ECE 1749H: Interconnection
Networks for Parallel Computer
Architectures:

Interface with System Architecture

Systems and Interfaces

* Look at how systems interact and interface with
network

* Two systems
— Shared-memory chip multiprocessors
* From high end servers to embedded products

— Multiprocessor System on Chip (MPSoC)

* Mobile consumer market

* Many more systems/applications for
iInterconnects

Memory Model in CMPs

* Message Passing

— Explicit movement of data between nodes and
address spaces

— Programmers manage communication

* Shared Memory

— Communication occurs implicitly through loads/stores
and accessing instructions

* Will focus on shared memory

Shared Memory CMP Architecture

L11/D
Core
Cache
L2 Cache Router
J11m
Tags Data ﬁ ><
Logic

Controller

Shared Memory Network for CMPs

* Logically...
— all processors access same shared memory

Practically...

— cache hierarchies reduce access latency to improve
performance

* Requires cache coherence protocol

— to maintain coherent view in presence of multiple
shared copies

Impact of Coherence Protocol on
Network Performance

* Coherence protocol shapes communication
needed by system

* Single writer, multiple reader invariant

* Requires:
— Data requests
— Data responses
— Coherence permissions

An Example Execution

Processor 0 Processor 1

O: addi rl,accts,r3 cpuo lcrur IMem
1: 1d 0(xr3),r4

2: blt rd4,r2,0

3: sub r4,r2,r4

4: st rd4,0(r3)

5: call spew cash : addi rl,accts,r3

1d 0(xr3),r4

: blt r4,r2,06
sub r4,r2,r4
st r4,0(r3)

: call spew cash

O s w DD PO

* Two $100 withdrawals from account #241 at two ATMs

— Each transaction maps to thread on different processor
— Track accts[241] .bal (addressis in r3)

No-Cache, No-Problem

Processor 0

addi rl,accts,r3

Processor 1

Mem

500

1d 0(r3),rd ¢
blt rd4,r2,06

sub r4,r2,r4
st r4,0(r3)

500

o b w N PO

call spew cash

ua b w D = O

addi rl,accts,r3

1d 0(r3),rd <
blt rd4d,r2,06
sub r4,r2,r4

st r4,0(r3)
call spew cash

* Scenario |: processors have no caches

— No problem

Winter 2010 ECE 1749H: Interconnection Networks (Enright Jerger)

400

400

300

Cache Incoherence

PO P1 Mem

Processor 0 Processor 1
O: addi rl,accts,r3 500
1: 1d 0(r3),r4 V:500 500
2: blt rd,r2,06
3: sub r4,r2,r4
4: st r4,0(r3) D:400 500
5: call spew cash : addi rl,accts,r3

1d 0(r3),r4d D:400 |[v:500 |500

: blt r4,r2,06
sub r4,r2,r4

st r4,0(r3) D:400 |D:400 |[500

O s w DD PO

: call spew cash

e Scenario ll: processors have write-back caches
— Potentially 3 copies of accts [241] .bal: memory, p0S, plS
— Can get incoherent (inconsistent)

What to Do?

* No caches?
— Slow!!

e Make shared data uncachable?
— Faster, but still too slow

— Entire accts database is technically “shared”
* Definition of “loosely shared”

* Data only really shared if two ATMs access same acct at
once

— Flush all other caches on writes to shared data?

* May as well not have caches

Hardware Cache Coherence

 Hardware cache coherence
— Rough goal: all caches have same data at all times

— Minimal flushing, maximum caches --> best
performance

* Broadcast-based protocol

* All processors see all requests at the same time,
same order

 Often rely on bus

Broadcast-based Coherence

oNoNoNo

=

Mem

Hardware Cache Coherence

CPU

DS tags [€

"IDS data [*

* Coherence
— All copies have same data at all times

e Coherence controller:

— Examines bus/interconnect traffic

Y

(addresses and data)
— Executes coherence protocol

bus/interconnect

* What to do with local copy when you

see different things happening on bus

Coherence Events

e Cache actions

— Three processor-initiated events

* R:read

* W: write

* WB: write-back (select block for replacement)
— Two bus-side events

* BR: bus-read, read miss on another processor
* BW: bus-write, write miss on another processor

— One response event:
 SD: send data

* Point-to-point network protocols also exist
— Typical solution is a directory protocol

W=>BW

P

»

MSI Protocol

BR/BW

 MSI (modified-shared-invalid)

— Two valid states
* M (modified): local dirty copy

%‘6‘? ®

e S (shared): local clean copy

— Allows either
* Multiple read-only copies (S-state) --OR--
* Single read/write copy (M-state)

BW=>SD, WB=>SD, Bl
RS

W=>B|

v

BR=>SD
R/W R/BR

MSI Protocol (Write-Back Cache)

PO P1 Mem

Processor 0 Processor 1
addi rl,accts, r3 500

1d 0(xr3),r4
blt rd4,r2,06

S:500 500

sub r4,r2,r4

st r4d,0(xr3) M:400 500

g w NN PO

call spew cash addi rl,accts,r3

1d 0(r3),r4 S:400 |s:400 J400

blt rd4d,r2,06
sub r4,r2,r4

st r4,0(xr3) |: M:300 |400

O s w DD PO

call spew cash

— 1d by processor 1 generates a BR
* processor 0 responds by Send Data its dirty copy, transitioning to S

— st by processor 1 generates a BW
e processor 0 responds by transitioning to |

Coherence Bandwidth Requirements

* How much address bus bandwidth does snooping need?
— Well, coherence events generated on...
* Misses (only in L2, not so bad)
* Dirty replacements
* Some parameters
— 2 GHz CPUs, 2 IPC, 33% memory operations,
— 2% of which miss in the L2, 50% of evictions are dirty
— (0.33 *0.02) + (0.33 * 0.02 * 0.50)) = 0.01 events/insn
— 0.01 events/insn * 2 insn/cycle * 2 cycle/ns = 0.04 events/ns
— Request: 0.04 events/ns * 4 B/event = 0.16 GB/s = 160 MB/s
— Data Response: 0.04 events/ns * 64 B/event = 2.56 GB/s

 That’s 2.5 GB/s ... per processor
— With 16 processors, that’s 40 GB/s!

— With 128 processors, that’s 320 GB/s!!
— Yes, you can use multiple buses... but that hinders global ordering

Scalable Cache Coherence

BR/BW

v

e Scalable cache coherence: two part solution

e Partl: bus bandwidth

— Replace non-scalable bandwidth substrate (bus)...
— ...with scalable bandwidth substrate (point-to-point network, e.g., mesh)

e Partll: processor snooping bandwidth
— Interesting: most snoops result in no action
— Replace non-scalable broadcast protocol (spam everyone)...

— ...with scalable directory protocol (only spam processors that care)

Winter 2010 ECE 1749H: Interconnection Networks (Enright Jerger) 18

Directory Coherence Protocols

cPu(s) cPu(s) it
|Mem IR <—>|R Viem]
2 2 “P/m~TiP/m~Tp/m~tip/m
v v J
“p/ / / /
|Mem IR ‘_’IR Mem S Ul)y e
lcPu(s) cPu(s) iy iy Iyl Iyt
| | | |

e Observe: physical address space statically partitioned (Still
shared!!)

+ Can easily determine which memory module holds a given line

e That memory module sometimes called “home”

e Can’t easily determine which processors have line in their
caches

— Bus-based protocol: broadcast events to all processors/caches

+ Simple and fast, but non-scalable
Winter 2010 ECE 1749H: Interconnection Networks (Enright Jerger) 20

Directory Coherence Protocols

* Directories: non-broadcast coherence protocol
— Extend memory to track caching information
— For each physical cache line whose home this is, track:

e Owner: which processor has a dirty copy (l.e., M state)

* Sharers: which processors have clean copies (l.e., S state)

— Processor sends coherence event to home directory
* Home directory only sends events to processors that care

W=—BW

MSI Directory Protocol

* Processor side
BR/BW . ' . .
— Directory follows its own protocol (obvious in
principle)
e Similar to bus-based MSI
| — Same three states
2 — Same five actions (keep BR/BW names)
(Vp) . .
1 dé;\\ — Minus grayed out arcs/actions
g < * Bus events that would not trigger action anyway
9; + Directory won’t bother you unless you need to act
T;T %9 2 hop miss 3 hop miss
(an)]

v

S \

R/W R/BR

BR=SD \

Directory MSI Protocol

PO P1 Directory

Processor 0 Processor 1 00
O: addi rl,accts,r3
1: 1d O0(r3),r4
2: blt r4,r2,6 5:500 $:0:500
3: sub r4,r2,r4
4: st r4,0(r3) M-400 M:0:500
5: call spew cash addi rl,accts,r3 (stale)
1d 0(xr3),r4
. blt rd,r2,6 S:400 | S:400 |S:0,1:400

sub r4,r2,r4

st r4,0(r3)

O s w DD PO

I M:300| M:1:400

: call spew cash
— 1d by P1 sends BR to directory
* Directory sends BR to PO, PO sends P1 data, does WB, goesto S

— st by P1sends BW to directory
* Directory sends BW to PO, PO goes to |

Broadcast vs. Directory

Directory

. receives
Read Cache miss Read Cache miss

ﬂ request
L /7 1

/ ‘\ / \‘

w

y 4
4
]
= \
]

\
\ Send \ /‘;gnd

Data Data

Memory Controller
| |
| |
——/
Directory
/

™S

Request broadcast

Coherence Protocol Requirements

e Different message types
— Unicast, multicast, broadcast

* Directory protocol

— Majority of requests: Unicast
* Lower bandwidth demands on network

— More scalable due to point-to-point communication
* Broadcast protocol

— Majority of requests: Broadcast
* Higher bandwidth demands

— Often rely on network ordering

Winter 2010 ECE 1749H: Interconnection Networks (Enright Jerger)

25

Protocol Level Deadlock

_

A Core 1 A
4 \ ‘ ; 4 ; . \
Message Receive Message Format Message Receive
and Send
Req. Reply Req. || Reply
Out Out Out Out
J 4
\
Interconnection Network j

 Network becomes flooded with requests that cannot be consumed
until the network interface has generated a reply

 Deadlock dependency between multiple message classes

e Virtual channels can prevent protocol level deadlock (to be
discussed later)

Winter 2010

ECE 1749H: Interconnection Networks (Enright Jerger)

26

Impact of Cache Hierarchy

* Sharing of injection/ejection port among cores
and caches

* Caches reduce average memory latency

— Private caches

* Multiple L2 copies

e Data can be replicated to be close to processor
— Shared caches

e Data can only exist in one L2 to bank

e Serve as filter for interconnect traffic

Hit A

Private L2 Caches

Private L2 Cache Router
e A Logic
Tags Data = 8
11111
o ><
Controller |dt=| mm
Core
L11/D

Memory Controller

Private L2 Caches (2)

Format message to
memory controller

Private L2 Cache Router
e Logic
_ Tags Data oo
Miss A & e N
Controller 4> T

L11/D

d Memory Controller
Request sent off-chip

Shared L2 Caches

a Receive data, send to L1 and core

Format request message and sent
to L2 Bank that A maps to

Send data to requestore

Receive message and

sentto L2

N\

Shared L2 Cache Router
I ;
Tags Data I Logic
11111
I
m | X
Controller
Core
L11/D
Cache o LD A
Miss A

Shared L2 Cache Router
L2 Hit
I :
Tags Data I Logic
11111
A m
[T1T] ><
Controller
Core
L1 1/D Cache

Memory Controller

Shared L2 Caches (2)

Receive data, send
e to L1 and core

Format request message and
e sent to L2 Bank that A maps to

Data received, installed

in L2 bank, sent to e

requestor
Send request to

memory controller e

Receive message

and sent to L2

N /

Shared L2 Cache

L2 Miss$

Tags Data

Router

100 Logic

Controller

m [

Shared L2 Cache Router
J11m H
Tags Data T Logic
11111
111
m | X
Controller
Core
L11/D
cr || @uon
Miss A

’_
>V

™~

L1 1/D Cache

Memory Controller

Request sent off-chip

Private vs. Shared Caches

* Private caches

— Reduce latency of L2 cache hits
* keep frequently accessed data close to processor

— Increase off-chip pressure

* Shared caches
— Better use of storage
— Non-uniform L2 hit latency

— More on-chip network pressure
* all L1 misses go onto network

Home Node/Memory Controller Issues

* Heterogeneity in network

— Some memory controller tiles
* Co-located with processor/cache or separate tile
* Share injection/ejection bandwidth?

* Home node
— Directory coherence information
— <= number of tiles

e Potential hot spots in network?

CMP Summary

* Cache hierarchies and coherence protocols
— On-going areas of research for many-core

— OCN cares about how various organizations
impact traffic

Network Interface: Miss Status Handling Registers

Core

Cache Request Type Addr Data Type Addr Data

Reply _

¢ ’[Cache | g
{

|

[Protocol Finite State)

Machine) \

MSHRs
c | 1 |
Message Format and Send Message Receive
To network From network
Dest RdReq Addr RdReply Addr Data
Dest Writeback Addr Data Request Addr

Dest Reply Addr Data WriteAck Addr

Transaction Status Handling Registers

Src RdReq Addr Dest RdReply Addr Data
Src Writeback Addr Data Dest WriteAck Addr
lFrom network To network

[Message Format and]

M Recei
[essage Receive] Send

!

[Directory Cache]

TSHRs

siaus |_sre | pair | _Daa _
L1

[Memory Controller]

Lo

Off-chip memory

4

Winter 2010 37

Synthesized NoCs for MPSoCs
e System-on-Chip (SoC)

— Chips tailored to specific applications or domains

— Designed quickly through composition of IP blocks

 Fundamental NoC concepts applicable to both
CMP and MPSoC

* Key characteristics
— Applications known a priori
— Automated design process

— Standardized interfaces

— Area/power constraints tighter

Application Characterization
-
@ decode
362 @ 357 @
® 362 353
27 16
362 Stripe
e
3 vop
)y reconstruction
memory
94 ‘ 16
500

* Describe application with task graphs

e Annotate with traffic volumes

Design Requirements

* Less aggressive
— CMPs: GHz clock frequencies
— MPSoCs: MHz clock frequencies
— Pipelining may not be necessary
— Standardizes interfaces add significant delay

* Area and power
— CMPs: 100W for server
— MPSoC: several watts only

e Time to market

— Automatic composition and generation

Application

NoC Synthesis

Codesign
simulation

User
objectives:
power, hop
delay

Constraints:
area, powetr,
hop delay,
wire length

Input traffic
model

NoC
Component
library

IP Core

FPGA
Emulation

|
models
Constraint
graph
Comm graph
Platform Placement
IJ: Topology Generation SystemC R ant?
g outin
NoC Area Synthesis (xpipes- code g
t> models - Compiler)
I~ Includes:
- Floorplanner
 — NoC Router RTL
Architectural
:> NoC Power Simulation
models | I~
\/_ . oo .
Floorplanning specifications
SunFloor
Area, power characterization
Winter 2010 ECE 1749H: Interconnection Networks (Enright Jerger)

To fab

41

NoC Synthesis

* Tool chain
— Requires accurate power and area models
— Quickly iterate through many designs
— Library of soft macros for all NoC building blocks
— Floorplanner

e Determine router locations
* Determine link lengths (delay)

NoC Network Interface Standards

e Standardized protocols
— Plug and play with different IP blocks

e Bus-based semantics
— Widely used
e Qut of order transactions

— Relax strict bus ordering semantics
— Migrating MPSoCs from buses to NoCs.

Summary

* Architecture
— Impacts communication requirements
— Broadcast vs. Directory
— Shared vs. Private Caches

* CMP vs. MPSoC

— General vs. Application specific
— Custom interfaces vs. standardized interfaces

Next Time

* Look at Topology and Routing

* Announcement:

— Distinguished Lecture Tomorrow

— Norm Jouppi, Director of the Exascale Computing
Lab at HP

— Talk: System Implications of Integrated
Photonics

