Outline

- Bridge Fault Model
- Bridge Fault Simulation
- Test Generation for Bridge Fault
After single stuck-at faults, bridge faults are the most important class of faults.

Most commonly occurring type of fault.

Simplified model assumes 0Ω resistance (short) between two lines (dotted line in the figure)
Bridge Fault Model

- **Wired-AND**
 - $y=0 \implies x$ is s-a-0
 - Test for bridge fault:
 - Set y to 0 and test for x s-a-0 -or-
 - Set x to 0 and test for y s-a-0

- **Wired-OR**
 - $y=1 \implies x$ is s-a-1
 - Test for bridge fault:
 - Set y to 1 and test for x s-a-1 -or-
 - Set x to 1 and test for y s-a-1

- **Dominant driver**
 - x always outdrives y
 - y always outdrives x
Bridge Fault Model

Assumes 0Ω resistance
Bridge Fault Model

- Need to consider drive strengths of bridged nodes to determine voltage level.
Gates driven by the bridged nodes may interpret the voltage level differently, depending on their logic threshold voltages.

Byzantine Generals Problem
Feedback Bridge Faults

- In a feedback bridge fault, there exists at least one path between the two bridged nodes.
 - The back line \(b \) is the line closest to the PI’s.
 - The front line \(f \) is the line closest to the PO’s.

- AND:
 - set \(b=0 \) and test for \(f \text{ s-a-0} \) (no logical feedback)
 - set \(f=0 \) and test for \(b \text{ s-a-0} \), but not through \(f \) (i.e., \(f \) is not sensitive to \(b \)).
Feedback Bridge Faults

- If a feedback loop involves an odd number of inversions, the circuit may oscillate.
 - AND-bridge
 - OR-bridge
Bridge Faults

- **Output-to-Output**
 - Between metal lines in routing channels
 - Outputs of different gates.
- **Input-to-Input**
 - Between inputs of the same gate in polysilicon
- **Input-to-Output**
 - Between an input and output of the same gate
- **Source-to-Drain**
 - Between source and drain of the same transistor in diffusion.
- **BART [Patel et al., 1996]:** Bridge Fault Test Generator
Input-to-Output Short

- In a simple CMOS gate, if the short causes an error, then input value is forced upon the output [Vierhaus, Meyer, Glaser, ITC’93]

- This is also true for complex CMOS gates such as And-Or-Invert (AOI) and Or-And-Invert (OAI) gates
 - [Cusey, M.S. Thesis, 1993]

- Test vectors for input and output stuck-at faults cover Input-to-output shorts.

- Input-to-Output shorts not targeted in BART
Source-to-Drain Short

- Also called transistor stuck-on fault.
 - Not strictly a logic fault.
 - However, any test vector that detects such a fault must always detect some structurally related logic stuck-at fault.
- Source-drain shorts not targeted in BART.
Logic Model for a Bridge

Fault-Free
- \(G, H = 0,1 \)
- \(G, H = 1,0 \)

Faulty
- \(G, H = 0,0 \)
- \(G, H = 1,1 \)

Model
- \(H \rightarrow s-a-0 \)
- \(G \rightarrow s-a-1 \)
- \(H \rightarrow s-a-1 \)
One of Four Possible Error Manifestations

Modeled as Logic Fault F s-a-1
Circuit Modification for ATPG

- All four possible manifestations of a bridge are simultaneously addressed in a single circuit modification
 - Adds about 10 gates per bridge.
- Four single stuck-at faults in the modified circuit represent the four error manifestations.
- ATPG can be used to generate four possible test vectors
- Test generation complexity is the same as a stuck-at fault test generation.
Strong and Weak Logic Values

A 1
weak 1
G ?

B 0

C 1
H ?

D 0
weak 0

A 0
strong 1
G 1

B 0

C 1
weak 0 -> 1
H 1 (error)

D 0
Generalized Bridge Model

Bridge Function

MUX 0
G

MUX 1

H'

MUX 0

H

MUX 1

G'

X
s-a-1

A
B

C
D

C
D

A
B
C
D
BART Test Generation

- Faults extracted by a randomly generated list
- Site of the target bridge modified according to the strength model.
- ATPG generates tests for the 4 stuck-at faults.
- If strength values cannot be justified, BART reverts to the normal logic value model.
- BART generates vectors for 10 target bridges before invoking a fault simulator