable implemen-
tation using standard cells [1]. A number of studies have ex-
amined methods of improving the area and speed efficiency
of FPGAs [2]–[9]. Here we consider an architectural mod-
ification that improves the area efficiency of existing FPGA
architectures by dynamically changing the functionality of
the circuit implemented in the programmable logic fabric.

The key difference between an AFPGA and FPGA is in
the structure of the configuration element. In an FPGA, each
configuration element determines the functionality of a sin-
gle programmable resource as illustrated in Figure 1a. Al-
though most of the configuration elements in an AFPGA are
the same as in an FPGA, a fraction of them use the alterna-
tive structure illustrated in Figure 1b. In this structure, two
configuration elements are connected to a single program-

Programmable
ResourceConfig Programmable

Resource
Config 0
Config 1

Config Select

(a) (b)

Fig. 1. Structure of a configuration element in an FPGA (a)
and an AFPGA (b).

sum

XOR

carry

asb0a0

s0

sum

XOR

carry

b1a1

s1

sum

XOR

carry

b2a2

s2

sum

XOR

carry

b3a3

s3s4

Fig. 2. A four-bit add-subtract unit.

sumcarry

b0a0

s0

sumcarry

b1a1

s1

sumcarry

b2a2

s2

sumcarry

b3a3

s3s4

(a)

subborrow

b0a0

s0

subborrow

b1a1

s1

subborrow

b2a2

s2

subborrow

b3a3

s3s4

(b)

Fig. 3. Specialized versions of the add-subtract unit: (a) is
specialized to perform an addition and (b) is specialized to
perform a subtraction.

sum
sub

carry
borrow

b0a0

s0

sum
sub

carry
borrow

b1a1

s1

sum
sub

carry
borrow

b2a2

s2

sum
sub

carry
borrow

b3a3

s3s4

as

Fig. 4. The four-bit add-subtract unit implemented on an
AFPGA.

mable resource through a multiplexer. The functionality of
the programmable resource is determined by the configura-
tion element selected by the multiplexer. The motivation for
the study of this alternative structure is best illustrated with
an example. Consider an FPGA architecture where a logic
block can implement any function of three inputs. A pos-
sible implementation of a four-bit add-subtract unit for this
architecture is given in Figure 2. A subtraction is performed
when the control signalas (AddSub) is equal to1 and an
addition is performed when it is equal to0. This implemen-
tation uses12 logic blocks. The add-subtract unit can be
specialized to perform either an addition or a subtraction by
settingas to zero or one, respectively. After settingas to a
constant, logic simplification removes the four XOR blocks
reducing the number of logic blocks required to8. The spe-
cialized versions of the add-subtract unit are illustrated in
Figures 3a and 3b. Although the logic blocks have been spe-
cialized to perform different functions, the routing structure
is still identical. By allowing the logic blocks to use the
multiplexed configuration element, the two specialized cir-
cuits can be combined into a single circuit as illustrated in
Figure 4. In the combined circuit, each logic block imple-
ments the functionality required by both addition and sub-
traction. The appropriate function is activated byas which
is assumed to connect to a special configuration select sig-
nal. This example shows that there are potential area bene-
fits when the multiplexed configuration element is used se-
lectively in an FPGA architecture.

The architectural modification we are proposing adds a
control signal and some extra configuration memory in or-
der to reduce the size of the circuit to be implemented. In
modern FPGAs [11, 12] configuration memory is a small
fraction of total chip area, and a small portion of this config-
uration memory is duplicated in order to allow two distinct
subcircuits to share the same set of programmable resources.
A detailed study of this area tradeoff can be found in [10].
Here we present a high-level overview of the architecture
and present a synthesis method that helps reduce circuit size
significantly when targeting AFPGAs.

Programmable
ResourceSRAM Programmable

Resource
SRAM 0
SRAM 1

Config Select

(a) (b)

Fig. 5. (a), the configuration element used by FPGAs, and
(b), the configuration element used only by AFPGAs.

2. AFPGAS: HIGH-LEVEL ARCHITECTURE

AFPGAs are built by modifying an existing SRAM config-
urable FPGA. Although other programming methods such
as antifuses [13] and floating gate devices [14, 15, 16] can
be considered, these are less popular and are not considered
in this work.

Before we describe the additional circuitry needed to
create AFPGAs, we briefly review the academic FPGA ar-
chitecture [4] that is the basis for our work. At the highest
level, an FPGA architecture is comprised of I/O pins and
logic clusters. Programmable routing resources comprised
of programmable multiplexers and routing switches allow
connections to be made between logic clusters, and between
logic clusters and I/O pins. Each logic cluster is made up
of a number of basic logic elements (BLEs), and each BLE
contains a lookup table (LUT) and a register. Here, we as-
sume that the target architecture uses 4-input LUTs. Previ-
ous work has established the area effiency of this particular
LUT size [5, 6].

The distinguishing feature of AFPGAs is their use of the
adaptive configuration element illustrated in Figure 5b. This
is in contrast to FPGAs which use the traditional configura-
tion element illustrated in Figure 5a. In the traditional con-
figuration element, each programmable resource is attached
to a single SRAM cell which determines its functionality.
In the adaptive configuration element, two SRAM cells con-
nect to the programmable resource through a multiplexer,
and the SRAM cell that gets to control the programmable
resource is determined by a configuration select signal at-
tached to the multiplexer. If the two SRAM cells contain dif-
fering values, the programmable resource being controlled
changes its functionality dynamically in response to changes
in the select signal.

An AFPGA architecture is obtained by making two mod-
ifications to an existing FPGA architecture. First, a portion
of the configuration elements in an FPGA are replaced by
adaptive configuration elements. Since the adaptive config-
uration elements require a select signal, the second modifi-
cation adds select signals, each controlling the configuration
elements in a region of the chip. The select signals are ac-
cessible from the programmable routing network allowing
them to be driven by I/O pins and basic BLE outputs.

The adaptive BLE, illustrated in Figure 6a, is obtained

sram
a
b
c
d

D Q
reset

clock
reset

outLUT

s

s

sram

s

sram

Routing
Switch

(b) (c)(a)

Fig. 6. (a), an adaptive BLE, (b), an adaptive multiplexer,
and (c), an adaptive routing switch.

from a traditional BLE by modifying the configuration el-
ements that determine LUT functionality. Using adaptive
configuration elements in place of traditional configuration
elements, the LUT inside the adaptive BLE has the ability to
perform two different functions of its inputs. A select sig-
nal, s, connects to the adaptive configuration elements and
provides a way of selecting the function computed by the
LUT.

Multiplexers and routing switches present in an FPGA
can be made adaptive by replacing their configuration ele-
ments with adaptive configuration elements. The adaptive
multiplexer, illustrated in Figure 6b, has the capability of
gating two different signals through to the output depending
on the value of the select signal,s. The adaptive routing
switch, illustrated in Figure 6c, supports two modes of op-
eration where the current mode is determined by the select
signal,s. The switch has the capability of being turned on
or off under the control of the select signal if its SRAM cells
have been programmed to two different values.

An AFPGA uses adaptive BLEs, multiplexers and rout-
ing switches to allow two subcircuits to share the same set
of programmable resources.

3. AFPGAS: CAD FLOW

The CAD flow for AFPGAs is illustrated in Figure 7. The
first two steps, synthesis and technology mapping, are the
same as in an FPGA CAD flow. However, starting with the
third step,adaptation, there are significant differences be-
tween the two CAD flows.

The process of adaptation creates pairs of subcircuits
that share programmable resources in an AFPGA. There are
two technology mapping steps in the AFPGA CAD flow,
the first precedes adaptation and the second follows adapta-
tion. The first mapping step is useful because it improves
the performance of adaptation. During adaptation, the se-
lection of control signals is guided by area concerns, and the
accuracy of the selection process is greatly enhanced if the
circuit has been mapped into LUTs. The second technology
mapping step is useful because it produces a smaller circuit
by remapping parts of the circuit affected by the simplifi-

Synthesis

Clustering

Placement

Routing

Technology Mapping

Packing

Design Entry

FPGA Configuration

Technology Mapping

Adaptation

Fig. 7. The AFPGA CAD flow.

cation operations (described in Section 4.2) that take place
during adaptation.

An AFPGA architecture is based on an existing FPGA
architecture, thus the final four steps in the AFPGA CAD
flow, packing, clustering, placement and routing, perform
their traditional FPGA CAD tasks in addition to new tasks
that are AFPGA specific. In addition to the task of grouping
LUTs and registers into BLEs, the packing step groups pairs
of LUTs selected from pairs of subcircuits to form adaptive
BLEs. Clustering and placement have the additional task
of ensuring that the BLEs that are part of a subcircuit pair
are clustered and placed in a region with adaptive structures
(BLEs, multiplexers and routing switches) whose function-
ality changes in response to a single configuration select
signal. Finally, the routing step has two additional tasks.
First, it has to make use of adaptive multiplexers and rout-
ing switches when making connections for subcircuit pairs.
Second, it has to connect the control signals that generated
subcircuit pairs to the appropriate configuration select sig-
nals.

4. ADAPTATION

4.1. Introduction

A circuit may be viewed as being composed of several sub-
circuits. The process of adaptation replaces some of these
subcircuits with adaptive subcircuits capable of sharing the
adaptive resources present in an AFPGA. An adaptive sub-
circuit consists of twohalf circuits, each a specialized ver-
sion of the subcircuit being replaced. The creation of an
adaptive subcircuit begins with the selection of a control sig-
nal which is then used to identify a subcircuit whose area is
greatly reduced when the control signal is assumed to be a
constant. Two specialized versions of the subcircuit can be
generated, one assuming that the control signal is zero and

e

d
fb

(a) (b)

d
b

e
f

e2

e3

e5

e6

a

c
c

a e1

e4

Fig. 8. A circuit and its corresponding graph.

the other assuming that the control signal is one. Since the
control signal can only be in one of two possible states, zero
or one, the specialized subcircuits are not needed at the same
time and can be combined to form the two halves of an adap-
tive subcircuit. The control signal connects to the adaptive
subcircuit and determines which of the two halves is to be
active at any time.

4.2. Preliminaries and Problem Definition

The combinational portion of a boolean circuit can be repre-
sented as a directed acyclic graph (DAG)G = (V (G), E(G)).
A node in the graphv ∈ V (G) represents a logic gate, pri-
mary input or primary output, and a directed edge in the
graphe ∈ E(G) with head,u = head(e), and tail,v =
tail(e), represents a signal in the logic circuit that is an out-
put of gateu and an input of gatev. The set ofinput edges
for a nodev, iedge(v), is defined to be the set of edges withv
as a tail. Similarly, the set ofoutput edgesfor v, oedge(v), is
defined to be the set of edges withv as a head. Aprimary in-
put (PI) node has no input edges and aprimary output(PO)
node has no output edges. Aninternal node has both input
edges and output edges. The set of distinct nodes that supply
input edges tov are referred to asinput nodesand is denoted
inode(v). Similarly, the set of distinct nodes that connect to
output edges fromv are referred to asoutput nodesand is
denotedonode(v).

The circuit of Figure 8a and its graph representation,
Figure 8b, will be used as an example when illustrating the
notions defined below.

A nodev in the graph is considered to be a boolean vari-
ablev whose value is determined by the boolean function
Fv at nodev. Although we use the same notation for both
a node and the variable it is associated with, it will be clear
from the context which one of the two is meant. An edgee
from u to v indicates that the function used to computev,
Fv, depends on variableu. In the example, the function atd
depends ona andb, and is defined to beFd(a, b) = a + b.

In addition to the use of the standard logic values 0 and 1,
the symbol ‘∗’ is used to represent an unknown or undefined
logic value.

The ordered pair[v, l], wherel ∈ {0, 1}, represents the
assignment of logic valuel to variablev. An implicationof

the assignment[v, l] is another assignment that is a conse-
quence of[v, l]. The implication set,impl [v, l], is the set of
implications that are a consequence of the assignment[v, l].
In the example, an implication of the assignment[b, 0] is the
assignment[e, 0], and the implication set of[d, 1] is as fol-
lows

impl [d, 1] = {[d, 1], [a, 0], [b, 0], [e, 0], [f, 1]}.

Note that the implication set of an assignment includes the
assignment itself.

Two laws regarding implications will be useful when
generating implication sets. Thetransitive law states that
if [v, l] ∈ impl [u, k] and[w,m] ∈ impl [v, l] then[w, m] ∈
impl [u, k], and thecontrapositivelaw states that if[v, l] ∈
impl [u, k] then[u, k] ∈ impl [v, l].

If the output or any of the inputs of a functionFv have
been assigned values, then ajustificationoperation,JUSTIFY(v),
can be performed onv. The operation returns a set of as-
signments that are a consequence of the assignments inci-
dent onv. The scope of the operation is limited to the as-
signments that can be derived by examiningFv; the assign-
ments returned only apply to the functions’s inputs or to its
output. Returning to our example, ifd = 1 and f = ∗
then JUSTIFY(f) returns the assignment[f, 1]. Similarly,
if d = 1, a = ∗, andb = ∗ thenJUSTIFY(d) returns two
assignments,[a, 0] and[b, 0].

The structure of a graph can be simplified based on the
assignments made to its variables. For example, in Fig-
ure 8, ifd = 1 then the function atd can be replaced by the
constant-1 function,Fd = 1, and edgese1 ande2, and node
a can be removed. Similarly, ifb = 0, then the function at
d can be replaced byFd = a, and edgee2 can be removed.
After some assignments have been made to the variables in
G, the simplification operation,SIMPLIFY(H), on a sub-
graphH of G returns a new subgraph which is a simplified
version ofH based on the assignments present. The process
of simplification can be expressed as a sequence of two sim-
ple operations. The first operation simplifies a node’s func-
tion based on the assignments present and removes the input
edges that are no longer needed by the new function. The
second operation removes a node and its input edges if all
of its output edges have been removed. These two opera-
tions are continually applied until they have no effect on the
graph.

The subgraphcontrolled by a variablev, Hv, consists
of the nodes and edges affected by the simplifications that
are possible after using the assignments inimpl[v, 0] and
impl[v, 1]. The subgraph used to computev is not part of
the subgraph controlled byv. In our example,impl [b, 0] =
{[b, 0], [e, 0]} and impl [b, 1] = {[b, 1], [d, 0]}. If we use
the assignments inimpl [b, 0] then the subgraph consisting
of nodes,{d, e, c, f}, and edges,{e2, e3, e4, e6}, is affected
by the simplifications that are possible, and if we use the

v

H
v

H0
H1

G

v

G

Adaptation

H
v

Fig. 9. The process of adaptation.

assignments inimpl [b, 1] then the subgraph consisting of
nodes,{d, e, a, f}, and edges,{e2, e3, e1, e5}, is affected by
the simplifications that are possible. Combining these two
subgraphs, we obtain the subgraph controlled byb which is
essentially the graph of Figure 8b with nodeb removed.

Figure 9 illustrates the transformation that takes place
during adaptation. First, a control variable,v, and the sub-
graph it controls,Hv, are identified. Then, two specialized
versions ofHv are generated;H0 is obtained by simplifying
Hv after applying the assignments inimpl [v, 0] andH1 is
obtained by simplifyingHv after applying the assignments
in impl [v, 1]. Finally, the two subgraphs are combined to
form the adaptive subgraph,H ′

v. Variablev remains con-
nected to the adaptive subgraph and determines which one
of H0 andH1 is to be active at any time.

The area of a subgraphH, area(H), is defined to be the
number of nodes in it. In an adaptive subgraph, only one
of the component subgraphs is active at any time. Thus, the
area of an adaptive subgraph is defined to be the maximum
of the areas of the component subgraphs,

area(H ′
v) = max{area(H0), area(H1)}. (1)

Note that the area of an adaptive subgraphH ′
v is always

smaller than or equal to the area ofHv becauseH ′
v is com-

posed of the two subgraphsH0 andH1 which are both sim-
plified versions ofHv.

The goal of adaptation is to replace controlled subgraphs
with adaptive subgraphs such that the area of the result-
ing graph is minimized. Consider the process of adapta-
tion on the graph of Figure 8b usingb as the control vari-
able. We identified the subgraph controlled byb earlier.
The subgraphs of Figures 10a and 10b are obtained when
the controlled subgraph is simplified assumingb is 0 and
1, respectively. These two subgraphs are combined into
the adaptive subgraph illustrated in Figure 10c. Although

(a)

d f
e5a

e1

(b)

e f
e6c

e4
b = 0 b = 1

b

d f
e5a

e1

e f
e6c

e4

(c) (d)

b

a,d,f

c,e,f

Fig. 10. The process of adaptation on the graph of Figure 8.

the adaptive subgraph reduces the area of the graph by two
nodes, even more gains are possible if the adaptive subgraph
is remapped. In the original graph, all nodes had two in-
puts, and if we assume that the target architecture consists of
2-LUTs then remapping produces the graph of Figure 10d.
The final graph has a three-fold reduction in area compared
to the original.

4.3. Generating Implication Sets

Implication sets are central to the problem of adaptation.
They are used to identify controlled subgraphs as well as to
generate adaptive subgraphs. Our use of implication sets is
not new; they have found several uses in the literature. They
have been used to solve satisfiability (SAT), automatic test
pattern generation (ATPG), and logic synthesis problems.
Thus, there have been a number of algorithms proposed to
generate implication sets [17]–[22]. Our work uses a modi-
fied version of the algorithm proposed in [22]. The primary
benefits of this algorithm over the others are its speed, its
ability to generate all possible implication sets simultane-
ously and its ability to discover a large number of implica-
tions. We briefly review the algorithm here.

The algorithm maintains implication sets for each signal
in the circuit. Initially, each implication set will contain a
single entry: the assignment itself. As the algorithm pro-
gresses the implication sets are expanded. The algorithm
stops when there are no further changes observed on any of
the implication sets. An implication set is expanded by first
making the assignments within it. Then justification opera-
tions are used to discover new implications. The transitive
law is used to discover further implications of the newly dis-
covered implications. In addition to the transtive law, during
the process of discovery, the contrapositive law is used to
add new entries to other implication sets.

1 ADAPT()
2 IMPLICATIONSETS()
3 C ← V (G)
4 forever
5 bestv ← nil , bestc ← 0
6 for v ∈ C
7 skip if v 6∈ V (G)
8 H0 ← SPECIALIZE(v, 0)
9 H1 ← SPECIALIZE(v, 1)
10 c ← COST(Hv, H0, H1)
11 if c > bestc
12 bestv ← v, bestc ← c
13 end if
14 end for
15 break if bestv = nil
16 H0 ← SPECIALIZE(bestv , 0)
17 H1 ← SPECIALIZE(bestv , 1)
18 G ← G−Hbestv

19 G ← G ∪ FORMADAPTIVE(H0, H1)
20 end forever

Fig. 11. The procedure used to generate adaptive subgraphs.

1 SPECIALIZE(v, l)
2 for [u, k] ∈ impl[v, l]
3 skip if u 6∈ V (G)
4 u ← k
5 end for
6 H′ ← simplify(Hv)
7 for [u, k] ∈ impl[v, l]
8 skip if u 6∈ V (G)
9 u ← ∗
10 end for
11 return H′

Fig. 12. The procedure used to generate a specialized ver-
sion ofHv under the assumption thatv has logic valuel.

4.4. Generating Adaptive Subgraphs

The procedure used to generate adaptive subgraphs is pre-
sented in Figure 11. It begins with a call toIMPLICATION-
SETSwhich generates all implication sets in the graph. Then,
before any modifications are made to the graph, a copy of
the variables is placed inC. The implication sets that were
generated only apply to the variables that are present in the
unmodified graph, but some of these variables will disappear
as the graph is modified during adaptation. SetC allows us
to keep track of the variables for which implication sets are
available.

The inner loop (lines 6–14) uses a greedy method to
find a control variable that can be used to generate an adap-
tive subgraph, and the outer loop (lines 4–20) keeps replac-
ing subgraphs with their adaptive equivalents until the inner
loop fails to find a control variable. For every variable that is
present in bothC and the modified graphG, the inner loop
determines a cost that reflects its suitability as a control vari-
able. The cost of a variablev is determined byCOST and is
based on the controlled subgraph,Hv, as well as the two
subgraphsH0 andH1 produced bySPECIALIZE. The vari-
able with the highest non-zero cost is selected as the control
variable to be used in generating an adaptive subgraph.

Given a variablev and a logic valuel, the specialization
procedure, illustrated in Figure 12, produces a version of
Hv simplified using the implications inimpl [v, l]. Note that
some assignments inimpl [v, l] cannot be used (lines3 and
8) as the variables they apply to may no longer be a part of
the modified graphG.

Returning to Figure 11, having selected a control vari-
able in the inner loop, the outer loop removes the subgraph
controlled by the variable and replaces it with an adaptive
subgraph composed of the two specialized versions of the
removed subgraph.

Since the goal of adaptation is to minimize the area of
the resulting circuit, the cost computed for a variablev is
based on the number of edges eliminated inHv to obtainH0

andH1. Although the area savings can be measured directly
by counting the number of nodes eliminated, the edge-based
measure is finer grained and better reflects the area obtained
after the technology mapping step that follows adaptation;
the technology mapping step may be able to pack more logic
into the nodes where some edges have been eliminated. The
cost is computed as the minimum of two valuesc0 andc1

wherec0 is the number of edges eliminated to obtainH0

andc1 is the number of edges eliminated to obtainH1. Fur-
thermore, there are two special cases that may cause the cost
of a variable to be zero preventing its selection by the in-
ner loop (lines 11–13). It is assumed that at minimum each
control signal in the target architecture determines the func-
tionality of the adaptive structures within a region that is ap-
proximately the size of a cluster. Thus, to produce adaptive
subgraphs that are at least as big as a cluster, the cost of a
variable is set to zero if it does not eliminate as many edges
as there are inputs to a typical cluster in the target archi-
tecture. For example, if the target architecture uses clusters
with four BLEs, then a variable’s cost is set to zero if it does
not eliminate at least 10 edges [2]. If a variablev controls
a large subgraphHv and has disproportionate values forc0

andc1 then it is unlikely to be a good control variable and
its cost is set to zero. For example, consider a circuit with a
global reset signal. The reset signal controls most of the cir-
cuit, and most of the circuit can be removed if it is assumed
to be one. However, if the reset signal is assumed to be zero,
most of the circuit remains unchanged. If an adaptive sub-
circuit is generated using the reset signal, area would not be
reduced significantly and a large part of the circuit would no
longer be able to participate in other specialization opera-
tions. Far better area results can be obtained for the circuit
by using a number of control signals, each of which controls
a smaller subcircuit and is able to produce balanced values
for c0 andc1.

The complexity of generating adaptive subgraphs (lines
4–20) can be derived as follows. The number of nodes in
the graph is denotedn, and the average number of nodes
in the subgraph controlled by a variable is denotedk. The

u

a0

a1

d

e

f

g
c

b

v

Fig. 13. Existence of adaptive subgraphs imposes con-
straints on the way cones are generated.

inner loop simplifies the subgraph controlled by each vari-
able to determine a cost, thus its complexity isO(kn). The
outer loop will iterateO(n/k) times as each iteration re-
places a subgraph of sizeO(k) with an adaptive subgraph.
Therefore, the complete process has a complexity ofO(n2).
On a Pentium III 1 GHz computer, adaptive subgraphs can
be generated for the 20 largest MCNC [23] circuits in 19
minutes.

5. TECHNOLOGY MAPPING AFTER
ADAPTATION

Although the technology mapping procedure used after adap-
tation is the same as the one that precedes adaptation, the
existence of adaptive subgraphs imposes constraints on the
way cones are generated. A nodev that is a part of an adap-
tive subgraph may include a predecessor nodeu in a cone at
v only if u is a part of the same adaptive subgraph oru is
not a part of any adaptive subgraph. A nodev that is not a
part of an adaptive subgraph may only include predecessors
that are not a part of any adaptive subgraph in a cone atv.
For example, in Figure 13,d can be a part of cone atf , e
can be a part of a cone atg, andc can be a part of a cone at
e. However,a0/a1 cannot be a part of a cone atb or d.

6. RESULTS

The 20 largest MCNC [23] circuits were used to study the
benefits of the adaptation step. Before undergoing adapta-
tion, each circuit was first synthesized using SIS (script -
rugged) [24] and then technology mapped into 4-LUTs
using IMap [25]. IMap was also used for the second tech-
nology mapping step following adaptation. For each circuit,
Table 1 presents the number of control variables used during
adaptation (Ctrls), the area before adaptation (Unadapted),
the area following adaptation (Adapted), the area following
the second technology mapping step (Mapped), and the frac-
tion of LUTs in the final circuit that are adaptive (Adaptive).

Although an average of7.1 control signals were used
during adaptation, there are significant differences in the

Unadapted Adapted Mapped Adaptive
Circuit Ctrls (LUTs) (LUTs) (LUTs) (Ratio)
C6288 15 904 904 714 0.69
alu4 7 1035 820 780 0.97
apex2 9 1201 960 921 0.95
apex4 4 1087 850 733 0.89
bigkey 1 1594 1366 912 0.87
clma 13 4545 2801 2686 0.98
des 18 1225 1092 1010 0.85
diffeq 12 849 836 823 0.73
dsip 1 1153 1145 691 0.99
elliptic 15 2113 2100 2070 0.62
ex1010 6 2532 1663 1480 0.94
ex5p 2 931 710 602 0.93
frisc 22 2269 2087 1997 0.85
i10 13 779 680 661 0.81
misex3 4 1086 678 611 0.98
pdc 4 1882 1349 1190 0.97
s38417 30 3672 3477 3362 0.86
s38584.1 16 3730 3586 2916 0.93
seq 5 1089 789 726 0.96
spla 5 1337 981 853 0.99
GeoAvg 7.10 1510.20 1241.06 1090.78 0.88
Ratio 1.0 0.82 0.72

Table 1. The effect of adaptation on the 20 largest MCNC
circuits.

number of control variables used to adapt each circuit. Some
circuits such asbigkey produce significant area reductions
with a single control variable while circuits such asclma
produce similar area gains with a much larger number of
control variables (13). Architectural decisions will be guided
by the larger number of control variables as an architecture
that supports several control variables can be made to mimic
a single control variable, whereas an architecture that sup-
ports a single control variable cannot mimic the presence of
several control variables.

When adaptation is used in isolation, an average area
savings of18% is observed. The addition of the second tech-
nology mapping step increases the area savings to28%.

A large fraction of the circuit produced by adaptation
(88%) is adaptive. From an architectural point of view, this
suggests that most of the LUTs in an AFPGA must be of
the adaptive variety to effectively support the circuits being
produced by adaptation.

7. WORK DESCRIBED ELSEWHERE

Although adaptive circuits use28% fewer LUTs than non-
adaptive circuits, this is only one of the factors in the area
comparison between adaptive circuits. To determine the true
area benefits of AFPGAs, two other factors need to be quan-
tified. First, the area of the extra circuitry required to im-
plement adaptive circuits needs to measured. Second, the
structural changes that a circuit underwent to become adap-
tive may produce an associated increase or decrease in the
demand for routing resources, and this effect needs to be
measured. A detailed area study considering these effects is
presented in [10].

8. SUMMARY

We presented a high-level overview of the AFPGA archi-
tecture and detailed the adaptation step which was used to
exploit the architectural features present in an AFPGA. Two
algorithms that were part of the adaptation step were de-
scribed. The first algorithm generated implication sets which
were then used by the second algorithm to generate adap-
tive subcircuits. Following adaptation, a technology map-
ping step was run to reduce both the area and depth of the
resulting circuits. The entire procedure reduced the area of
the 20 largest MCNC circuits by28%.

9. REFERENCES

[1] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and
ASICs. InProceedings of the ACM International Symposium
on FPGAs, Monterey, CA, February 2006, pp. xx–xx.

[2] V. Betz and J. Rose. Cluster-Based Logic Blocks for FPGAs:
Area-Efficiency vs Input Sharing and Size. InProceedings
of the IEEE Custom Integrated Circuits Conference, Santa
Clara, CA, 1997, pp. 551–554.

[3] A. Marquardt, V. Betz and J. Rose. Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve FPGA
Speed and Density. InProceedings of the ACM International
Symposium on FPGAs, Monterey, CA, February 1999, pp.
37–46.

[4] V. Betz, J. Rose and A. Marquardt.Architecture and CAD
for Deep Submicron FPGAs. Kluwer Academic Publishers,
1999.

[5] J. Rose, R. Francis, D. Lewis and P. Chow. Architecture of
Field-Programmable Gate Arrays: The Effect of Logic Block
Functionality on Area Efficiency.IEEE Journal of Solid-State
Circuits, Vol. 25, No. 5, October 1990, pp. 1217–1225.

[6] E. Ahmed and J. Rose. The Effect of LUT and Cluster Size
on Deep-Submicron FPGA Performance and Density. InPro-
ceedings of the ACM Symposium on FPGAs, Monterey, CA,
February 2000, pp. 3–12.

[7] J. Rose and S. Brown. Flexibility of Interconnection Struc-
tures for Field-Programmable Gate Arrays.IEEE Journal of
Solid-State Circuits, Vol. 26, No. 3, March 1991, pp. 277–
282.

[8] V. Betz and J. Rose. FPGA Routing Architecture: Segmen-
tation and Buffering to Optimize Speed and Density. InPro-
ceedings of the ACM International Symposium on FPGAs,
Monterey, CA, February 1999, pp. 59–68.

[9] M. Sheng and J. Rose. Mixing Buffers and Pass Transistors in
FPGA Routing Architectures. InProceedings of the ACM In-
ternational Symposium on FPGAs, Monterey, CA, February
2001, pp. 75–84.

[10] V. Manohararajah.Area Optimizations in FPGA Architecture
and CAD, Ph.D. Thesis, University of Toronto, 2005.

[11] Altera.Altera Device Handbook. 2005.

[12] Xilinx. Xilinx Device Handbook. 2005.

[13] Actel Corporation.Axcelerator Family FPGAs Product Brief.
January 2005.

[14] Actel Corporation.ProASIC3 Product Brief. July 2005.

[15] Altera Corporation.Max II Device Brochure. v1.0, March
2004.

[16] Xilinx Corporation. CoolRunner-II CPLD Family Data
Sheet. v2.5, June 2005.

[17] M. H. Schulz, E. Trischler and T. M. Sarfert. SOCRATES: A
Highly Efficient Automatic Test Pattern Generation System.
IEEE Transactions on Computer-Aided Design, Vol. 7, No.
1, January 1988, pp. 126–136.

[18] H. Fujiwara and T. Shimono. On the Acceleration of Test
Generation Algorithms.IEEE Transactions on Computers
Vol. C-32, No. 12, December 1983, pp. 1137–1144.

[19] J. Rajski and H. Cox. A Method to Calculate Neces-
sary Assignments in Algorithmic Test Pattern Generation.
In Proceedings of the IEEE International Test Conference,
Semptember 1990, pp. 25–34.

[20] S. T. Chakradhar and V. D. Agrawal. A Transitive Clo-
sure Algorithm for Test Generation.IEEE Transactions on
Computer-Aided Design, Vol. 12, No. 7, July 1993, pp. 1015–
1028.

[21] W. Kunz and D. Stoffel.Reasoning in Boolean Networks.
Kluwer Academic Publishers, 1997.

[22] J. Zhao, M. Rudnick and J. Patel. Static logic implication with
application to fast redundancy identification. InProceedings
of the VLSI Test Symposium, 1997, pp. 288–293.

[23] Collaborative Benchmarking Laboratory.
LGSynth93 Benchmark Suite. Available from
http://www.cbl.ncsu.edu/www/ .

[24] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and
A. L. Sangiovanni-Vincentelli.SIS: A System for Sequential
Circuit Synthesis. Technical Report, University of California
at Berkeley, 1992, Memorandum No. UCB/ERL M92/41.

[25] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuris-
tics for Area Minimization in LUT-Based FPGA Technology
Mapping. InProceedings of the International Workshop on
Logic and Synthesis, Temecula Creek Inn, CA, USA, June
2004, pp. 14–21.

