ECE 1749H: Interconnection Networks for Parallel Computer Architectures:

Flow Control

Prof. Natalie Enright Jerger

Announcements

• Project Progress Reports
 – Due March 9, submit by e-mail
 – Worth 15% of project grade
 – 1 page
 • Discuss current status of project
 • Any difficulties/problems encountered
 • Anticipated changes from original project proposal

Announcements (2)

• 2 presentations next week
 – Elastic-Buffer Flow Control for On-Chip Networks
 • Presenter: Islam
 – Express Virtual Channels: Toward the ideal interconnection fabric
 • Presenter Yu
• 1 Critique due
Switching/Flow Control Overview

- Topology: determines **connectivity** of network
- Routing: determines **paths** through network
- Flow Control: determine **allocation** of resources to messages as they traverse network
 - Buffers and links
 - Significant impact on throughput and latency of network

Flow Control

Control State

- Control state records
 - Allocation of channels and buffers to packets
 - Current state of packet traversing node
- Channel bandwidth advances flits from this node to next
- Buffers hold flits waiting for channel bandwidth

Packets

- Messages: composed of one or more packets
 - If message size is ≤ maximum packet size only one packet created
- Packets: composed of one or more flits
- Flit: flow control digit
- Phit: physical digit
 - Subdivides flit into chunks = to link width
Packets (2)

- Off-chip: channel width limited by pins
 - Requires phits
- On-chip: abundant wiring means phit size == flit size

Packets (3)

- Packet contains destination/route information
 - Flits may not → all flits of a packet must take same route

Switching

- Different flow control techniques based on granularity
- Circuit-switching: operates at the granularity of messages
- Packet-based: allocation made to whole packets
- Flit-based: allocation made on a flit-by-flit basis
Message-Based Flow Control

- Coarsest granularity

- Circuit-switching
 - Pre-allocates resources across multiple hops
 - Source to destination
 - Resources = links
 - Buffers are not necessary
 - Probe sent into network to reserve resources

Circuit Switching

- Once probe sets up circuit
 - Message does not need to perform any routing or allocation at each network hop
 - Good for transferring large amounts of data
 - Can amortize circuit setup cost by sending data with very low per-hop overheads
 - No other message can use those resources until transfer is complete
 - Throughput can suffer due setup and hold time for circuits
 - Links are idle until setup is complete

Circuit Switching Example

- Significant latency overhead prior to data transfer
 - Data transfer does not pay per-hop overhead for routing and allocation
Circuit Switching Example (2)

- When there is contention
 - Significant wait time
 - Message from 1 → 2 must wait

Time-Space Diagram: Circuit-Switching

Packet-based Flow Control

- Break messages into packets

- **Interleave** packets on links
 - Better utilization

- Requires per-node **buffering** to store in-flight packets

- Two types of packet-based techniques
Store and Forward

- Links and buffers are allocated to entire packet
- Head flit waits at router until entire packet is received before being forwarded to the next hop
- Not suitable for on-chip
 - Requires buffering at each router to hold entire packet
 - Packet cannot traverse link until buffering allocated to entire packet
 - Incurs high latencies (pays serialization latency at each hop)

Store and Forward Example

- High per-hop latency
 - Serialization delay paid at each hop
- Larger buffering required

Time-Space Diagram: Store and Forward

Total delay = 4 cycles per hop x 3 hops = 12 cycles
Packet-based: Virtual Cut Through

- Links and Buffers allocated to **entire** packets
- Flits can proceed to next hop before tail flit has been received by current router
 - But only if next router has enough buffer space for entire packet
- Reduces the latency significantly compared to SAF
- But still requires **large** buffers
 - Unsuitable for on-chip

Virtual Cut Through Example

- Lower per-hop latency
- Large buffering required

Time-Space Diagram: VCT

- Allocate 4 flit-sized buffers before head proceeds
- Allocate 4 buffers before head proceeds
- Total delay = 3 cycle per hop × 3 hops + serialization = 6 cycles

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>H</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>H</td>
<td>B</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>H</td>
<td>B</td>
<td>B</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Virtual Cut Through

- Throughput suffers from inefficient buffer allocation

Time-Space Diagram: VCT (2)

- Help routers meet tight area/power constraints
 - Flit can proceed to next router when there is buffer space available for that flit
 - Improved over SAF and VCT by allocating buffers on a flit-basis
Wormhole Flow Control

• Pros
 – More efficient buffer utilization (good for on-chip)
 – Low latency

• Cons
 – Poor link utilization: if head flit becomes blocked, all links spanning length of packet are idle
 • Cannot be re-allocated to different packet
 • Suffers from head of line (HOL) blocking

Wormhole Example

• 6 flit buffers/input port

Time-Space Diagram: Wormhole
Virtual Channels

• First proposed for deadlock avoidance
 – We’ll come back to this

• Can be applied to any flow control
 – First proposed with wormhole

Virtual Channel Flow Control

• Virtual channels used to combat HOL blocking in wormhole

• Virtual channels: multiple flit queues per input port
 – Share same physical link (channel)

• Link utilization improved
 – Flits on different VC can pass blocked packet
Virtual Channel Flow Control (3)

- Packets compete for VC on flit by flit basis
- Example: on downstream links, flits of each packet are available every other cycle
- Upstream links throttle because of limited buffers
- Does not mean links are idle
 - May be used by packet allocated to other VCs

Virtual Channel Example

- 6 flit buffers/input port
- 3 flit buffers/VC

Summary of techniques

<table>
<thead>
<tr>
<th>Links</th>
<th>Buffers</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit-Switching</td>
<td>Messages</td>
<td>N/A (buffer-less)</td>
</tr>
<tr>
<td>Store and Forward</td>
<td>Packet</td>
<td>Packet</td>
</tr>
<tr>
<td>Virtual Cut Through</td>
<td>Packet</td>
<td>Packet</td>
</tr>
<tr>
<td>Wormhole</td>
<td>Packet</td>
<td>Flit</td>
</tr>
<tr>
<td>Virtual Channel</td>
<td>Flit</td>
<td>Flit</td>
</tr>
</tbody>
</table>
Deadlock

- Using flow control to guarantee deadlock freedom give more flexible routing
 - Recall: routing restrictions needed for deadlock freedom

- If routing algorithm is not deadlock free
 - VCs can break resource cycle

- Each VC is time-multiplexed onto physical link
 - Holding VC implies holding associated buffer queue
 - Not tying up physical link resource

- Enforce order on VCs

Deadlock: Enforce Order

- All message sent through VC 0 until cross dateline
- After dateline, assigned to VC 1
 - Cannot be allocated to VC 0 again

Deadlock: Escape VCs

- Enforcing order lowers VC utilization
 - Previous example: VC 1 underutilized

- Escape Virtual Channels
 - Have 1 VC that is deadlock free
 - Example: VC 0 uses DOR, other VCs use arbitrary routing function
 - Access to VCs arbitrated fairly: packet always has chance of landing on escape VC

- Assign different message classes to different VCs to prevent protocol level deadlock
 - Prevent req-ack message cycles
Buffer Backpressure

• Need mechanism to prevent buffer overflow
 – Avoid dropping packets
 – Upstream nodes need to know buffer availability at downstream routers

• Significant impact on throughput achieved by flow control

• Two common mechanisms
 – Credits
 – On-off

Credit-Based Flow Control

• Upstream router stores credit counts for each downstream VC

• Upstream router
 – When flit forwarded
 • Decrement credit count
 • Count == 0, buffer full, stop sending

• Downstream router
 – When flit forwarded and buffer freed
 • Send credit to upstream router
 • Upstream increments credit count

Credit Timeline

• Round-trip credit delay:
 – Time between when buffer empty and when next flit can be processed from that buffer entry
 – If only single entry buffer, would result in significant throughput degradation
 – Important to size buffers to tolerate credit turn-around
On-Off Flow Control

- Credit: requires upstream signaling for every flit
- On-off: decreases upstream signaling
- Off signal
 - Sent when number of free buffers falls below threshold F_{off}
- On signal
 - Sent when number of free buffers rises above threshold F_{on}

On-Off Timeline

- Less signaling but more buffering
 - On-chip buffers more expensive than wires

Buffer Utilization

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Credit count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Head Flit</td>
</tr>
<tr>
<td></td>
<td>Body Flit 1</td>
</tr>
<tr>
<td></td>
<td>Credit (head)</td>
</tr>
<tr>
<td></td>
<td>Body Flit 2</td>
</tr>
<tr>
<td></td>
<td>Credit (body 1)</td>
</tr>
<tr>
<td></td>
<td>Tail Flit</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>VA/ST</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>
Buffer Sizing

- Prevent backpressure from limiting throughput
 - Buffers must hold flits >= turnaround time

- Assume:
 - 1 cycle propagation delay for data and credits
 - 1 cycle credit processing delay
 - 3 cycle router pipeline

- At least 6 flit buffers

Actual Buffer Usage & Turnaround Delay

Flow Control and MPSoCs

- Wormhole flow control

- Real time performance requirements
 - Quality of Service
 - Guaranteed bandwidth allocated to each node
 - Time division multiplexing

- Irregularity
 - Different buffer sizes
Flow Control Summary

- On-chip networks require techniques with lower buffering requirements
 - Wormhole or Virtual Channel flow control

- Avoid dropping packets in on-chip environment
 - Requires buffer backpressure mechanism

- Complexity of flow control impacts router microarchitecture (next)