
Simple Vector Microprocessors

for MultiMedia Applications

Paper: http://www.eecg.toronto.edu/ecorinna/vector/

Corinna G. Lee and Mark G. Stoodley

University of Toronto



Current Trends

� multimedia applications are growing in importance

� current hardware trend to support multimedia is to add

short vector extensions to state-of-the-art superscalar pro-

cessors

{ Sun VIS, HP MAX-2, SGI MDMX, Digital MVI, Intel

MMX, Intel Katmai, Motorola AltiVec

� BUT control logic for complex superscalar processor is dif-

�cult to implement

{ over past 2 years, shippings have been delayed repeat-

edly to meet target speeds

{ late shippings attributed to complex out-of-order de-

signs

{ ref: Linley Gwennap, MPR articles, Feb,Oct,Dec 1997
2



Alternative Hardware Solution

� use simple vector processor design:

{ 2-way, in-order

{ vector length of 64

{ vector width of 8 (i.e., has 8 lanes)

� for this study, focus on multimedia applications

{ important emerging applications area

{ others have demonstrated e�ectiveness of vector ar-

chitectures on oating-point applications and SPECint

programs

3



Outline

Motivation

Processor Con�gurations

Die Area Estimates

Performance Results

Summary and Conclusions

4



Superscalar and Vector Processors

Processors

Feature OOO OOO Simple

Superscalar Short Vector Long Vector

ISA 64b MIPS 64b MIPS with vector extensions

issue order out of order in order

issue width 4 instructions 2 instructions

fetch width 4 instructions 2 instructions

re-order bu�er size 56 instructions |

#physical registers 64 int 64 int 32 int

64 FP 64 FP 32 FP

32 8-element Vreg 32 64-element Vreg

datapath 2 IUs 2 IUs 2 IUs

1 LSU 1 LSU 1 LSU

1 VU with 8 IUs 1 VU with 8 IUs

memory system 64-bit data bus, 64-bit address bus

R10000-based 2-level cache memory

C compiler SGI V5.3 SGI V5.3 {O2 and

{O2 VSUIF V1.1.0

5



T0-Based Vector Processor

main di�erences:

� vector length of 64, not 32

� 1 VU, not 2 VUs

� 64-bit data bus, not 128 bits

� 64-bit datapath, not 32 bits

� more powerful scalar core

� R10000-like latencies for operations

� fully pipelined multiply for narrow data types (� 16 bits)
6



Component Areas for Two Implementations

of the Long Vector Processor

Area in mm2

Scaled to 0.25�m

Processor Component

Area

E�cient

Implement-

ation

High

Performance

Implement-

ation

64b Vector Datapath

8 integer units 24.0 36.0

load/store unit 3.0 3.0

64b Vector Register File

32 64-element vector registers 9.5 19.0

64b MIPS R5000

scalar integer and FP datapath 10.3 10.3

scalar integer and FP register �le 0.5 0.5

instruction issue 0.8 0.8

Clocking and Overhead 4.0 4.0

Total 52.3 73.8

7



64b Scalar Integer Unit

� area-e�cient implementation: 3mm2

2� area of 32b scalar datapath

+ 4� area for 16x16 multiplier array

= 2� 1mm2 + 4� 0:25mm2

very conservative estimate: area for 21164 IU is < 1mm2

� high-performance implementation: 4.5mm2

{ based on OOO integer unit in 21264

8



Load/Store Unit

� need 64x512 cross-bar to transfer data between 64b mem-

ory data bus and 8 64b register buses

� area estimate:

area for 128x256 crossbar

+ 2� area for shifting/aligning 32b data

� address processing handled by scalar portion of processor

{ only one address bus

{ scalar and vector memory instructions use same memory

interface

9



Vector Register File

� based on layout details given in Asanovi�c's Ph.D. thesis

� includes area for overhead circuitry

{ read sense ampli�ers, data latches for writes and reads,

multiplexors, drivers, etc.

� area-e�cient implementation: time-multiplexes word and

bit lines

� high-performance implementation: uses extra buses and

ports to avoid time-multiplexing

10



Area Comparison

with Existing Superscalar Processors

want area di�erences to be due to parallel-speci�c

features

� die areas scaled to a 0.25�m process to eliminate areal

di�erences due to di�erences in line size

� areas are for processor components only; areas for cache

and TLB structures, external interface logic, and the pad

ring excluded

� areas based on actual VLSI implementations

11



Breakdown of Processor Die Areas

||

0 10 20 30 40 50 60 70

Datapath Registers Instruction Other
IO 2-way superscalar

MIPS R5000 12

OOO 4-way superscalar
MIPS R10000 67

Alpha 21264 70

OOO 4-way short vector
HP PA-8000 68

simple long vector
area efficient 52

high performance 73

Processor Die Area (in mm2 scaled to 0.25µ)

Issue

12



Highly Vectorizable Benchmark Programs

Data

Benchmark Width Input Description

chroma 8 bit 320x240 Merges two images on

the basis of a \whiteness"

threshold.

colorspace 8 bit 24-bit Converts an image in RGB

to YUV values.

composite 8 bit color Blends two images together

by a blend factor �.

convolve 8,16 bit image(s) Convolves an image with a

3x3 16-bit kernel.

decrypt.unroll 16 bit 16,000-byte Unrolled version of IDEA

decryption.

decrypt.inter 16 bit message Loop-interchanged version

of IDEA decryption.

13



VIVACE Compiler/Simulation Infrastructure

[missing]

14



Processor Performance

||

O
O

O
 s

u
p
e
rs

c
a
la

r
S

p
e
e
d
u
p
 o

v
e
r

0

1

2

3

4

5

OOO superscalar

OOO short vector

simple long vector

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.001.13

1.57

1.07

1.75 1.69

4.14

1.89
1.691.59

2.27 2.18

3.35

2.95

5.17

2.92
2.72

chroma colorspace composite convolve decrypt.inter decrypt.unroll Arithmetic Geometric
Average Mean

15



CPI and Dynamic Instruction Count

||

Cy
cl

es
 p

er
 In

str
uc

tio
n

0

2

4

6
OOO superscalar

OOO short vector

simple long vector

0.71
0.50 0.43 0.40 0.45

0.71 0.53 0.52

2.10
1.90

1.37
0.93

1.19
0.78

1.38 1.30

6.36

5.86

2.41
2.84

5.06

4.55 4.51
4.25

chroma colorspace composite convolve decrypt.inter decrypt.unroll Arithmetic Geometric
Average Mean

||

(in
 m

ill
io

ns
)

N
um

be
r o

f I
ns

tru
ct

io
ns

0

2

4

6

8
scalar instructions

vl8 vector instructions

vl64 vector instructions

4.04

5.21

2.97

13.97

7.75

5.82

6.63

5.83

1.21
0.88 0.88

3.39

1.74
1.26

1.56 1.38

0.28 0.20 0.24
0.58

0.24 0.17 0.29 0.26

chroma colorspace composite convolve decrypt.inter decrypt.unroll Arithmetic Geometric
Average Mean

16



Stripmining = Implicitly Loop Unrolling

Dynamic

Loop Version Static Instructions Instruction

Count

rolled load r3,0(r2) 128

add r2,r2,4

explicitly unrolled 64 times load r3,0(r2) 65

load r3,4(r2)

...

add r2,r2,256

stripmined with VL=64 vload v3,(r2) 2

add r2,r2,256

17



Average Speedup

Deconstructed Using CPI Equation

Processor

Cycles

per

Instruction

Dynamic

Instruction

Count

Cycle Count

Speedup

over

Super-

scalar

OOO superscalar CPIss NIss CPIss�NIss 1.00�

OOO short vector 2.50�CPIss 0.24�NIss 0.60�CPIss�NIss 1.67�

simple long vector 8.19�CPIss 0.045�NIss 0.37�CPIss�NIss 2.71�

18



E�ectiveness at Using Parallelism?

� usually low CPI means e�cient use of hardware

� no longer true because amount of work carried out by an

instruction varies tremendously

� instruction not an appropriate unit of work for determining

e�ective use of hardware

� use operation instead

{ amount of work carried out by a functional unit

19



CPO and Dynamic Operation Count

||

Cy
cl

es
 p

er
 O

pe
ra

tio
n

0.00

0.25

0.50

0.75
OOO superscalar

OOO short vector

simple long vector

0.71

0.50

0.43
0.40

0.45

0.71

0.53 0.52
0.55

0.48 0.48

0.32

0.26

0.17

0.38
0.35

0.44

0.37

0.29

0.21
0.16 0.15

0.27 0.25

chroma colorspace composite convolve decrypt.inter decrypt.unroll Arithmetic Geometric
Average Mean

||

(in
 m

ill
io

ns
)

N
um

be
r o

f O
pe

ra
tio

ns

0.0

2.5

5.0

7.5

10.0
scalar operations

vector operations

vector operations

4.04

5.21

2.97

13.97

7.75

5.82

6.63

5.83

4.57

3.50

2.49

9.99

8.07

5.88 5.75
5.16

4.06

3.14

2.06

8.01
7.35

5.37
5.00

4.50

chroma colorspace composite convolve decrypt.inter decrypt.unroll Arithmetic Geometric
Average Mean

20



E�ective OLP and ILP in Vector Processors

Type of Vector Processors

Parallelism OOO short simple long Compiler Assistance

operation-level

p p

scalar{scalar ILP

p

�

use simple list

scheduling to enable

vector{scalar ILP

instead

vector{scalar ILP

p p

vector{vector ILP �

p use loop unrolling

or software pipelining

to enable

21



Average Speedup

Deconstructed Using CPO Equation

Processor

Cycles

per

Operation

Dynamic

Operation

Count

Cycle Count

Speedup

over

Super-

scalar

OOO superscalar CPOss NOss CPOss�NOss 1.00�

OOO short vector 0.67�CPOss 0.88�NOss 0.59�CPOss�NOss 1.70�

simple long vector 0.48�CPOss 0.77�NOss 0.37�CPOss�NOss 2.70�

22



Summary: Simple Long Vector Processor

� bene�ts

{ lower complexity and area cost than those for 4-way

OOO superscalar implementation

{ greater performance: 2.7x faster than OOO, 1.6x faster

than OOO short vector

� con�gured like traditional vector architectures with two

major enhancements:

{ much wider vectors

{ slightly wider instruction issue

� performance gains obtained with R10000-like 2-level

caches

� conservative area and performance estimates for long vec-

tor processor

23


