ECE 1749H: Interconnection Networks for Parallel Computer Architectures:

Routing

Prof. Natalie Enright Jerger
Announcements

• Feedback on your project proposals
 – This week

• Scheduled extended 1 week
 – Next week: 1 critique due
 – Two presentations on routing: Tony and Harsh
Announcements (2)

• Distinguished Lecture: Thurs Feb 10, 3pm SF 1105
 – Speaker: Prof. Mark Horowitz, Stanford
 • Research spanning processor design, design methodologies for digital and analog circuits
 – Title: Encapsulating Designer Knowledge: Improving Digital & Mixed Signal Design
Last Time: Topologies

• Often 1st step in network design

• Metrics

 – Switch degree: number of links at a node
 – Hop Count: number of hops from source to destination
 – Latency: Time for packet to traverse network
 – Max Channel Load: max bandwidth network can support
 – Bisection Bandwidth: bandwidth between 2 halves of network
 – Path Diversity: number of shortest paths
Topologies (2)

• Significant impact on network cost-performance
 – Determines number of hops
 • Latency
 • Network energy consumption
 – Implementation complexity
 • Node degree
 • Ease of layout
Topologies (3)

• Discussed k-ary n-cube and k-ary n-flies
 – Torus, mesh, butterfly, flattened butterfly, MECS
 – Challenges: scalability, wiring resources, power, performance
Routing Overview

• Discussion of topologies assumed ideal routing

• In practice...
 – Routing algorithms are not ideal

• Goal: distribute traffic **evenly** among paths
 – Avoid hot spots, contention
 – More balanced \rightarrow closer throughput is to ideal

• Keep complexity in mind
Routing Basics

• Once topology is fixed
• Routing algorithm determines path(s) from source to destination
Routing Example

• Some routing options:
 – Greedy: shortest path
 – Uniform random: randomly pick direction
 – Adaptive: send packet in direction with lowest local channel load

• Which gives best worst-case throughput?
Routing Example (2)

• Consider tornado traffic
 – node i sends to $i+3 \mod 8$
Routing Example (3)

• Greedy:
 – All traffic moves counterclockwise
 • Loads counterclockwise with 3 units of traffic
 – Each node gets 1/3 throughput
 • Clockwise channels are idle

• Random:
 – Clockwise channels become bottleneck
 • Load of 5/2
 – Half of traffic traverses 5 links in clockwise direction
 – Gives throughput of 2/5
Routing Example (4)

• Adaptive:
 – Perfect load balancing (some assumptions about implementation)
 – Sends $5/8$ of traffic over 3 links, sends $3/8$ over 5 links
 • Channel load is $15/8$, throughput of $8/15$

• Note: worst case throughput just 1 metric designer might optimize
Routing Algorithm Attributes

• Types
 – Deterministic, Oblivious, Adaptive

• Number of destinations
 – Unicast, Multicast, Broadcast?

• Adaptivity
 – Oblivious or Adaptive? Local or Global knowledge?
 – Minimal or non-minimal?

• Implementation
 – Source or node routing?
 – Table or circuit?
Routing Deadlock

- Each packet is occupying a link and waiting for a link.
- Without routing restrictions, a resource cycle can occur.
 - Leads to deadlock.
Deterministic

• All messages from *Source* to *Destination* traverse the same path

• Common example: Dimension Order Routing (DOR)
 – Message traverses network dimension by dimension
 – Aka XY routing

• Cons:
 – Eliminates any path diversity provided by topology
 – **Poor load balancing**

• Pros:
 – **Simple** and inexpensive to implement
 – **Deadlock-free**
• a.k.a X-Y Routing
 – Traverse network dimension by dimension
 – Can only turn to Y dimension after finished X
Oblivious

• Routing decisions are made without regard to network state
 – Keeps algorithms simple
 – Unable to adapt

• Deterministic algorithms are a subset of oblivious
Valiant’s Routing Algorithm

• To route from s to d
 – Randomly choose intermediate node d’
 – Route from s to d’ and from d’ to d.
• Randomizes any traffic pattern
 – All patterns appear uniform random
 – Balances network load
• Non-minimal
• Destroys locality
Minimal Oblivious

- Valiant’s: Load balancing but significant increase in hop count

- Minimal Oblivious: some load balancing, but use shortest paths
 - d' must lie within min quadrant
 - 6 options for d'
 - Only 3 different paths
Oblivious Routing

• Valiant’s and Minimal Adaptive
 – Deadlock free
 • When used in conjunction with X-Y routing

• Randomly choose between X-Y and Y-X routes
 – Oblivious but not deadlock free!
Adaptive

• Exploits path diversity

• Uses network state to make routing decisions
 – Buffer occupancies often used
 – Coupled with flow control mechanism

• Local information readily available
 – Global information more costly to obtain
 – Network state can change rapidly
 – Use of local information can lead to non-optimal choices

• Can be minimal or non-minimal
Minimal Adaptive Routing

- Local info can result in sub-optimal choices
Non-minimal adaptive

• Fully adaptive

• Not restricted to take shortest path

• Misrouting: directing packet along non-productive channel
 – Priority given to productive output
 – Some algorithms forbid U-turns

• Livelock potential: traversing network without ever reaching destination
 – Mechanism to guarantee forward progress
 • Limit number of misroutings
Non-minimal routing example

- Longer path with potentially lower latency
- Livelock: continue routing in cycle
Adaptive Routing Example

• Should 3 route clockwise or counterclockwise to 7?
 – 5 is using all the capacity of link 5 → 6
• Queue at node 5 will sense contention but not at node 3
• Backpressure: allows nodes to indirectly sense congestion
 – Queue in one node fills up, it will stop receiving flits
 – Previous queue will fill up
• If each queue holds 4 packets
 – 3 will send 8 packets before sensing congestion
Adaptive Routing

• Challenges:
 – Complexity
 – Potential for deadlock

• Turn Model
Adaptive Routing: Turn Model

- DOR eliminates 4 turns
 - N to E, N to W, S to E, S to W
 - No adaptivity
- Some adaptivity by removing 2 of 8 turns
 - Remains deadlock free (like DOR)
- West first
 - Eliminates S to W and N to W
Turn Model Routing

- Negative first
 - Eliminates E to S and N to W
- North last
 - Eliminates N to E and N to W
- Odd-Even
 - Eliminates 2 turns depending on if current node is in odd of even column
 - Even column: E to N and N to W
 - Odd column: E to S and S to W
 - Deadlock free (disallow 180 turns)
 - Better adaptivity
Negative-First Routing Example

- Limited or no adaptivity for certain source-destination pairs
Turn Model Routing Deadlock

- What about eliminating turns NW and WN?
- Not a valid turn elimination
 - Resource cycle results
Adaptive Routing and Deadlock

• Option 1: Eliminate turns that lead to deadlock
 – Limits flexibility

• Option 2: Allow all turns
 – Give more flexibility
 – Must use other mechanism to prevent deadlock
 – Rely on flow control (later)
 • Escape virtual channels
Routing Implementation

• Source tables
 – Entire route specified at source
 – Avoids per-hop routing latency
 – Unable to adapt dynamically to network conditions
 – Can specify multiple routes per destination
 • Give fault tolerance and load balance
 – Support reconfiguration (not specific to topology)
Source Table Routing

<table>
<thead>
<tr>
<th>Destination</th>
<th>Route 1</th>
<th>Route 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>EX</td>
<td>EX</td>
</tr>
<tr>
<td>20</td>
<td>EEX</td>
<td>EEX</td>
</tr>
<tr>
<td>01</td>
<td>NX</td>
<td>NX</td>
</tr>
<tr>
<td>11</td>
<td>NEX</td>
<td>ENX</td>
</tr>
<tr>
<td>21</td>
<td>NEEEX</td>
<td>ENEX</td>
</tr>
<tr>
<td>02</td>
<td>NNX</td>
<td>NNX</td>
</tr>
<tr>
<td>12</td>
<td>ENNX</td>
<td>NNEEX</td>
</tr>
<tr>
<td>22</td>
<td>EENNX</td>
<td>NNEEX</td>
</tr>
<tr>
<td>03</td>
<td>NNNX</td>
<td>NNNX</td>
</tr>
<tr>
<td>13</td>
<td>NENNX</td>
<td>ENNNX</td>
</tr>
<tr>
<td>23</td>
<td>EENNNX</td>
<td>NNNEEX</td>
</tr>
</tbody>
</table>

- Arbitrary length paths: storage overhead and packet overhead
Node Tables

• Store only next direction at each node

• Smaller tables than source routing

• Adds per-hop routing latency

• Can adapt to network conditions
 – Specify multiple possible outputs per destination
 – Select randomly to improve load balancing
Node Table Routing

<table>
<thead>
<tr>
<th>From</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>E</td>
<td>N</td>
</tr>
<tr>
<td>01</td>
<td>S</td>
<td>X</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>N</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>02</td>
<td>S</td>
<td>S</td>
<td>X</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>W</td>
<td>X</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>X</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>S</td>
<td>X</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>20</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>X</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>X</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>S</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

- Implements West-First Routing
- Each node would have 1 row of table
 – Max two possible output ports
Implementation

• Combinational circuits can be used
 – Simple (e.g. DOR): low router overhead
 – Specific to one topology and one routing algorithm
 • Limits fault tolerance

• Tables can be updated to reflect new configuration, network faults, etc
Circuit Based

- Next hop based on buffer occupancies
- Or could implement simple DOR
- Fixed w.r.t. topology
Routing Algorithms: Implementation

<table>
<thead>
<tr>
<th>Routing Algorithm</th>
<th>Source Routing</th>
<th>Combinational</th>
<th>Node Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oblivious</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valiant’s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Minimal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adaptive</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Routing: Irregular Topologies

• MPSoCs
 – Power and performance benefits from irregular/custom topologies

• Common routing implementations
 – Rely on source or node table routing

• Maintain deadlock freedom
 – Turn model may not be feasible
 • Limited connectivity
Routing Summary

• Latency paramount concern
 – Minimal routing most common for NoC
 – Non-minimal can avoid congestion and deliver low latency

• To date: NoC research favors DOR for simplicity and deadlock freedom
 – On-chip networks often lightly loaded

• Only covered unicast routing
 – Recent work on extending on-chip routing to support multicast
Next time

- 1 critique due
- 2 presentations on routing