What is a System on a Chip?

- Integration of a complete system, that until recently consisted of multiple ICs, onto a single IC.
System Chips

- Why?
 - Complex applications
 - Progress of technology allows it
 - High performance
 - Battery life
 - Short market window
 - Cost sensitivity

- Characteristics:
 - Very large transistor counts on a single IC
 - Mixed technology on the same chip (digital, memory, analog, FPGA)
 - Multiple clock frequencies
 - Different testing strategies and test sets
SoC Target Applications

● Telecommunications, networking:
 ◆ ATM switches, Ethernet switches, bridges, routers

● Portable consumer products:
 ◆ Cellular phones, pagers, organizers

● Multimedia:
 ◆ Digital cameras, games, digital video

● Embedded Control
 ◆ Automotive, printers, smart cards, disk drives
What are embedded cores?

- **Core**: Pre-designed, pre-verified complex functional blocks also termed *IP, megacells, system-level macros, virtual components*
 - *Processor Cores*: ARM, MIPS, IBM PowerPC, BIST logic
 - *DSP Cores*: TI, Pine, Oak
 - *Peripherals*: DMA Controller, MMU
 - *Interface*: PCI, USB
 - *Multimedia*: JPEG Compression, MPEG decoder
 - *Networking*: Ethernet Controller, ATM switches
Core Types

- **Soft core**
 - A synthesizable HDL description

- **Firm core**
 - A gate-level netlist that meets timing assessment.

- **Hard core**
 - Includes layout and technology-dependent timing information
Core Concerns

● Cost-of-Test and Time-to-Market concerns have lead to a Core-Based Design approach.

● Goal is to supply easy-to-integrate cores to the system-on-a-chip market.

● Core design and core integration are major issues.

● System-on-Board vs. System-on-Chip:
 - **Analogy**: Reuse of pre-designed components on a system
 - **Difference**: SoC components are only manufactured and tested in the final system
Core Test Challenges?

- Distributed Design and Test Development
- Test Access to Embedded Cores
- SoC-Level Test Optimization
- On top of:
 - **Traditional Challenges:** Trade-off test quality, test development time, IC cost, test application cost
 - **New Deep-Submicron Design Challenges:** by 2005 it is predicted 100nm technology, clock > 3.5 GHz, supply 0.9-1.2 V
 - **New Deep-Submicron Test Challenges:** new defects such as noise, crosstalk, soft errors
Core Test Challenges?

- **Distributed development:** test knowledge transfer includes test methods, protocols and pattern data, core-internal DFT. Core-based design and test is spread over company and time.

- **Test Access to Embedded Cores:** often # cores terminals > # IC pins. *Need to test cores as stand-alone units:* provide core access from IC pins and isolate cores when testing from other modules.

- **SoC-Level Test Optimization:** SoC consists of simple and complex cores, UDL, interconnect logic. SoC test should address all of this:
 - Test quality, cost, bandwidth and area
 - Trade-off between test vector count, application time, area and power
Core Test Challenges?

- There is no direct access to the core cell ports from the primary inputs and primary outputs of the chip.
- Creation of peripheral access often involves an additional DFT effort.
 - Core integration
- Use of multiple cores within one design with different DFT strategies

Core Testing Strategy:
- Decouple embedded core level test from system chip test
- Identify adequate core test methodology
- Create mechanism for core test access
- Identify and implement system-chip level test methodology
Internal Core Test

- The core integrator has little knowledge of the adopted core’s structural content.

- Core builder won’t know which test method to adopt, the type of fault, or desired level of fault coverage.

 - Several versions of a core may be available, each using different parameters or a different DFT strategy.

- The organization responsible for testing the overall chip should define the DFT and Test strategy.

- If intellectual property (IP) is not an issue, a standard DFT approach can be used.

 - Nondisclosure agreements (NDA’s) may be adequate.
Generic Core Test Access Architecture

- **Test Pattern **Source and Sink:
 - Generates test stimuli and performs test analysis

- **Test Access Mechanism (TAM):**
 - Transports test patterns to/from CUT

- **Core Test Wrapper:**
 - Provides switching of core terminals to functional I/O or TAM
Generic SoC Test Access Architecture
Test Access Mechanism (TAM)

- There are two parameters involved with a TAM:
 - **TAM capacity (number of wires):** needs to meet core’s data rate (minimum) and it cannot be more than bandwidth of source/sink (maximum). Trade-off between test quality, test time, area
 - **TAM length (wire length):** on/off chip source/sink. TAM length can be shortened if it is shared with other modules or is shared with functional hardware

- **TAM Implementations:** Multiplexed Access, Reused System Bus, Transparent, Boundary Scan
Test Access Mechanism (TAM)

- Connect wire to all core terminals and multiplex onto existing IC pins
- Test mode per core controls multiplexer
- Common for memories and block based ASICs
Test Access Mechanism (TAM)

Benefits
- Embedded core can be tested as stand alone device
- Translation from core-level to system-level is easy
- Simple silicon debug and diagnosis

Drawbacks
- Method is not scalable. If \#core terminals > \# IC pins
 => parallel to serial conversion => difficult at-speed testing
- Area and control circuitry grows
Reused System Bus

Motivation: Many SoCs have an on-chip system bus that connects to most cores anyway. Reuse system bus as TAM is cheap w.r.t. silicon area

Benefits

- Low area

Drawbacks

- Fixed bus does not allow trade-offs (area, quality, test time)
- Difficult to integrate scan design or BIST
Transparent TAM

Transparent Path: path from source to sink with no information loss

Examples of transparency: scan chains, arithmetic functions, embedded memories, blocks of basic gates AND, OR, INV, MUX
Transparent TAM

Benefits
- Low area cost for TAM in case of reuse of existing hardware

Drawbacks
- Core test access depends on other modules
- During core design, core environments are unknown. Core user has to add TAMs in the cores.
- Translation from core-level to IC-level test might be complicated (e.g., latencies of cores)
Boundary Scan Methods

- Isolation ring
 - Boundary scan chain
 - Internal (parallel) scan for sequential cores
 - Higher test application time.

- Partial isolation ring
 - Place some core I/O’s in a boundary scan chain.
Boundary Scan: Isolation Ring

- Boundary scan chain for accessing Core I/O’s
- Internal scan chain.

![Diagram of Boundary Scan: Isolation Ring](image-url)
Not all core I/O’s placed in boundary scan chain.

Need observability (for testing UDL 1) for core inputs omitted from boundary scan chain.

Need controllability (for testing UDL 2) for core outputs omitted from boundary scan chain.
Core Test Wrapper

- Wrapper’s Task:
 - Interface between core and rest of chip (TAM)
 - Switching ability between:
 - normal operation of core
 - core test mode
 - interconnect test mode (bypass mode)
 - Width adaptation: serial-to-parallel at core inputs, parallel-to-serial at core outputs
Core Test Wrapper
Core Test Wrapper: Normal Mode
Core Test Wrapper: Test Mode
Core Test Wrapper: Bypass Mode

Diagram showing the connection of scan chains, test control blocks, and CUT (Circuit Under Test) with wrappers.