ECE 1749H: Interconnection
Networks for Parallel Computer
Architectures:

Interface with System Architecture



Systems and Interfaces

* Look at how systems interact and interface with
network

* Two systems
— Shared-memory chip multiprocessors
* From high end servers to embedded products

— Multiprocessor System on Chip (MPSoC)

* Mobile consumer market

* Many more systems/applications for
iInterconnects



Memory Model in CMPs

* Message Passing

— Explicit movement of data between nodes and
address spaces

— Programmers manage communication

* Shared Memory

— Communication occurs implicitly through loads/stores
and accessing instructions

* Will focus on shared memory



Shared Memory CMP Architecture
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Shared Memory Network for CMPs

* Logically...
— all processors access same shared memory

Practically...

— cache hierarchies reduce access latency to improve
performance

* Requires cache coherence protocol

— to maintain coherent view in presence of multiple
shared copies



Impact of Coherence Protocol on
Network Performance

* Coherence protocol shapes communication
needed by system

* Single writer, multiple reader invariant

* Requires:
— Data requests
— Data responses
— Coherence permissions



An Example Execution

Processor 0 Processor 1

O: addi rl,accts,r3 cpuo  lcrur  IMem
1: 1d 0(xr3),r4

2: blt rd4,r2,0

3: sub r4,r2,r4

4: st rd4,0(r3)

5: call spew cash : addi rl,accts,r3

1d 0(xr3),r4

: blt r4,r2,06
sub r4,r2,r4
st r4,0(r3)

: call spew cash

O s w DD PO

* Two $100 withdrawals from account #241 at two ATMs

— Each transaction maps to thread on different processor
— Track accts[241] .bal (addressis in r3)



No-Cache, No-Problem

Processor 0

addi rl,accts,r3

Processor 1

Mem

500

1d 0(r3),rd ¢
blt rd4,r2,06

sub r4,r2,r4
st r4,0(r3)

500

o b w N PO

call spew cash

ua b w D = O

addi rl,accts,r3

1d 0(r3),rd <
blt rd4d,r2,06
sub r4,r2,r4

st r4,0(r3)
call spew cash

* Scenario |: processors have no caches

— No problem
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Cache Incoherence

PO P1 Mem

Processor 0 Processor 1
O: addi rl,accts,r3 500
1: 1d 0(r3),r4 V:500 500
2: blt rd,r2,06
3: sub r4,r2,r4
4: st r4,0(r3) D:400 500
5: call spew cash : addi rl,accts,r3

1d 0(r3),r4d D:400 |[v:500 |500

: blt r4,r2,06
sub r4,r2,r4

st r4,0(r3) D:400 |D:400 |[500

O s w DD PO

: call spew cash

e Scenario ll: processors have write-back caches
— Potentially 3 copies of accts [241] .bal: memory, p0S, plS
— Can get incoherent (inconsistent)



What to Do?

* No caches?
— Slow!!

e Make shared data uncachable?
— Faster, but still too slow

— Entire accts database is technically “shared”
* Definition of “loosely shared”

* Data only really shared if two ATMs access same acct at
once

— Flush all other caches on writes to shared data?

* May as well not have caches



Hardware Cache Coherence

 Hardware cache coherence
— Rough goal: all caches have same data at all times

— Minimal flushing, maximum caches --> best
performance

* Broadcast-based protocol

* All processors see all requests at the same time,
same order

 Often rely on bus



Broadcast-based Coherence
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Hardware Cache Coherence

CPU

DS tags [€

"IDS data [*

* Coherence
— All copies have same data at all times

e Coherence controller:

— Examines bus/interconnect traffic

Y

(addresses and data)
— Executes coherence protocol

bus/interconnect

* What to do with local copy when you

see different things happening on bus



Coherence Events

e Cache actions

— Three processor-initiated events

* R:read

* W: write

* WB: write-back (select block for replacement)
— Two bus-side events

* BR: bus-read, read miss on another processor
* BW: bus-write, write miss on another processor

— One response event:
 SD: send data

* Point-to-point network protocols also exist
— Typical solution is a directory protocol



W=>BW

P

»

MSI Protocol

BR/BW

 MSI (modified-shared-invalid)

— Two valid states
* M (modified): local dirty copy

%‘6‘? ®

e S (shared): local clean copy

— Allows either
* Multiple read-only copies (S-state) --OR--
* Single read/write copy (M-state)

BW=>SD, WB=>SD, Bl
RS

W=>B|

v

BR=>SD
R/W R/BR




MSI Protocol (Write-Back Cache)

PO P1 Mem

Processor 0 Processor 1
addi rl,accts, r3 500

1d 0(xr3),r4
blt rd4,r2,06

S:500 500

sub r4,r2,r4

st r4d,0(xr3) M:400 500

g w NN PO

call spew cash addi rl,accts,r3

1d 0(r3),r4 S:400 |s:400 J400

blt rd4d,r2,06
sub r4,r2,r4

st r4,0(xr3) |: M:300 |400

O s w DD PO

call spew cash

— 1d by processor 1 generates a BR
* processor 0 responds by Send Data its dirty copy, transitioning to S

— st by processor 1 generates a BW
e processor 0 responds by transitioning to |



Coherence Bandwidth Requirements

* How much address bus bandwidth does snooping need?
— Well, coherence events generated on...
* Misses (only in L2, not so bad)
* Dirty replacements
* Some parameters
— 2 GHz CPUs, 2 IPC, 33% memory operations,
— 2% of which miss in the L2, 50% of evictions are dirty
— (0.33 *0.02) + (0.33 * 0.02 * 0.50)) = 0.01 events/insn
— 0.01 events/insn * 2 insn/cycle * 2 cycle/ns = 0.04 events/ns
— Request: 0.04 events/ns * 4 B/event = 0.16 GB/s = 160 MB/s
— Data Response: 0.04 events/ns * 64 B/event = 2.56 GB/s

 That’s 2.5 GB/s ... per processor
— With 16 processors, that’s 40 GB/s!

— With 128 processors, that’s 320 GB/s!!
— Yes, you can use multiple buses... but that hinders global ordering



Scalable Cache Coherence

BR/BW

v

e Scalable cache coherence: two part solution

e Partl: bus bandwidth

— Replace non-scalable bandwidth substrate (bus)...
— ...with scalable bandwidth substrate (point-to-point network, e.g., mesh)

e Partll: processor snooping bandwidth
— Interesting: most snoops result in no action
— Replace non-scalable broadcast protocol (spam everyone)...

— ...with scalable directory protocol (only spam processors that care)
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Directory Coherence Protocols

cPu(s) cPu(s) it
|Mem IR <—>|R Viem ]
2 2 “P/m~TiP/m~Tp/m~tip/m
v v J
“p/ / / /
|Mem IR ‘_’IR Mem S Ul )y e
lcPu(s) cPu(s) iy iy Iyl Iyt
| | | |

e Observe: physical address space statically partitioned (Still
shared!!)

+ Can easily determine which memory module holds a given line

e That memory module sometimes called “home”

e Can’t easily determine which processors have line in their
caches

— Bus-based protocol: broadcast events to all processors/caches

+ Simple and fast, but non-scalable
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Directory Coherence Protocols

* Directories: non-broadcast coherence protocol
— Extend memory to track caching information
— For each physical cache line whose home this is, track:

e Owner: which processor has a dirty copy (l.e., M state)

* Sharers: which processors have clean copies (l.e., S state)

— Processor sends coherence event to home directory
* Home directory only sends events to processors that care



W=—BW

MSI Directory Protocol

* Processor side
BR/BW . ' . .
— Directory follows its own protocol (obvious in
principle)
e Similar to bus-based MSI
| — Same three states
2 — Same five actions (keep BR/BW names)
(Vp) . .
1 dé;\\ — Minus grayed out arcs/actions
g < * Bus events that would not trigger action anyway
9; + Directory won’t bother you unless you need to act
T;T %9 2 hop miss 3 hop miss
(an)]

v

S \

R/W R/BR

BR=SD \



Directory MSI Protocol

PO P1 Directory

Processor 0 Processor 1 00
O: addi rl,accts,r3
1: 1d O0(r3),r4
2: blt r4,r2,6 5:500 $:0:500
3: sub r4,r2,r4
4: st r4,0(r3) M-400 M:0:500
5: call spew cash addi rl,accts,r3 (stale)
1d 0(xr3),r4
. blt rd,r2,6 S:400 | S:400 |S:0,1:400

sub r4,r2,r4

st r4,0(r3)

O s w DD PO

I M:300| M:1:400

: call spew cash
— 1d by P1 sends BR to directory
* Directory sends BR to PO, PO sends P1 data, does WB, goesto S

— st by P1sends BW to directory
* Directory sends BW to PO, PO goes to |



Broadcast vs. Directory

Directory

. receives
Read Cache miss Read Cache miss

ﬂ request
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Coherence Protocol Requirements

e Different message types
— Unicast, multicast, broadcast

* Directory protocol

— Majority of requests: Unicast
* Lower bandwidth demands on network

— More scalable due to point-to-point communication
* Broadcast protocol

— Majority of requests: Broadcast
* Higher bandwidth demands

— Often rely on network ordering
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Protocol Level Deadlock

\_

A Core 1 A
4 \ ‘ ; 4 ; . \
Message Receive Message Format Message Receive
and Send
Req. Reply Req. || Reply
Out Out Out Out
J 4
\
Interconnection Network j

 Network becomes flooded with requests that cannot be consumed
until the network interface has generated a reply

 Deadlock dependency between multiple message classes

e Virtual channels can prevent protocol level deadlock (to be
discussed later)

Winter 2010
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Impact of Cache Hierarchy

* Sharing of injection/ejection port among cores
and caches

* Caches reduce average memory latency

— Private caches

* Multiple L2 copies

e Data can be replicated to be close to processor
— Shared caches

e Data can only exist in one L2 to bank

e Serve as filter for interconnect traffic
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Private L2 Caches (2)

Format message to
memory controller

Private L2 Cache Router
e Logic
_ Tags Data oo
Miss A & e N
Controller 4> T
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d Memory Controller
Request sent off-chip



Shared L2 Caches

a Receive data, send to L1 and core

Format request message and sent
to L2 Bank that A maps to

Send data to requestore

Receive message and

sentto L2

N\
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Shared L2 Caches (2)

Receive data, send
e to L1 and core

Format request message and
e sent to L2 Bank that A maps to
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Private vs. Shared Caches

* Private caches

— Reduce latency of L2 cache hits
* keep frequently accessed data close to processor

— Increase off-chip pressure

* Shared caches
— Better use of storage
— Non-uniform L2 hit latency

— More on-chip network pressure
* all L1 misses go onto network



Home Node/Memory Controller Issues

* Heterogeneity in network

— Some memory controller tiles
* Co-located with processor/cache or separate tile
* Share injection/ejection bandwidth?

* Home node
— Directory coherence information
— <= number of tiles

e Potential hot spots in network?



CMP Summary

* Cache hierarchies and coherence protocols
— On-going areas of research for many-core

— OCN cares about how various organizations
impact traffic



Network Interface: Miss Status Handling Registers
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Transaction Status Handling Registers

Src RdReq Addr Dest RdReply Addr Data
Src Writeback Addr Data Dest WriteAck Addr
lFrom network To network
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Synthesized NoCs for MPSoCs
e System-on-Chip (SoC)

— Chips tailored to specific applications or domains

— Designed quickly through composition of IP blocks

 Fundamental NoC concepts applicable to both
CMP and MPSoC

* Key characteristics
— Applications known a priori
— Automated design process

— Standardized interfaces

— Area/power constraints tighter



Application Characterization
-
@ decode
362 @ 357 @
® 362 353
27 16
362 Stripe
e
3 vop
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memory
94 ‘ 16
500

* Describe application with task graphs

e Annotate with traffic volumes



Design Requirements

* Less aggressive
— CMPs: GHz clock frequencies
— MPSoCs: MHz clock frequencies
— Pipelining may not be necessary
— Standardizes interfaces add significant delay

* Area and power
— CMPs: 100W for server
— MPSoC: several watts only

e Time to market

— Automatic composition and generation



Application

NoC Synthesis

Codesign
simulation

User
objectives:
power, hop
delay

Constraints:
area, powetr,
hop delay,
wire length

Input traffic
model

NoC
Component
library

IP Core

FPGA
Emulation

|
models
Constraint
graph
Comm graph
Platform Placement
IJ: Topology Generation SystemC R ant?
g outin
NoC Area Synthesis (xpipes- code g
t> models - Compiler)
I~ Includes:
- Floorplanner
 — NoC Router RTL
Architectural
:> NoC Power Simulation
models | I~
\/_ . oo .
Floorplanning specifications
SunFloor
Area, power characterization
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NoC Synthesis

* Tool chain
— Requires accurate power and area models
— Quickly iterate through many designs
— Library of soft macros for all NoC building blocks
— Floorplanner

e Determine router locations
* Determine link lengths (delay)



NoC Network Interface Standards

e Standardized protocols
— Plug and play with different IP blocks

e Bus-based semantics
— Widely used
e Qut of order transactions

— Relax strict bus ordering semantics
— Migrating MPSoCs from buses to NoCs.



Summary

* Architecture
— Impacts communication requirements
— Broadcast vs. Directory
— Shared vs. Private Caches

* CMP vs. MPSoC

— General vs. Application specific
— Custom interfaces vs. standardized interfaces



Next Time

* Look at Topology and Routing

* Announcement:

— Distinguished Lecture Tomorrow

— Norm Jouppi, Director of the Exascale Computing
Lab at HP

— Talk: System Implications of Integrated
Photonics



