Functionally Linear Decomposition and Synthesis of Logic Circuits for FPGAs

Tomasz S. Czajkowski and Stephen D. Brown
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
czajkow@eecg.utoronto.ca, brown@eecg.utoronto.ca

ABSTRACT
This paper presents a novel logic synthesis method to reduce the area of XOR-based logic functions. The idea behind the synthesis method is to exploit linear dependency between logic sub-functions to create an implementation based on an XOR relationship with a lower area overhead. Experiments conducted on a set of 99 MCNC benchmark (25 XOR based, 74 non-XOR) circuits show that this approach provides an average of 18.8% area reduction as compared to BDS-PGA 2.0 and 25% area reduction as compared to ABC for XOR-based logic circuits.

Categories & Subject Descriptors
B.6.3 [Design Aids]: Automatic Synthesis, Optimization

General Terms
Algorithms

Keywords
Logic Synthesis, Decomposition, Linearity, Gaussian Elimination.

1. INTRODUCTION
The logic synthesis problem has been approached from various angles over the last 50 years. For practical purposes it is usually addressed by focusing on either AND/OR, multiplexor, or exclusive OR based (XOR-based) logic functions. Each of the above types of logic functions exhibits different properties and usually a synthesis method that addresses one of these types very well, does not work well for the others.

The XOR-based logic functions are an important type of functions, heavily used in arithmetic, error correcting and telecommunication circuits. It is challenging to synthesize them efficiently as there are 7 different classes of XOR logic functions [1], each of which has distinct approaches that work well to implement logic functions of the given class. In this work we focus on XOR-based logic functions and show that they exhibit a property that can be exploited for area reduction.

Some of the early work on XOR logic decomposition and synthesis was geared toward spectral decomposition [2]. Spectral methods are used to transform a logic function a different domain, where analysis could be easier. While at the time the methods were not practical, the advent of Binary Decision Diagrams accelerated the computation process and showed practical gains for using spectral methods [3]. An early approach called linear decomposition [4] decomposed a logic function into two types of blocks - linear and non-linear. A linear block consisted purely of XOR gates, while a non-linear block consisted of other gates (AND, OR, NOT). This approach was effective in reducing the area of arithmetic, error correcting and symmetrical functions.

Recently, XOR based decompositions were addressed by using Davio expansions [10] and with the help of BDDs [5, 6]. With Davio expansions Reed-Muller logic equation can be generated for a function, utilizing XOR gates. The idea behind using BDDs was to look for x-dominators in a BDD that indicate a presence of an XOR gate and could be used to reduce the area taken by a logic function. Also, tabular methods based on AC decomposition [7] have been used to perform XOR decomposition [8].

This work addresses two limitations of the above methods. First, Davio Expansions perform decomposition on variable at a time so an XOR relationship between non-XOR functions may not necessarily be found. Second, BDD based methods either use x-dominators to perform a non-disjoint decomposition or rely on BDD partitioning, which in essence follows to the idea of column multiplicity [7]. Since column multiplicity does not address the XOR relationship between the columns of a truth table, it is not suitable for XOR-based logic decomposition.

In this paper we introduce a novel approach to decompose XOR-based logic that exploits the property of linearity. Rather than looking at linear blocks or BDD based x-dominators, we look at a linear relationship between logic functions. We define functional linearity to be a decomposition of the form:

\[f(X) = \sum g_i(Y)h_i(X \cdot \bar{Y}) \]

where X and Y are sets of variables (Y=X), while the summation represents an XOR gate. In this representation the function \(f \) is a weighted sum of functions \(g_e \), where the weighting factors are defined by functions \(h_e \). This approach is able to synthesize XOR logic functions using Davio and Shannon’s expansions [1], and retains the ability of a BDD to find relationships between logic functions of many variables, while fundamentally breaking away from the concept of column multiplicity.

We propose a logic synthesis method that exploits functional linearity to reduce the area occupied by XOR-based logic. The algorithm utilizes Gaussian Elimination to decompose a truth table of a logic function into linearly independent set of functions. It then synthesizes the original function as shown in Equation 1. Our results show that in comparison to state-of-the-art synthesis tools [6][15], our approach produces better results on average for XOR-based logic circuits, using little processing time.

This paper is organized as follows: Section 2 contains the background information for our synthesis approach. Section 3 details the approach for single output logic synthesis. Section 4

DAC 2008, June 8-13, 2008, Anaheim, California, USA
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...5.00
presents the variable partitioning algorithm used in our technique. Section 5 discusses an algorithm to further reduce the area of a logic network. In Section 6 we extend the approach to multi-output logic synthesis, while Section 7 presents the results obtained using our method and compare them to ABC as well as BDS-PGA 2.0. We conclude the paper in Section 8.

2. BACKGROUND

This paper utilizes concepts of fields and vector spaces from linear algebra, as they apply to a Galois Field of characteristic 2 (GF(2)). The background review for this work includes the concepts of linear independence, vectors spaces, and Gaussian Elimination. A detailed review can be found in [13]. In [13] the reader may find notation that appears to conflict with the notation commonly used in logic synthesis. Thus, we explicitly state the notation used throughout this paper.

In this paper matrix notation is used with the assumption that all operations are performed in GF(2). Thus, summation is equivalent to an exclusive OR operation (XOR) and multiplication is equivalent to a logical AND operation. We use \oplus to represent a sum and $+\to$ to represent a logical OR operation. In addition we use \uparrow to represent a NAND operation and \otimes to denote an XNOR.

A matrix is denoted by a capital letter, while a column vector is identified by a lower case bolded letter. For example, $A\mathbf{x} = \mathbf{b}$ indicates that a matrix A is multiplied by a column vector \mathbf{x}, resulting in a column vector \mathbf{b}. In addition we borrow from linear algebra a special type of vectors, called basis vectors.

Basis vectors, in our case strictly column vectors, are a minimum set of columns in a matrix whose weighted sum can represent any column in that matrix. Since we are working in GF(2), any column in a matrix can be represented as an XOR of a subset of basis vectors. To distinguish regular vectors from basis vectors, we denote them with bold capital letters. Input variables of a logic function, as well as function outputs, are italicized (eg. $f=abcd$) to distinguish them from matrices and vectors.

In this paper linear algebra is used in the context of logic synthesis and hence we often represent columns/rows of a matrix as a logic function, rather than a column vectors of 0s and 1s. For example, if a column has 4 rows, indexed by variables a and b, then we index the rows from top to bottom as 00, 01, 10 and 11. Thus, a statement $X=a$ indicates that the basis vector X is $[0 \ 0 \ 1 \ 1]^T$, whereas $Y=b$ indicates a basis vector $[0 \ 1 \ 0 \ 1]^T$.

3. DECOMPOSITION AND SYNTHESIS

Functionally Linear Decomposition and Synthesis (FLDS) is an approach that exploits an XOR relationship between logic functions. The basic idea is to find sub-functions that can be reused in a logic expression and thus reduce the size of a logic function implementation. It is analogous to boolean and algebraic division. In these methods we first derive a divisor and then decompose a logic function with respect to it. In FLDS, we seek to achieve a similar effect, however we take advantage of linear algebra to do it. In our approach a basis vector is analogous to a “divisor” and a selector function to specify where the basis vector is used is analogous to a “quotient” in algebraic division. The key advantages of our method are that a) we can compute basis and selector functions simultaneously, b) the initial synthesis result can be easily optimized using linear algebra, and c) the method is computationally inexpensive even for large functions.

Consider a logic function represented by a truth table in Figure 1. The figure shows a truth table for logic function $f=abcd$, with variables ab indexing columns (free set) and variables cd indexing rows (bound set). We first decompose this function and then synthesize it. The first step is to find the basis vectors for the truth table shown in Figure 1. To do this, we apply Gaussian Elimination to the above truth table, as though the truth table was a regular matrix in GF(2). The procedure is illustrated in Figure 2.

We begin with the initial matrix that represents the truth table and swap the rows to arrange them from top to bottom based on the column index of their respective leading one entries. The next step is to perform elementary row operations to reduce the matrix to a row-echelon form. Thus, we replace row 1 with the sum (XOR in GF(2)) of rows 0 and 1. This causes row 0 to be the only row with a 1 in the second column. Finally, we replace row 2 with the sum of rows 1 and 2, making row 2 consist of all zeroes. In the resulting matrix the leading ones are in the middle two columns. From linear algebra we know this to indicate that the middle two columns in the original truth table (Figure 1), columns $ab=01$ and $ab=10$, are the basis vectors for this function. The equations for these two basis vectors are $G_1=cd$ and $G_2=cd$.

The next step is to express the entire truth table as a linear combination of these two vectors, which means expressing each column C as $h_iG_1\oplus h_2G_2$, where h_i and h_2 are constants. To find h_i and h_2, we solve a linear equation $A\mathbf{x} = \mathbf{b}$, where A is a matrix formed by basis vectors G_1 and G_2, $\mathbf{x}=[h_1 \ h_2]^T$ and \mathbf{b} is the column we wish to express as a using basis vectors G_1 and G_2. For example, for column C_0 we solve the following equation:

$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} h_i \\ h_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

By inspection the solution to this equation is $h_i=1$ and $h_2=1$.

Now that we know which basis vectors to use to reconstruct each column of the truth table, we need to express that information in a form of a selector function. A selector function determines in which column a basis vector is used. For example, G_1 is used in

<table>
<thead>
<tr>
<th>0 0 0 0 0</th>
<th>0 0 1 0 1 1 1 1 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 1 0 1 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 1 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

Figure 1: Truth Table for Example 1

Figure 2: Gaussian Elimination applied to Example 1
functions to determine a better grouping. The procedure then forms by pairing up groupings of two variables. The algorithm partitions variables into groups of 2\(^k\) variables, using the cost (#inputs + 1) of basis and selector set is used to index rows of the truth table. Once each grouping of \(2^k\) variables is determined, the cost of having each pair be the best n/2 groupings. The above procedure repeats, doubling the grouping size at each iteration, until the grouping size exceeds \(m\). In a case where \(m\) is not a power of 2 the algorithm proceeds to evaluate all partitions of size \(m\) by putting together input variables and groupings generated thus far. For example, if \(m=5\) then for each grouping of size 4 the algorithm combines it with an input variable to make a grouping of 5 variables. The algorithm evaluates each grouping and keeps the one with least cost.

When choosing a value of \(m\), we initially set the value to \(n/2\). This causes the algorithm to partition variables into equal sets, making it useful for some functions, where we can both reduce the area and the depth of a logic function. However, in some cases a balanced decomposition will result in a large number of basis vectors. This yields a poor area result and an unbalanced decomposition is preferred. In such cases, we reduce the value of \(m\) from \(n/2\) to \(n/4\) and run the algorithm again. We continue to reduce \(m\) by a factor of 2, until the number of basis vectors is low.

We compared our method to a random variable ordering as well as an exhaustive search. Random ordering produced much worse area results on average as compared to our algorithm. The exhaustive search yielded comparable results to our approach, however the processing time was over two orders of magnitude longer for functions with 16 or more inputs.

5. BASIS/SELECTOR OPTIMIZATION

In the previous section we described the variable partitioning algorithm that determines which variables belong to the bound set and which to the free set. However, a proper variable assignment is not always sufficient to optimize the area of a logic function, because for a given variable partitioning there can be many sets of basis vectors. While each set has the same size, the cost of implementing each set of basis function, and its corresponding selector functions, may be different. To illustrate this point consider Example 3 in Figure 5. This is the function from Example 3, except that variables are partitioned differently. In this example we have two basis vectors: \(G_1=bc\) and \(G_2=b'c\). The selector functions corresponding to these basis functions are \(H_1=\overline{a} \cdot \overline{d}\) and \(H_2=ad\). It is possible to replace one of the basis functions with \(G_1 \oplus G_2\) and still have a valid basis function. Notice that \(G_1 \oplus G_2 = 1\) and thus has a smaller cost than \(G_2\) itself. It is therefore better to use \(G_1 \oplus G_2\) and \(G_1\) to represent the function in

Figure 3: Truth Table for Example 2

<table>
<thead>
<tr>
<th>(cd)</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4: Heuristic variable partitioning algorithm

\[
\text{Partition Variables}(f, n, m) \{
\text{Given } n \text{ variables, determine the cost of having each pair be the bound set. Pick } n/2 \text{ best groupings such that each variable appears in at most one grouping.}
\text{for } (k=4; k < m; k=k/2) \{
\text{Use groupings of } k/2 \text{ variables to create groupings with } k \text{ variables. Keep the best } n/k \text{ groupings.}
\}
\text{If } m \text{ is not a power of } 2 \text{ then use the generated groupings to form bound sets of } m \text{ variables and pick the best one.}
\text{Reorder variables in } f \text{ to match the best grouping of size } m.
\}\]

Figure 5: Truth Table for Example 3

<table>
<thead>
<tr>
<th>(bc)</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 6: Multi-output synthesis example

The above procedure repeats, doubling the grouping size at each iteration, until the grouping size exceeds \(m\). We compared our method to a random variable ordering as well as an exhaustive search. Random ordering produced much worse area results on average as compared to our algorithm. The exhaustive search yielded comparable results to our approach, however the processing time was over two orders of magnitude longer for functions with 16 or more inputs.
from the 2nd functions with from the 3rd.

G

synthesize function

6. MULTI-OUTPUT SYNTHESIS

Consider two 4-input functions and put the truth tables for all functions in a single table.

FLDS is to select a subset of common variables as the bound set technique to handle multi-output functions. A way to do this in single output logic function. It is important to extend a synthesis method to handle multi-output functions. A way to do this in FLDS is to select a subset of common variables as the bound set. Based on the above discussion we present a multi-output synthesis algorithm.

The first step in the algorithm is to determine if the functions to be synthesized share all variables, or just a subset. If all variables are shared then we can perform a decomposition where the shared variables index the truth table rows. The decomposition with respect to shared variables will try to do a balanced decomposition so long as the number of basis functions is low. If the number of basis functions becomes large, it can be reduced by decreasing the number of variables indexing the rows.

The second step of the algorithm is to perform a decomposition where some variables are shared by all functions and some are not. We create a list of these functions and perform the next set of steps while the list is not empty. The list will shrink and grow as we synthesize functions, either because of the decomposition, or because some of the functions will be reduced to have fewer than 4 input variables.

We can now apply the same steps as for single output function synthesis to further optimize the logic function. In this case we can use basis and selector optimization algorithm to determine that a simpler function implementation can be found when an all 1s column is used instead of the 4th column.

The function is synthesized as and shares its basis functions with g. For function g we find that the basis function from the 2nd column is used in column ce=10, the basis function from the 3rd column is used in columns ce={01, 10}, while the all 1s column is used in every column. Once we synthesize each basis and selector function, we can see that the synthesis of the all 1s column and its selector function simplify to a constant 1. A constant 1 input to a 3-input XOR gate reduces it to a 2-input XNOR gate. The resulting circuit is shown in Figure 7.

While using shared inputs as the bound set can be beneficial, doing so will synthesize a circuit like a ripple-carry adder without a carry chain. For FPGAs however, it is better to use a carry chain because of its speed. To create ripple-carry structures in FLDS we use variables not common to all adder outputs as the bound set.

Based on the above discussion we present a multi-output synthesis algorithm. The algorithm first considers the decomposition of multi-output functions by using least common variables of a set of functions as the bound set. By doing so it progressively decomposes the set of function to a point where they all share the same subset of variables and can be effectively decomposed together. The algorithm is presented in Figure 8.

Multi_Output_Synthesis(function_set, k) {
 Create a list of common variables for the function set if (#common variables == all variables)
 Do Decomposition with shared variables
 else {
 Create a list of functions L for synthesis
 while (L is not empty) {
 Synthesize functions with fewer than k inputs
 Find set of variables S that is used by fewest functions
 Find a set of functions F that use variables in S and remove this set of functions from L
 If (L is empty)
 Do Decomposition with shared variables for F
 Else
 Synthesize basis functions for set F
 Put the selector functions generated in the previous step into L
 }
 }
}

Figure 8: Multi-output Synthesis algorithm

The first step in the algorithm is to determine if the functions to be synthesized share all variables, or just a subset. If all variables are shared then we can perform a decomposition where the shared variables index the truth table rows. The decomposition with respect to shared variables will try to do a balanced decomposition so long as the number of basis functions is low. If the number of basis functions becomes large, it can be reduced by decreasing the number of variables indexing the rows.

The second step of the algorithm is to perform a decomposition where some variables are shared by all functions and some are not. We create a list of these functions and perform the next set of steps while the list is not empty. The list will shrink and grow as we synthesize functions, either because of the decomposition, or because some of the functions will be reduced to have fewer than 4 input variables and removed from the list.

The next step finds a subset of variables S that are used by the fewest number of functions in the set L. We take these functions out of the set L and synthesize their basis functions with respect to the input variables in S. The selector functions resulting from the decomposition are put back into the set L, because they can potentially share variables with functions in the set L.

If the above step completes the synthesis process, the algorithm terminates. Alternatively, we may end up with a set of functions in L that have the same support. In this case the algorithm performs decomposition by assigning shared variables to the bound set, utilizing balanced decomposition to keep the depth of the resulting logic circuit from increasing.

7. EXPERIMENTAL RESULTS

In this section we present area, depth and compilation time results and contrast them with two academic synthesis systems: ABC [15] which utilizes structural transformations, and BDS-PGA 2.0 [6] that performs BDD based boolean optimizations.

To obtain results using ABC each circuit was first converted to an AND/Inverter Graph using the strash command. It was then optimized using the resyn2 script and the resulting logic was mapped into 4-LUTs using ABC’s fpga command.

To obtain results using BDS-PGA 2.0 a few more steps had to be taken, because it contains various flags to guide the synthesis process. The flags of interest are:

- xhardcore (X) - enable x-dominator based XOR decompositions
Table 1: Area Results Comparison Table for XOR-based Circuits

<table>
<thead>
<tr>
<th>Name</th>
<th>ABC LUTs</th>
<th>Depth</th>
<th>Time (s)</th>
<th>BDS-PGA-2.0 LUTs</th>
<th>Depth</th>
<th>Time (s)</th>
<th>FLDS LUTs</th>
<th>Depth</th>
<th>Time (s)</th>
<th>FLDS vs. ABC</th>
<th>FLDS vs. BDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9sym</td>
<td>40</td>
<td>4</td>
<td>0.08</td>
<td>39</td>
<td>5</td>
<td>0.12</td>
<td>52</td>
<td>5</td>
<td>0.036</td>
<td>19.23</td>
<td>25.00</td>
</tr>
<tr>
<td>9symml</td>
<td>114</td>
<td>6</td>
<td>0.08</td>
<td>58</td>
<td>6</td>
<td>0.54</td>
<td>13</td>
<td>4</td>
<td>0.031</td>
<td>88.60</td>
<td>-33.33</td>
</tr>
<tr>
<td>itau2</td>
<td>85</td>
<td>5</td>
<td>0.08</td>
<td>19</td>
<td>6</td>
<td>0.17</td>
<td>13</td>
<td>4</td>
<td>0.051</td>
<td>-84.71</td>
<td>-30.00</td>
</tr>
<tr>
<td>C1395</td>
<td>150</td>
<td>9</td>
<td>0.09</td>
<td>208</td>
<td>12</td>
<td>0.82</td>
<td>102</td>
<td>7</td>
<td>0.082</td>
<td>-32.00</td>
<td>-50.96</td>
</tr>
<tr>
<td>C1190</td>
<td>75</td>
<td>4</td>
<td>0.14</td>
<td>77</td>
<td>6</td>
<td>3.87</td>
<td>80</td>
<td>6</td>
<td>0.036</td>
<td>-6.26</td>
<td>-33.33</td>
</tr>
<tr>
<td>C1354</td>
<td>363</td>
<td>12</td>
<td>0.12</td>
<td>418</td>
<td>14</td>
<td>2.99</td>
<td>80</td>
<td>6</td>
<td>0.036</td>
<td>-6.26</td>
<td>-33.33</td>
</tr>
<tr>
<td>C499</td>
<td>77</td>
<td>5</td>
<td>0.13</td>
<td>80</td>
<td>4</td>
<td>3.42</td>
<td>77</td>
<td>6</td>
<td>0.035</td>
<td>0.00</td>
<td>-3.75</td>
</tr>
<tr>
<td>C880</td>
<td>112</td>
<td>9</td>
<td>0.14</td>
<td>123</td>
<td>9</td>
<td>1.21</td>
<td>167</td>
<td>11</td>
<td>0.067</td>
<td>32.93</td>
<td>18.18</td>
</tr>
<tr>
<td>cordic</td>
<td>304</td>
<td>8</td>
<td>0.16</td>
<td>161</td>
<td>18</td>
<td>1501</td>
<td>24</td>
<td>5</td>
<td>9.735</td>
<td>-92.11</td>
<td>-37.50</td>
</tr>
<tr>
<td>count</td>
<td>42</td>
<td>5</td>
<td>0.06</td>
<td>39</td>
<td>5</td>
<td>0.12</td>
<td>52</td>
<td>5</td>
<td>0.036</td>
<td>19.23</td>
<td>25.00</td>
</tr>
<tr>
<td>dulu</td>
<td>255</td>
<td>6</td>
<td>0.16</td>
<td>326</td>
<td>9</td>
<td>2.34</td>
<td>363</td>
<td>9</td>
<td>0.128</td>
<td>29.75</td>
<td>33.33</td>
</tr>
<tr>
<td>des</td>
<td>1340</td>
<td>6</td>
<td>0.67</td>
<td>1338</td>
<td>7</td>
<td>6.03</td>
<td>1155</td>
<td>8</td>
<td>5.456</td>
<td>-13.81</td>
<td>25.00</td>
</tr>
<tr>
<td>f51m</td>
<td>41</td>
<td>4</td>
<td>0.06</td>
<td>32</td>
<td>5</td>
<td>0.12</td>
<td>18</td>
<td>4</td>
<td>0.012</td>
<td>-56.10</td>
<td>-43.75</td>
</tr>
<tr>
<td>inc</td>
<td>51</td>
<td>4</td>
<td>0.06</td>
<td>45</td>
<td>4</td>
<td>0.1</td>
<td>51</td>
<td>4</td>
<td>0.035</td>
<td>0.00</td>
<td>11.76</td>
</tr>
<tr>
<td>my-adder</td>
<td>32</td>
<td>16</td>
<td>0.08</td>
<td>33</td>
<td>16</td>
<td>0.89</td>
<td>35</td>
<td>16</td>
<td>0.051</td>
<td>8.57</td>
<td>0.00</td>
</tr>
<tr>
<td>rd23</td>
<td>10</td>
<td>3</td>
<td>0.05</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>-3.00</td>
<td>-33.33</td>
</tr>
<tr>
<td>rd73</td>
<td>63</td>
<td>4</td>
<td>0.09</td>
<td>15</td>
<td>4</td>
<td>0.09</td>
<td>11</td>
<td>3</td>
<td>0.015</td>
<td>-82.54</td>
<td>-25.00</td>
</tr>
<tr>
<td>rd84</td>
<td>106</td>
<td>6</td>
<td>0.09</td>
<td>25</td>
<td>5</td>
<td>0.4</td>
<td>15</td>
<td>3</td>
<td>0.031</td>
<td>-85.85</td>
<td>-50.00</td>
</tr>
<tr>
<td>sq28</td>
<td>26</td>
<td>4</td>
<td>0.06</td>
<td>22</td>
<td>4</td>
<td>0.06</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>-53.85</td>
<td>-25.00</td>
</tr>
<tr>
<td>sq8ml</td>
<td>20</td>
<td>5</td>
<td>0.06</td>
<td>26</td>
<td>6</td>
<td>0.07</td>
<td>12</td>
<td>3</td>
<td>0.02</td>
<td>-40.00</td>
<td>-50.00</td>
</tr>
<tr>
<td>sq8r5</td>
<td>18</td>
<td>3</td>
<td>0.06</td>
<td>18</td>
<td>3</td>
<td>0.03</td>
<td>15</td>
<td>2</td>
<td>0.015</td>
<td>-14.67</td>
<td>-33.33</td>
</tr>
<tr>
<td>l481</td>
<td>135</td>
<td>6</td>
<td>0.11</td>
<td>70</td>
<td>6</td>
<td>22.81</td>
<td>5</td>
<td>2</td>
<td>0.078</td>
<td>-96.30</td>
<td>-66.67</td>
</tr>
<tr>
<td>xor5</td>
<td>7</td>
<td>3</td>
<td>0.05</td>
<td>6</td>
<td>3</td>
<td>0.01</td>
<td>2</td>
<td>2</td>
<td>0.015</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>zf4ml</td>
<td>7</td>
<td>3</td>
<td>0.05</td>
<td>6</td>
<td>3</td>
<td>0.01</td>
<td>12</td>
<td>3</td>
<td>0.02</td>
<td>12.50</td>
<td>0.00</td>
</tr>
<tr>
<td>Total/Average</td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td>%difference</td>
<td>2.96</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{%difference} = \frac{(\text{final} - \text{initial})}{\text{MAX} (\text{initial}, \text{final})} \times 100
\]

This equation ensures that both gains and losses observed in the table of results are weighted equally.

Our results show that XOR-based logic can be reduced in size by 25.3% and 18.8% as compared to leading logic minimization tools like ABC and BDS-PGA 2.0, respectively. The depth of these circuits is also reduced by 7.7% and 14.5% respectively. The cost of this optimization is the increase in area for non-XOR based circuits. On average, FLDS generates 6.2% larger non-XOR circuits than ABC, and 4.8% larger than BDS-PGA 2.0.

7.2 Discussion of Individual Circuits

Table 1 shows significant area savings for XOR-based logic function when using FLDS as compared to the aforementioned synthesis systems. The largest (percent wise) savings were observed for 9sym, cordic, sq8r5ml, and l481. 9sym is a circuit with a single input logic function and includes a number of XOR gates. Interestingly enough, 9symml is exactly the same circuit, except with a different initial representation in the BLIF file. Both ABC and BDS-PGA 2.0 synthesized it much better than 9sym, while FLDS was able to achieve a better result.

Another aspect of FLDS is the synthesis of multiple output functions. An example of a circuit that significantly benefited from this approach was cordic. It consists of 2 functions sharing 23 inputs. The FLDS algorithm was able to minimize the area of this circuit by maximizing the reuse of logic expressions common to the two logic functions. The algorithm first created two cones of logic to represent the circuit and then determined the set of shared logic sub-functions that could be extracted to reduce circuit area. In contrast, neither ABC nor BDS-PGA partitioned.
the circuit into two cones of logic. For example, BDS-PGA decomposed the circuit into 32 logic functions. As a result many more LUTs were needed in the final implementation of this circuit. While in Table 1 the synthesis flags for this circuit do not include x-dominator decompositions usage, the results with this flag turned on were identical, except for the longer processing time.

An example where the variable partitioning algorithm was particularly useful is the ex81 circuit, which is a 16 input single output logic function. It is compactly represented in the Fixed-Polarity Reed-Muller form and can be synthesized into a minimal 5 4-LUT implementation. In FLDS the function was synthesized in 0.078 seconds, finding only two basis functions during a balanced decomposition. The variable partitioning algorithm was successful in finding a good assignment of variables, which allowed for a minimum area synthesis of the logic function.

On the set of non-XOR based circuits our results were 4.8% larger than BDS-PGA and 6.2% larger than those generated by ABC. In terms of depth, BDS-PGA produced 6.2% better results here, while ABC was 16.5% better. However, numerous non-XOR circuits benefited considerably from using FLDS. Examples of such circuits are ex5p, pdc, sao2, and ex1010, where the area was reduced by 50-80% with respect to both BDS-PGA 2.0 and ABC. The major reason for area reduction in those circuits was the multi-output synthesis capability offered by FLDS.

In our research we also investigated the possibility of augmenting existing synthesis systems, such as ABC [15], with FLDS algorithms. We investigated the effect of using FLDS prior to the resyn2 script of ABC. We found this approach to improve ABC’s area results by 24% for XOR based circuits, and by 4% for non-XOR circuits. The depth results were improved by 16% for XOR circuits, while the non-XOR circuits suffered 1% depth penalty. This shows that the FLDS algorithm can augment ABC’s results.

7.3 Related Work
The work closest to ours is factor [16]. In [16] a truth table matrix is decomposed into a product of 3 matrices using an approach based on Single Value Decomposition (SVD). Our method differs from [16], mostly in the approach to multi-output/multi-level synthesis. During multi-output decomposition the algorithm in [16] partitions variables to reduce the number of sub-functions for each output. However, the sub-functions for distinct outputs may still be linearly dependent. Our approach reduces the cost of final implementation of the circuit by removing linear dependencies.

A work concurrent to ours [17] uses kernel extraction to generate leader expressions for decomposition. However, the approach in [17] hinges on the use of Reed-Muller form expressions, which limits its effectiveness for general logic functions. In contrast, FLDS uses BDDs as the underlying data structure, allowing our approach to be very efficient in terms of processing time. Also, using BDDs as a starting point allows FLDS to synthesize non-XOR logic effectively without sacrificing processing time.

8. CONCLUSION AND FUTURE WORK
This paper presented a novel decomposition and synthesis technique that is very effective in reducing the area of functions that depend heavily on XOR gates. It performs well in extracting common sub-functions from a logic expression based on an XOR relationship. For non-XOR intensive logic circuits the technique suffers only a minor area and depth penalty. In both cases FLDS performs logic synthesis rapidly, which is instrumental in the synthesis of large circuits.

This synthesis technique is successful and will be further extended to include non-disjoint decomposition as well. Adding the ability to decide between the use of disjoint and non-disjoint decomposition will be a key target for FLDS.

9. ACKNOWLEDGMENTS
We grateful to Dr. D. Singh, Dr. V. Manohararajah from Altera, and Prof. Z. Vranesic and Prof. J. Zhu from the University of Toronto for their feedback throughout the course of this research. We also thank Altera Corporation for funding this research.

10. REFERENCES