What is a System on a Chip?

- Integration of a complete system, that until recently consisted of multiple ICs, onto a single IC.

System Chips

- **Why?**
 - Complex applications
 - Progress of technology allows it
 - High performance
 - Battery life
 - Short market window
 - Cost sensitivity

- **Characteristics:**
 - Very large transistor counts on a single IC
 - Mixed technology on the same chip (digital, memory, analog, FPGA)
 - Multiple clock frequencies
 - Different testing strategies and test sets
SoC Target Applications

- **Telecommunications, networking:**
 - ATM switches, Ethernet switches, bridges, routers

- **Portable consumer products:**
 - Cellular phones, pagers, organizers

- **Multimedia:**
 - Digital cameras, games, digital video

- **Embedded Control**
 - Automotive, printers, smart cards, disk drives

What are embedded cores?

- **Core:** Pre-designed, pre-verified complex functional blocks also termed *IP, megacells, system-level macros, virtual components*
 - **Processor Cores:** ARM, MIPS, IBM PowerPC, BIST logic
 - **DSP Cores:** TI, Pine, Oak
 - **Peripherals:** DMA Controller, MMU
 - **Interface:** PCI, USB
 - **Multimedia:** JPEG Compression, MPEG decoder
 - **Networking:** Ethernet Controller, ATM switches
Core Types

- **Soft core**
 - A synthesizable HDL description

- **Firm core**
 - A gate-level netlist that meets timing assessment.

- **Hard core**
 - Includes layout and technology-dependent timing information

Core Concerns

- Cost-of-Test and Time-to-Market concerns have lead to a Core-Based Design approach.

- Goal is to supply easy-to-integrate cores to the system-on-a-chip market.

- Core design and core integration are major issues.

- **System-on-Board vs. System-on-Chip:**
 - **Analogy:** Reuse of pre-designed components on a system
 - **Difference:** SoC components are only manufactured and tested in the final system
Core Test Challenges?

- Distributed Design and Test Development
- Test Access to Embedded Cores
- SoC-Level Test Optimization

On top of:

- **Traditional Challenges:** Trade-off test quality, test development time, IC cost, test application cost
- **New Deep-Submicron Design Challenges:** by 2005 it is predicted 100nm technology, clock > 3.5 GHz, supply 0.9-1.2 V
- **New Deep-Submicron Test Challenges:** new defects such as noise, crosstalk, soft errors

Core Test Challenges?

- **Distributed development:** test knowledge transfer includes test methods, protocols and pattern data, core-internal DFT. Core-based design and test is spread over company and time

- **Test Access to Embedded Cores:** often # cores terminals > # IC pins. *Need to test cores as stand-alone units:* provide core access from IC pins and isolate cores when testing from other modules

- **SoC-Level Test Optimization:** SoC consists of simple and complex cores, UDL, interconnect logic. SoC test should address all of this:
 - Test quality, cost, bandwidth and area
 - Trade-off between test vector count, application time, area and power
Core Test Challenges?

- There is no direct access to the core cell ports from the primary inputs and primary outputs of the chip.
- Creation of peripheral access often involves an additional DFT effort.
 - Core integration
- Use of multiple cores within one design with different DFT strategies

Core Testing Strategy:
- Decouple embedded core level test from system chip test
- Identify adequate core test methodology
- Create mechanism for core test access
- Identify and implement system-chip level test methodology

Internal Core Test

- The core integrator has little knowledge of the adopted core’s structural content.
- Core builder won’t know which test method to adopt, the type of fault, or desired level of fault coverage.
 - Several versions of a core may be available, each using different parameters or a different DFT strategy.
- The organization responsible for testing the overall chip should define the DFT and Test strategy.
- If intellectual property (IP) is not an issue, a standard DFT approach can be used.
 - Nondisclosure agreements (NDA’s) may be adequate.
Generic Core Test Access Architecture

- Test Pattern Source and Sink:
 - Generates test stimuli and performs test analysis

- Test Access Mechanism (TAM):
 - Transports test patterns to/from CUT

- Core Test Wrapper:
 - Provides switching of core terminals to functional I/O or TAM

Generic SoC Test Access Architecture

- Source, TAM, CUT, TAM, Sink

- Components: CPU, SRAM, ROM, DRAM, MPEG, UDL, PCI, SoC

ECE 1767 University of Toronto
Test Access Mechanism (TAM)

- There are two parameters involved with a TAM:
 - **TAM capacity (number of wires):** needs to meet core’s data rate (minimum) and it cannot be more than bandwidth of source/sink (maximum). Trade-off between test quality, test time, area.
 - **TAM length (wire length):** on/off chip source/sink. TAM length can be shortened if it is shared with other modules or is shared with functional hardware.

- **TAM Implementations:** Multiplexed Access, Reused System Bus, Transparent, Boundary Scan

Test Access Mechanism (TAM)

- Connect wire to all core terminals and multiplex onto existing IC pins.
- Test mode per core controls multiplexer.
- Common for memories and block based ASICs.
Test Access Mechanism (TAM)

Benefits
- Embedded core can be tested as stand alone device
- Translation from core-level to system-level is easy
- Simple silicon debug and diagnosis

Drawbacks
- Method is not scalable. If $\#\text{core terminals} > \#\text{IC pins}$
 \Rightarrow parallel to serial conversion \Rightarrow difficult at-speed testing
- Area and control circuitry grows

Reused System Bus

- **Motivation:** Many SoCs have an on-chip system bus that connects to most cores anyway. Reuse system bus as TAM is cheap w.r.t. silicon area

Benefits
- Low area

Drawbacks
- Fixed bus does not allow trade-offs (area, quality, test time)
- Difficult to integrate scan design or BIST
Transparent TAM

Transparent Path: path from source to sink with no information loss

Examples of transparency: scan chains, arithmetic functions, embedded memories, blocks of basic gates AND, OR, INV, MUX

Benefits
- Low area cost for TAM in case of reuse of existing hardware

Drawbacks
- Core test access depends on other modules
- During core design, core environments are unknown. Core user has to add TAMs in the cores.
- Translation from core-level to IC-level test might be complicated (e.g., latencies of cores)
Boundary Scan Methods

- Isolation ring
 - Boundary scan chain
 - Internal (parallel) scan for sequential cores
 - Higher test application time.

- Partial isolation ring
 - Place some core I/O’s in a boundary scan chain.

Boundary Scan: Isolation Ring

- Boundary scan chain for accessing Core I/O’s
- Internal scan chain.
Boundary Scan: Partial Isolation Ring

- Not all core I/O’s placed in boundary scan chain.
- Need observability (for testing UDL 1) for core inputs omitted from boundary scan chain.
- Need controllability (for testing UDL 2) for core outputs omitted from boundary scan chain.

Core Test Wrapper

- Wrapper’s Task:
 - Interface between core and rest of chip (TAM)
 - Switching ability between:
 - normal operation of core
 - core test mode
 - interconnect test mode (bypass mode)
 - Width adaptation: serial-to-parallel at core inputs, parallel-to-serial at core outputs
Core Test Wrapper: Test Mode

Core Test Wrapper: Bypass Mode