ADAPTIVE FPGAS: HIGH-LEVEL ARCHITECTURE AND A SYNTHESIS METHOD
Valavan Manohararajah, Stephen D. Brown, and Zvonko G. Vranesic

Department of Electrical and Computer Engineering
University of Toronto
manohv|brown|zvonko@eecg.toronto.edu

ABSTRACT

This paper presents preliminary work exploring adaptive field

programmable gate arrays (AFPGASs). An AFPGA is adap-
tative in the sense that the functionality of subcircuits placed
on the chip can change in response to changes observed on
certain control signals. We describe the high-level architec-
ture which adds additional control logic and SRAM bitsto a Fig. 1. Structure of a configuration element in an FPGA (a)
traditional FPGA to produce an AFPGA. We also describe a gng an AFPGA (b).

synthesis method that identifies and resynthesizes mutually
exclusive pieces of logic so that they may share the resources
available in an AFPGA. The architectural feature and its as-
sociated synthesis method helps reduce circuit siz2sby
on average and up)% on select circuits. XOR XOR XOR XOR

]] [] [
1. INTRODUCTION lp — lp — P — : %
Cal'l'y sum Cal'l'y sum Cal'l'y sum Céu'l'y sum
] ! !

Field programmable gate arrays (FPGAs) have become an
increasingly popular medium for implementing digital cir-
cuits due to the high costs associated with application spe-
cific integrated circuit (ASIC) implementations. An FPGA Fig. 2. A four-bit add-subtract unit.
can be bought off the shelf and can be configured to imple-
ment an arbitrary digital circuit. This programmability al-
lows reduced development and verification times, and avoids
the large costs involved in chip fabrication. The program-
mability of FPGAs comes with a steep price, however. An [1 [| F%
FPGA-based implementation is estimated to be forty times | cany M sum H;rv M sum Lw h
larger and three times slower than a comparable implemen-] I]

tation using standard cells [1]. A number of studies have ex- ‘
amined methods of improving the area and speed efficiency
of FPGAs [2]-[9]. Here we consider an architectural mod- ‘ 50 >0 v 0
ification that improves the area efficiency of existing FPGA — l | l‘ #
architectures by dynamically changing the functionality of

I I l
. : l)on‘ow}J sub borme sub borrow sub borrow
the circuit implemented in the programmable logic fabric. T I I

The key difference between an AFPGA and FPGA is in N N s

1 3 2

Config Select

_Conﬁg 0
Config 1

(a) (b)

Programmable
Resource

sum

sub.

the structure of the configuration element. In an FPGA, each ®)

configuration element determines the functionality of a sin-

gle programmable resource as illustrated in Figure 1a. Al-

though most of the configuration elements in an AFPGA are Fig. 3. Specialized versions of the add-subtract unit: (a) is
the same as in an FPGA, a fraction of them use the alterna-Specialized to perform an addition and (b) is specialized to
tive structure illustrated in Figure 1b. In this structure, two Perform a subtraction.

configuration elements are connected to a single program-

b, as Config Select

ay b, a) (]

T I T I ' T |

carry sum carry sum carry sum carry
borrow sub borrow sub borrow sub borrow
— — e — e — —

! | ! ‘

5\ 5.& sz

Programmable
Resource

sum
sub H @ ®)
— a h
!

SU

1

Fig. 5. (a), the configuration element used by FPGAs, and
Fig. 4. The four-bit add-subtract unit implemented on an (b), the configuration element used only by AFPGAs.
AFPGA.

2. AFPGAS: HIGH-LEVEL ARCHITECTURE

AFPGAs are built by modifying an existing SRAM config-

urable FPGA. Although other programming methods such
mable resource through a multiplexer. The fUnCtiona”ty of as antifuses [13] and ﬂoating gate devices []_4, 15, 16] can
the programmable resource is determined by the configurahe considered, these are less popular and are not considered
tion element selected by the multiplexer. The motivation for in this work.

the study of this alternative structure is best illustrated with Before we describe the additional circuitry needed to

an example. Consider an FPGA architecture where a 10giCcreate AFPGAS, we briefly review the academic FPGA ar-
block can implement any function of three inputs. A pos- chitecture [4] that is the basis for our work. At the highest
sible implementation of a four-bit add-subtract unit for this |eye|, an FPGA architecture is comprised of /O pins and
architecture is given in Figure 2. A subtraction is performed |ogic clusters. Programmable routing resources comprised
when the control signads (AddSub is equal tol and an of programmable multiplexers and routing switches allow
addition is performed when it is equal @ This implemen- ¢onnections to be made between logic clusters, and between
tation usesl2 logic blocks. The add-subtract unit can beé |qgjc clusters and 1/0 pins. Each logic cluster is made up
specialized to perform either an addition or a subtraction by of 5 number of basic logic elements (BLEs), and each BLE
settingas to zero or one, respectively. After settingtoa ¢ontains a lookup table (LUT) and a register. Here, we as-
constant, logic simplification removes the four XOR blocks syme that the target architecture uses 4-input LUTSs. Previ-
reducing the number of logic blocks requirectaThe spe- gys work has established the area effiency of this particular
cialized versions of the add-subtract unit are illustrated in | yT sjze [5, 6].
Figures 3a and 3b. Although the logic blocks have beenspe- ¢ gistinguishing feature of AFPGAs is their use of the
_C|aI|z_e(_JI to p_erform dlfferen_t funcUonsz the routing structure adaptive configuration element illustrated in Figure 5b. This
is still identical. By allowing the logic blocks to use the g i contrast to FPGAs which use the traditional configura-
multiplexed configuration element, the two specialized Cir- o glement illustrated in Figure 5a. In the traditional con-
Cl_“ts can be comblneq into a S|ngle circuit as |||ustrf51ted in figuration element, each programmable resource is attached
Figure 4. In the combined circuit, each logic block imple- 55 single SRAM cell which determines its functionality.
ments the functionality required by both addition and sub- |, the adaptive configuration element, two SRAM cells con-
traction. The appropriate function is activateddywhich hact 16 the programmable resource through a multiplexer,
is assumed to connect to a special conf|gurat|pn select sigyng the SRAM cell that gets to control the programmable
nal. This example shows that there are potential area benezegqrce is determined by a configuration select signal at-
fits when the multiplexed configuration element is used Se-(5hed to the multiplexer. If the two SRAM cells contain dif-
lectively in an FPGA architecture. fering values, the programmable resource being controlled
changes its functionality dynamically in response to changes

The architectural modification we are proposing adds a in the select signal.

control signal and some extra configuration memory in or- AnAFPGA architecture is obtained by making two mod-
der to reduce the size of the circuit to be implemented. In ifications to an existing FPGA architecture. First, a portion
modern FPGAs [11, 12] configuration memory is a small of the configuration elements in an FPGA are replaced by
fraction of total chip area, and a small portion of this config- adaptive configuration elements. Since the adaptive config-
uration memory is duplicated in order to allow two distinct uration elements require a select signal, the second modifi-
subcircuits to share the same set of programmable resourceg:ation adds select signals, each controlling the configuration
A detailed study of this area tradeoff can be found in [10]. €lements in a region of the chip. The select signals are ac-
Here we present a high-level overview of the architecture cessible from the programmable routing network allowing
and present a synthesis method that helps reduce circuit siz€em to be driven by I/O pins and basic BLE outputs.
significantly when targeting AFPGAs. The adaptive BLE, illustrated in Figure 6a, is obtained

Design Entry
Technology Mapping

Adaptation

o —
b -
o —

4 —

clock —
reset —

Technology Mapping

Fig. 6. (a), an adaptive BLE, (b), an adaptive multiplexer, e
and (c), an adaptive routing switch.

from a traditional BLE by modifying the configuration el-
ements that determine LUT functionality. Using adaptive
configuration elements in place of traditional configuration
elements, the LUT inside the adaptive BLE has the ability to
perform two different functions of its inputs. A select sig-

nal, 5 connects to the ad_aptlve conﬂg_uratlon elements andgqiq operations (described in Section 4.2) that take place
provides a way of selecting the function computed by the during adaptation

LUT. An AFPGA architecture is based on an existing FPGA

Multiplexers and routing switches present in an FPGA ,chitecture, thus the final four steps in the AFPGA CAD
can be made adaptive by replacing their configuration ele'flow, packing, clustering, placement and routing, perform

ments with adaptive configuration elements. The adaptivey,qr raditional FPGA CAD tasks in addition to new tasks
multiplexer, illustrated in Figure 6b, has the capability of ¢ 3re AFPGA specific. In addition to the task of grouping
gating two different signals through to the output depending | |5 ang registers into BLES, the packing step groups pairs
on_the _/alue of th_e se_lect signal, The adaptive routing ¢ yTs selected from pairs of subcircuits to form adaptive
switch, illustrated in Figure 6c, supports two modes of 0p- g g5 Clustering and placement have the additional task
eratloln Wh(:]re the crl]Jrrr]ent hmode IS qlgtermme'd by the selectyt ansuring that the BLES that are part of a subcircuit pair
signal,s. The switch has the capabi 1ty of_b_elng turned on' o e ¢jystered and placed in a region with adaptive structures
or off under the control of the sele_zct3|gnal if its SRAM cells (BLEs, multiplexers and routing switches) whose function-
have been programmed to two different values. ality changes in response to a single configuration select
~ An AFPGA uses adaptive BLEs, multiplexers and rout- gigna|. Finally, the routing step has two additional tasks.
ing switches to allow two subcircuits to share the same setrjrst it has to make use of adaptive multiplexers and rout-

Fig. 7. The AFPGA CAD flow.

of programmable resources. ing switches when making connections for subcircuit pairs.
Second, it has to connect the control signals that generated
3. AFPGAS: CAD FLOW subcircuit pairs to the appropriate configuration select sig-
nals.

The CAD flow for AFPGAs is illustrated in Figure 7. The

first two steps, synthesis and technology mapping, are the 4. ADAPTATION
same as in an FPGA CAD flow. However, starting with the
third step,adaptation there are significant differences be- , 4
tween the two CAD flows.

The process of adaptation creates pairs of subcircuitsA circuit may be viewed as being composed of several sub-
that share programmable resources in an AFPGA. There areircuits. The process of adaptation replaces some of these
two technology mapping steps in the AFPGA CAD flow, subcircuits with adaptive subcircuits capable of sharing the
the first precedes adaptation and the second follows adaptaadaptive resources present in an AFPGA. An adaptive sub-
tion. The first mapping step is useful because it improves circuit consists of twdalf circuits, each a specialized ver-
the performance of adaptation. During adaptation, the se-sion of the subcircuit being replaced. The creation of an
lection of control signals is guided by area concerns, and theadaptive subcircuit begins with the selection of a control sig-
accuracy of the selection process is greatly enhanced if thenal which is then used to identify a subcircuit whose area is
circuit has been mapped into LUTs. The second technologygreatly reduced when the control signal is assumed to be a
mapping step is useful because it produces a smaller circuitconstant. Two specialized versions of the subcircuit can be
by remapping parts of the circuit affected by the simplifi- generated, one assuming that the control signal is zero and

Introduction

the assignmenv, /] is another assignment that is a conse-
guence ofv, {]. The implication setimpl[v,], is the set of
implications that are a consequence of the assignfoeijt

In the example, an implication of the assignmino) is the
assignmente, 0], and the implication set df/, 1] is as fol-

(a) (b) lows

: o . . impl[d, 1] = {[d, 1], [a, 0], [b, 0], [e, 0], [f, 1]}.
Fig. 8. A circuit and its corresponding graph.
Note that the implication set of an assignment includes the

. .] , assignment itself.
the other assuming that the control signal is one. Since the Two laws regarding implications will be useful when
control signal can only be in one of two possible states, Z€r0generating implication sets. Theansitive law states that
or one, the specialized subcircuits are not needed at the samg [0,1] € impl[u, k] and[w, m] € impl[v, [] then[w, m] €
time and can be combined to form the two halves of an adap-impl[u’ k], and thecontrapositivelaw states that ifv, I] €
tive subcircuit. The control signal connects to the adaptive impl[u, k] then[u, k| € impl[v,1].
subcircuit and determines which of the two halves is to be ! ’ g

’ ' If the output or any of the inputs of a functigh, have
active at any time.

been assigned values, thejustificationoperation JUSTIFY(v),
can be performed on. The operation returns a set of as-
4.2. Preliminaries and Problem Definition signments that are a consequence of the assignments inci-
dent onv. The scope of the operation is limited to the as-
The combinational portion of a boolean circuit can be repre- signments that can be derived by examinifig the assign-
sented as a directed acyclic graph (DAG)= (V(G), E(G)). ments returned only apply to the functions’s inputs or to its
A node in the graphy € V/(G) represents a logic gate, pri- output. Returning to our example, & = 1 and f =
mary input or primary output, and a directed edge in the then JusTiFY(f) returns the assignmenf,1]. Similarly,

graphe € E(G) with head,u = head(e), and tail,v = if d =1,a = * andb = * thenJUSTIFY(d) returns two
tail(e), represents a signal in the logic circuit that is an out- assignmentga, 0] and[b, 0].
put of gateu and an input of gate. The set ofinput edges The structure of a graph can be simplified based on the

foranodev, iedge(v), is defined to be the set of edges with assignments made to its variables. For example, in Fig-
as atail. Similarly, the set afutput edgeor v, oedge(v),is ure 8, ifd = 1 then the function af can be replaced by the
defined to be the set of edges witls a head. Arimary in- constant-1 functionf,; = 1, and edges; ande,, and node
put (P1) node has no input edges angranary output(PO) a can be removed. Similarly, f = 0, then the function at
node has no output edges. Arternal node has both input j can be replaced h§, = @, and edge:, can be removed.
edges and output edges. The set of distinct nodes that supplyfter some assignments have been made to the variables in
input edges t are referred to asput nodesaind is denoted G, the simplification operationSiMPLIFY (H), on a sub-
inode(v). Similarly, the set of distinct nodes that connect to graphH of G returns a new subgraph which is a simplified
output edges fromv are referred to asutput nodesaind is versjon ofH based on the assignments present. The process
denotedonode(v). of simplification can be expressed as a sequence of two sim-
The circuit of Figure 8a and its graph representation, ple operations. The first operation simplifies a node’s func-
Figure 8b, will be used as an example when illustrating the tion based on the assignments present and removes the input
notions defined below. edges that are no longer needed by the new function. The
Anodev in the graph is considered to be a boolean vari- second operation removes a node and its input edges if all
ablev whose value is determined by the boolean function of its output edges have been removed. These two opera-
F, at nodev. Although we use the same notation for both tions are continually applied until they have no effect on the
a node and the variable it is associated with, it will be clear graph.
from the context which one of the two is meant. An edge The subgrapttontrolled by a variablev, H,, consists
from « to v indicates that the function used to compute of the nodes and edges affected by the simplifications that
F,, depends on variabke In the example, the function 4t are possible after using the assignmentsripl[v, 0] and
depends om andb, and is defined to b&y(a,b) = a + b. impl[v,1]. The subgraph used to computés not part of
In addition to the use of the standard logic values 0 and 1, the subgraph controlled hy. In our examplejmpl[b, 0] =
the symbol ¥’ is used to represent an unknown or undefined {[b, 0], [e, 0]} and impl[b,1] = {[b,1],[d,0]}. If we use
logic value. the assignments igmpl[b, 0] then the subgraph consisting
The ordered paifv, /], wherel € {0, 1}, represents the of nodes{d,e,c, f}, and edgesfes, e3, e4, 5 }, is affected
assignment of logic valukto variablev. An implication of by the simplifications that are possible, and if we use the

b=0 b=1
:() “ <) % <) j,. é . % .
(a)

®)

o)

» »
05050

(©) ()

Fig. 10. The process of adaptation on the graph of Figure 8.

Fig. 9. The process of adaptation.

the adaptive subgraph reduces the area of the graph by two
nodes, even more gains are possible if the adaptive subgraph
is remapped. In the original graph, all nodes had two in-
puts, and if we assume that the target architecture consists of
2-LUTs then remapping produces the graph of Figure 10d.
The final graph has a three-fold reduction in area compared
to the original.

assignments inmpl[b, 1] then the subgraph consisting of
nodes{d,e,a, f}, and edgesies, e3, €1, €5}, is affected by
the simplifications that are possible. Combining these two
subgraphs, we obtain the subgraph controlled bshich is
essentially the graph of Figure 8b with nddeemoved.

Figure 9 illustrates the transformation that takes place
during adaptation. First, a control variabte,and the sub-
graph it controls H,,, are identified. Then, two specialized
versions ofH, are generated is obtained by simplifying
H, after applying the assignments impl[v, 0] and H; is
obtained by simplifyingH,, after applying the assignments
in émpl[v,1]. Finally, the two subgraphs are combined to
form the adaptive subgraptt{]. Variablev remains con-
nected to the adaptive subgraph and determines which on
of Hy andH is to be active at any time.

4.3. Generating Implication Sets

Implication sets are central to the problem of adaptation.
They are used to identify controlled subgraphs as well as to
é]enerate adaptive subgraphs. Our use of implication sets is
not new; they have found several uses in the literature. They
) ' have been used to solve satisfiability (SAT), automatic test
The area of a subgrapf, arca(f1), is defined to be the pattern generation (ATPG), and logic synthesis problems.

number of nodes in it. In an adaptive subgraph, only one h h h £ alaorith
of the component subgraphs is active at any time. Thus theT us, t ere ?‘Ve.bee” a number of algorithms proposed'to
i ’ enerate implication sets [17]-[22]. Our work uses a modi-

31[?ﬁeogig:i?lir:zecs;%%rr?s:t Issu(izfrlgggsfo be the mammunﬁed version of the algorithm proposed in [22]. The primary
' benefits of this algorithm over the others are its speed, its
@ ability to generate all possible implication sets simultane-
ously and its ability to discover a large number of implica-
tions. We briefly review the algorithm here.

area(H)) = max{area(Hy), area(H;)}.

Note that the area of an adaptive subgrdph is always

smaller than or equal to the area®f, because is com- The algorithm maintains implication sets for each signal
posed of the two subgraplig, and H; which are both sim- in the circuit. Initially, each implication set will contain a
plified versions off,. single entry: the assignment itself. As the algorithm pro-

The goal of adaptation is to replace controlled subgraphsgresses the implication sets are expanded. The algorithm
with adaptive subgraphs such that the area of the result-stops when there are no further changes observed on any of
ing graph is minimized. Consider the process of adapta-the implication sets. An implication set is expanded by first
tion on the graph of Figure 8b usirigas the control vari- making the assignments within it. Then justification opera-
able. We identified the subgraph controlled barlier. tions are used to discover new implications. The transitive
The subgraphs of Figures 10a and 10b are obtained wherdaw is used to discover further implications of the newly dis-
the controlled subgraph is simplified assuming 0 and covered implications. In addition to the transtive law, during
1, respectively. These two subgraphs are combined intothe process of discovery, the contrapositive law is used to
the adaptive subgraph illustrated in Figure 10c. Although add new entries to other implication sets.

; lADAPT() s Given a variabler and a logic valué, the specialization

3 g’im\ﬁ{g;ﬂ =10 procedure, illustrated in Figure 12, produces a version of

g fore\;)er . H, simplified using the implications ifmpl[v, []. Note that

o sty = M beste = 0 some assignments impl[v, 1] cannot be used (linesand

7 skipif v & V(G) 8) as the variables they apply to may no longer be a part of

8 Hy «— SPECIALIZE(v, 0) th dified e

9 H, < SPECIALIZE(v, 1) € modified grapit.

b o o CosuHy, Ho, 1) Returning to Figure 11, having selected a control vari-

1§ dl?fem — v, bestc ¢ able in the inner loop, the outer loop removes the subgraph

B g controlled by the variable and replaces it with an adaptive

ig t;;eak ifsbestv = nil(b 10.0) subgraph composed of the two specialized versions of the
«— SPECIALIZE(bestv,

17 H? — SPECIALIZE(bestu, 1) removed subgraph.

13 g = g;;ﬁ,b;mDAPWE(Hm Hy) Since .the g_oal_of adaptation is to minimize th.e area of

20 | end forever the resulting circuit, the cost computed for a variables

based on the number of edges eliminateé/jnto obtainH
Fig. 11 The procedure used to generate adaptive subgraph andH;. Although the area savings can be measured directly
' Sby counting the number of nodes eliminated, the edge-based

measure is finer grained and better reflects the area obtained

SPECIALIZE(v, [)

; for [u, k] € mpl[v, 1] after the technology mapping step that follows adaptation;

s Z"‘ﬂ”k“ g VI(G) the technology mapping step may be able to pack more logic

5 | endfor into the nodes where some edges have been eliminated. The
3 {:r/ [: I:]’”gpilgggfvag] cost is computed as the minimum of two valugsandc;

8 skipif u ¢ V(G) wherec, is the number of edges eliminated to obtdif

190 endfor andc; is the number of edges eliminated to obt&in. Fur-

11 | retum H’ thermore, there are two special cases that may cause the cost

of a variable to be zero preventing its selection by the in-
ner loop (lines 11-13). It is assumed that at minimum each
Fig. 12 The procedure used to generate a specialized ver-control signal in the target architecture determines the func-
sion of H,, under the assumption thatas logic valué. tionality of the adaptive structures within a region that is ap-
proximately the size of a cluster. Thus, to produce adaptive
subgraphs that are at least as big as a cluster, the cost of a
variable is set to zero if it does not eliminate as many edges
The procedure used to generate adaptive subgraphs is preaS there are inputs to a typical cluster in the target archi-
sented in Figure 11. It begins with a call lPLICATION- te_cture. For example, if th_e target arc_hltecture use_s_clusters
SETswhich generates all implication sets in the graph. Then, With four BLEs, then a variable’s cost is set to zero if it does
before any modifications are made to the graph, a copy ofN0t €liminate at least 10 edges [2]. If a variableontrols
the variables is placed ifi. The implication sets that were @ large subgrapii/, and has disproportionate values gr
generated only apply to the variables that are present in theddc1 then it is unlikely to be a good control variable and
unmodified graph, but some of these variables will disappearltS COSt is set to zero. For example, consider a circuit with a
as the graph is modified during adaptation. Setllows us glqbal reset signal. Th_e re_set signal controls_mqst of the cir-
to keep track of the variables for which implication sets are Cuit, and most of the circuit can be removed if it is assumed
available. to be one. However, if the reset signal is assumed to be zero,
The inner loop (lines 6-14) uses a greedy method to most_ o_f the circuit remains unchang_ed. If an adaptive sub-
find a control variable that can be used to generate an adapCircuit is generated using the reset signal, area would not be
tive subgraph, and the outer loop (lines 4—20) keeps rep|ac_reduced significantly apq a Iarge part of the .Clr.CUIt- would no
ing subgraphs with their adaptive equivalents until the inner I0Nger be able to participate in other specialization opera-
loop fails to find a control variable. For every variable that is tions. Far better area results can be obtained for the circuit
present in bottC' and the modified grapt, the inner loop by using a num'ber'of con.trol signals, each of which controls
determines a cost that reflects its suitability as a control vari-& Smaller subcircuit and is able to produce balanced values
able. The cost of a variableis determined bfCosTandis [0 ¢o andei.
based on the controlled subgrapt,, as well as the two The complexity of generating adaptive subgraphs (lines
subgraphdi, and H; produced bySPECIALIZE. The vari- 4-20) can be derived as follows. The number of nodes in
able with the highest non-zero cost is selected as the controthe graph is denoted, and the average number of nodes
variable to be used in generating an adaptive subgraph. in the subgraph controlled by a variable is denadtedrhe

4.4. Generating Adaptive Subgraphs

Unadapted Adapted Mapped Adaptive
Circuit Ctrls (LUTs) (LUTSs) (LUTs) (Ratio)
:(? C6288 15 904 904 714 0.69
alud 7 1035 820 780 0.97
:@\ b T apex2 9 1201 960 921 0.95
— % apex4 4 1087 850 733 0.89
bigkey 1 1594 1366 912 0.87
@/ — clma 13 4545 2801 2686 0.98
- 3@@ des 18 1225 1092 1010 0.85
@/ diffeq 12 849 836 823 0.73
S dsip 1 1153 1145 691 0.99
elliptic 15 2113 2100 2070 0.62
ex1010 6 2532 1663 1480 0.94
)) i) ex5p 2 931 710 602 0.93
Fig. 13, Existence of adaptive subgraphs imposes con- | frisc 22 2269 2087 1997 0.85
H i10 13 779 680 661 0.81
straints on the way cones are generated. misex3 | 1086 s o1 0,08
pdc 4 1882 1349 1190 0.97
s38417 30 3672 3477 3362 0.86
s38584.1 16 3730 3586 2916 0.93

inner loop simplifies the subgraph controlled by each vari- | &, H 1089 789 726 0.96
able to determine a cost, thus its complexityi€n). The spla 5 1337 981 853 0.99
outer loop will iterateO(n/k) times as each iteration re- | SeoAv9 | 710 1510.20 124100109078 088
places a subgraph of sizg(k) with an adaptive subgraph.

Therefore, the complete process has a complexity@f).

On a Pentium Il 1 GHz computer, adaptive subgraphs canTable 1. The effect of adaptation on the 20 largest MCNC
be generated for the 20 largest MCNC [23] circuits in 19 circuits.

minutes.

number of control variables used to adapt each circuit. Some
5. TECHNOLOGY MAPPING AFTER circuits such abigkey produce significant area reductions
ADAPTATION with a single control variable while circuits such elsna

produce similar area gains with a much larger number of
Although the technology mapping procedure used after adapeontrol variables¥3). Architectural decisions will be guided
tation is the same as the one that precedes adaptation, thipy the larger number of control variables as an architecture
existence of adaptive subgraphs imposes constraints on thehat supports several control variables can be made to mimic
way cones are generated. A nadthat is a part of an adap- a single control variable, whereas an architecture that sup-
tive subgraph may include a predecessor noiiea cone at ports a single control variable cannot mimic the presence of
v only if u is a part of the same adaptive subgraph.as several control variables.
not a part of any adaptive subgraph. A nadthat is not a When adaptation is used in isolation, an average area
part of an adaptive subgraph may only include predecessorsavings ofi8% is observed. The addition of the second tech-
that are not a part of any adaptive subgraph in a cone at nology mapping step increases the area saving8%o

For example, in Figure 13/ can be a part of cone &t e A large fraction of the circuit produced by adaptation

can be a part of a cone gtandc can be a part of a cone at (88%) is adaptive. From an architectural point of view, this

e. However,g/a; cannot be a part of a conetaor d. suggests that most of the LUTs in an AFPGA must be of
the adaptive variety to effectively support the circuits being

6. RESULTS produced by adaptation.

The 20 largest MCNC [23] circuits were used to study the 7. WORK DESCRIBED ELSEWHERE

benefits of the adaptation step. Before undergoing adapta-

tion, each circuit was first synthesized using S3&ipt - Although adaptive circuits usz8% fewer LUTs than non-

rugged) [24] and then technology mapped into 4-LUTs adaptive circuits, this is only one of the factors in the area
using IMap [25]. IMap was also used for the second tech- comparison between adaptive circuits. To determine the true
nology mapping step following adaptation. For each circuit, area benefits of AFPGAs, two other factors need to be quan-
Table 1 presents the number of control variables used duringified. First, the area of the extra circuitry required to im-
adaptation Ctrls), the area before adaptatiodriadapteq, plement adaptive circuits needs to measured. Second, the
the area following adaptatio@apted, the area following structural changes that a circuit underwent to become adap-
the second technology mapping stéfapped, and the frac- tive may produce an associated increase or decrease in the
tion of LUTs in the final circuit that are adaptivAdaptive. demand for routing resources, and this effect needs to be

Although an average df.1 control signals were used measured. A detailed area study considering these effects is
during adaptation, there are significant differences in the presented in [10].

8. SUMMARY

[13] Actel CorporationAxcelerator Family FPGAs Product Brief

January 2005.

We presented a high-level overview of the AFPGA archi- [14] Actel CorporationProASIC3 Product BriefJuly 2005.

tecture and detailed the adaptation step which was used t

exploit the architectural features present in an AFPGA. Two
algorithms that were part of the adaptation step were de-
scribed. The first algorithm generated implication sets which [16]
were then used by the second algorithm to generate adap-
tive subcircuits. Following adaptation, a technology map- [17]
ping step was run to reduce both the area and depth of the
resulting circuits. The entire procedure reduced the area of
the 20 largest MCNC circuits b38%.

9. REFERENCES

Gis)

(18]

[1] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and [19]

(2]

(3]

(4]

(5]

(6]

(7]

ASICs. InProceedings of the ACM International Symposium
on FPGAs Monterey, CA, February 2006, pp. XX—XX.

V. Betz and J. Rose. Cluster-Based Logic Blocks for FPGAs:
Area-Efficiency vs Input Sharing and Size. Rroceedings

of the IEEE Custom Integrated Circuits Conferen&anta
Clara, CA, 1997, pp. 551-554.

A. Marquardt, V. Betz and J. Rose. Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve FPGA
Speed and Density. IRroceedings of the ACM International
Symposium on FPGAMonterey, CA, February 1999, pp.
37-46.

V. Betz, J. Rose and A. MarquardArchitecture and CAD
for Deep Submicron FPGAXIuwer Academic Publishers,
1999.

J. Rose, R. Francis, D. Lewis and P. Chow. Architecture of
Field-Programmable Gate Arrays: The Effect of Logic Block
Functionality on Area EfficiencyEEE Journal of Solid-State
Circuits, Vol. 25, No. 5, October 1990, pp. 1217-1225.

E. Ahmed and J. Rose. The Effect of LUT and Cluster Size
on Deep-Submicron FPGA Performance and Densitipros
ceedings of the ACM Symposium on FPGMsenterey, CA,
February 2000, pp. 3-12.

J. Rose and S. Brown. Flexibility of Interconnection Struc-
tures for Field-Programmable Gate ArraySEE Journal of
Solid-State CircuitsVol. 26, No. 3, March 1991, pp. 277—-
282.

[8] V. Betz and J. Rose. FPGA Routing Architecture: Segmen-

(9]

[10]

[11]
[12]

tation and Buffering to Optimize Speed and DensityPho-
ceedings of the ACM International Symposium on FPRGAs
Monterey, CA, February 1999, pp. 59-68.

M. Sheng and J. Rose. Mixing Buffers and Pass Transistors in
FPGA Routing Architectures. IRroceedings of the ACM In-
ternational Symposium on FPGAdonterey, CA, February
2001, pp. 75-84.

V. ManohararajahArea Optimizations in FPGA Architecture
and CAD Ph.D. Thesis, University of Toronto, 2005.

Altera. Altera Device Handbook2005.
Xilinx. Xilinx Device Handbook2005.

(20]

[21

(22]

(23]

(24]

(25]

Altera CorporationMax Il Device Brochurev1.0, March
2004.

Xilinx Corporation. CoolRunner-Il CPLD Family Data
Sheetv2.5, June 2005.

M. H. Schulz, E. Trischler and T. M. Sarfert. SOCRATES: A
Highly Efficient Automatic Test Pattern Generation System.
IEEE Transactions on Computer-Aided Desiyfol. 7, No.

1, January 1988, pp. 126-136.

H. Fujiwara and T. Shimono. On the Acceleration of Test
Generation AlgorithmslEEE Transactions on Computers
Vol. C-32, No. 12, December 1983, pp. 1137-1144.

J. Rajski and H. Cox. A Method to Calculate Neces-
sary Assignments in Algorithmic Test Pattern Generation.
In Proceedings of the IEEE International Test Conference
Semptember 1990, pp. 25-34.

S. T. Chakradhar and V. D. Agrawal. A Transitive Clo-
sure Algorithm for Test GeneratiohEEE Transactions on
Computer-Aided Desigivol. 12, No. 7, July 1993, pp. 1015-
1028.

] W. Kunz and D. StoffelReasoning in Boolean Networks

Kluwer Academic Publishers, 1997.

J. Zhao, M. Rudnick and J. Patel. Static logic implication with
application to fast redundancy identification.Rroceedings
of the VLSI Test Symposiu®97, pp. 288-293.

Collaborative Benchmarking Laboratory.
LGSynth93 Benchmark Suite Available from
http://www.cbl.ncsu.edu/www/

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and
A. L. Sangiovanni-VincentelliSIS: A System for Sequential
Circuit SynthesisTechnical Report, University of California

at Berkeley, 1992, Memorandum No. UCB/ERL M92/41.

V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuris-
tics for Area Minimization in LUT-Based FPGA Technology
Mapping. InProceedings of the International Workshop on
Logic and SynthesisTemecula Creek Inn, CA, USA, June
2004, pp. 14-21.

